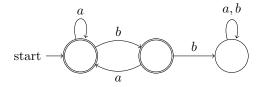
Automata and Formal Languages – Homework 2

Due 27.11.2011.

Exercise 2.1

Let \mathcal{A} be the following finite automaton:



- (a) Transform the automaton \mathcal{A} into an equivalent regular expression, then transform this expression into an NFA (with ε -transitions), remove the ε -transitions, and determinize the automaton.
- (b) Use JFLAP to perform the same transformations. Is there any difference?
- (c) Using JFLAP check that your resulting automaton is equivalent to the original one.

Exercise 2.2

- Let r be the regular expression $((0+1)(0+1))^*$ over $\Sigma = \{0,1\}$, where + denotes choice.
 - (a) Describe $\mathcal{L}(r)$ in words.
 - (b) Give a regular expression r' such that $\mathcal{L}(r') = \Sigma^* \setminus \mathcal{L}(r)$.

Exercise 2.3

For any language L, let L_{pref} and L_{suf} denote the languages of all prefixes and all suffixes, respectively, of words in L. E.g. for $L = \{abc, d\}$, we have $L_{\text{pref}} = \{abc, ab, a, \varepsilon, d\}$ and $L_{\text{suf}} = \{abc, bc, c, \varepsilon, d\}$.

- (a) Given an automaton \mathcal{A} , construct automata \mathcal{A}_{pref} and \mathcal{A}_{suf} so that $\mathcal{L}(\mathcal{A}_{pref}) = \mathcal{L}(\mathcal{A})_{pref}$ and $\mathcal{L}(\mathcal{A}_{suf}) = \mathcal{L}(\mathcal{A})_{suf}$.
- (b) Consider a regular expression $r = (ab + b)^*c$. Give a regular expression r_{pref} so that $\mathcal{L}(r_{\text{pref}}) = \mathcal{L}(r)_{\text{pref}}$.

Exercise 2.4

For $n \in \mathbb{N}_0$ let msbf(n) be the language of all words over $\{0, 1\}$ which represent n w.r.t. to the most significant bit first representation where an arbitrary number of leading zeros is allowed. For example:

$$msbf(3) = \mathcal{L}(0^*11) \text{ and } msbf(0) = \mathcal{L}(0^*).$$

Similarly, let lsbf(n) denote the language of all *least significant bit first* representations of n with an arbitrary number of following zeros, e.g.:

$$lsbf(6) = \mathcal{L}(0110^*)$$
 and $lsbf(0) = \mathcal{L}(0^*)$.

- (a) Construct and compare DFAs representing all even natural numbers $n \in \mathbb{N}_0$ w.r.t. the unary encoding (i.e., $n \mapsto a^n$), the msbf encoding, and the lsbf encoding.
- (b) Construct a DFA representing the language $\{w \in \{0,1\}^* \mid \text{lsbf}^{-1}(w) \text{ is divisible by } 3\}$.
- (c) Give regular expressions corresponding to the languages in (a) and (b).

Exercise 2.5

Let Σ_1, Σ_2 be two alphabets. A map $h : \Sigma_1^* \to \Sigma_2^*$ is called a *homomorphism* if it respects the empty word and concatenation, i.e.,

$$h(\varepsilon) = \varepsilon$$
 and $h(w_1w_2) = h(w_1)h(w_2)$ for all $w_1, w_2 \in \Sigma_1^*$.

Assume that $h : \Sigma_1^* \to \Sigma_2^*$ is a homorphism. Note that h is completely determined by its values on Σ_1 .

(a) Let \mathcal{A} be a finite automaton over the alphabet Σ_1 . Describe how to construct a finite automaton accepting the language

$$h(\mathcal{L}(\mathcal{A})) := \{h(w) \mid w \in \mathcal{L}(\mathcal{A})\}$$

(b) Let \mathcal{A}' be a finite automaton over the alphabet Σ_2 . Describe how to construct a finite automaton accepting the language

$$h^{-1}(\mathcal{L}(\mathcal{A}')) := \{ w \in \Sigma_1^* \mid h(w) \in \mathcal{L}(\mathcal{A}') \}.$$

(c) Recall that the language $\{0^n 1^n \mid n \in \mathbb{N}\}$ is context free, but not regular. Use the preceding results to show that $\{(01^k 2)^n 3^n \mid k, n \in \mathbb{N}\}$ is also not regular.

Exercise 2.6

For alphabets Σ and Δ , a substitution is a mapping $f: \Sigma \to 2^{\Delta^*}$ assigning to each letter $a \in \Sigma$ a language $L_a \subseteq \Delta^*$. Then by setting $f(\varepsilon) = \varepsilon$ and f(wa) = f(w)f(a) we can define $f(L) = \bigcup_{w \in L} f(w)$.

Note that a homomorphism can be identified with a subsitution where all L_a 's are singletons.

Consider the following example. Let $\Sigma = \{Name, Telephone, :, \#\}$ and $\Delta = \{A, \ldots, Z, 0, 1, \ldots, 9, :, \#\}$. The substitution f is given by

$$f(Name) = \mathcal{L}((A + \dots + Z)^*)$$

$$f(:) = \{:\}$$

$$f(Telephone) = \mathcal{L}(0049(1 + \dots + 9)(0 + 1 + \dots + 9)^{10} + 00420(1 + \dots + 9)(0 + 1 + \dots + 9)^8)$$

$$f(\#) = \{\#\}$$

- (a) Draw a DFA recognizing $L = Name : Telephone \{ \#Telephone \}^*$.
- (b) Sketch an NFA-reg recognizing f(L).
- (c) Given an automaton recognizing L', a substitution f', and automata recognizing f'(a) for every a, construct an automaton recognizing f'(L').

Exercise 2.7

For L_1, L_2 regular languages over an alphabet Σ , the *left quotient* of L_1 by L_2 is defined by

$$L_2 \setminus L_1 := \{ v \in \Sigma^* \mid \exists u \in L_2 : uv \in L_1 \}$$

- (a) Use the fact that regular languages are closed under homomorphisms, inverse homomorphisms, concatenation and intersection to prove they are closed under quotienting.
- (b) Given finite automata $\mathcal{A}_1, \mathcal{A}_2$, construct an automaton \mathcal{A} such that

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_2) \diagdown \mathcal{L}(\mathcal{A}_1)$$

(c) Is there any difference when taking the right quotient $L_1 / L_2 := \{ u \in \Sigma^* \mid \exists v \in L_2 : uv \in L_1 \}$?