Automata and Formal Languages - Homework 3

Due 3.11.2011.

Exercise 3.1

Consider the following NFA \mathcal{A} :

(a) Describe $\mathcal{L}(\mathcal{A})$.
(b) Determine the CSR of \mathcal{A} using the algorithm presented in the lecture.

Exercise 3.2

Consider the partitioning algorithm from the lecture. Its while-loop clearly cannot be executed more than $|Q|-1$ times. Show that this bound is tight, i.e. give an example where it is executed $|Q|-1$ times. (Hint: It is sufficient to consider one-letter alphabet.)

Exercise 3.3

Let $L_{i}=\left\{w \in\{a\}^{*} \mid\right.$ the length of w is divisible by $\left.i\right\}$.
(a) Construct an NFA for $L:=L_{4} \cup L_{6}$ with at most 11 states.
(b) Construct the minimal DFA for L.

Exercise 3.4

Let us consider $\Sigma=\{0,1\}$ and the msbf encoding.
(a) Construct the minimal DFAs accepting the languages L_{1}, L_{2}, and L_{3}^{2} defined below.

- $L_{1}=\left\{w \mid \operatorname{msbf}^{-1} w \bmod 3=0\right\} \cap \Sigma^{4}$.
- $L_{2}=\left\{w \mid \operatorname{msbf}^{-1} w\right.$ is a prime $\} \cap \Sigma^{4}$.
- $L_{3}^{k}=\left\{w w \mid w \in \Sigma^{k}\right\}$.
(b) How many states has the minimal DFA accepting L_{3}^{k} with respect to k ?

Exercise 3.5

For L_{1}, L_{2} regular languages over an alphabet Σ, the left quotient of L_{1} by L_{2} is defined by

$$
L_{2} \backslash L_{1}:=\left\{v \in \Sigma^{*} \mid \exists u \in L_{2}: u v \in L_{1}\right\}
$$

(a) Use the fact that regular languages are closed under homomorphisms, inverse homomorphisms, concatenation and intersection to prove they are closed under quotienting.
(b) Given finite automata $\mathcal{A}_{1}, \mathcal{A}_{2}$, construct an automaton \mathcal{A} such that

$$
\mathcal{L}(\mathcal{A})=\mathcal{L}\left(\mathcal{A}_{2}\right) \backslash \mathcal{L}\left(\mathcal{A}_{1}\right)
$$

(c) Is there any difference when taking the right quotient $L_{1} / L_{2}:=\left\{u \in \Sigma^{*} \mid \exists v \in L_{2}: u v \in L_{1}\right\}$?

Exercise 3.6

Let L_{1}, L_{2} be regular languages. Determine the inclusion relation between the following languages:

- L_{1}
- $\left(L_{1} / L_{2}\right) \cdot L_{2}$
- $\left(L_{1} \cdot L_{2}\right) / L_{2}$

Exercise 3.7

Consider the following FA \mathcal{A} over the alphabet $\{00,01,10,11\}$:

W.r.t. the msbf encoding, we may interpret any word $w \in\{00,01,10,11\}^{*}$ as a pair of natural numbers $(X(w), Y(w)) \in$ $\mathbb{N}_{0} \times \mathbb{N}_{0}$. Example: (Underlined letters correspond to $Y(w)$.)

$$
w=(00)^{k} 001011 \rightarrow(0 \underline{0})^{k} 0 \underline{0} 1 \underline{0} 1 \underline{1} \rightarrow\left(0^{k} 011,0^{k} 001\right) \rightarrow(3,1)=(X(w), Y(w))
$$

(a) Show that $w \in \mathcal{L}(\mathcal{A})$ iff $X(w)=3 \cdot Y(w)$.
(b) Construct the minimal DFA representing the language $\left\{w \in\{0,1\}^{*} \mid \operatorname{msbf}^{-1}(w)\right.$ is divisible by 3$\}$.

Exercise 3.8

Since regular languages are closed under complement and intersection, we may extend regular expressions with such primitives: If r and r^{\prime} are regular expressions, then also \bar{r} and $r \cap r^{\prime}$ are regular expressions. A language $L \subseteq \Sigma^{*}$ is called star-free, iff there exists an extended regular expression r without a Kleene star such that $L=\mathcal{L}(r)$. For example, Σ^{*} is star-free, because it is the same as $\mathcal{L}(\bar{\emptyset})$. Show that $\mathcal{L}\left((01+10)^{*}\right)$ is star-free.

