Exercise 3.5 \& 3.6

For L_{1}, L_{2} regular languages over an alphabet Σ, the left quotient $L_{2} \backslash L_{1}$ of L_{1} by L_{2} (note that this is different from the set difference $\left.L_{2} \backslash L_{1}\right)$ is defined by

$$
L_{2} \backslash L_{1}:=\left\{v \in \Sigma^{*} \mid \exists u \in L_{2}: u v \in L_{1}\right\}
$$

1. Use the fact that regular languages are closed under homomorphisms, inverse homomorphisms, concatenation and intersection to prove they are closed under quotienting.
2. Given finite automata $\mathcal{A}_{1}, \mathcal{A}_{2}$, construct an automaton \mathcal{A} such that

$$
\mathcal{L}(\mathcal{A})=\mathcal{L}\left(\mathcal{A}_{2}\right) \backslash \mathcal{L}\left(\mathcal{A}_{1}\right)
$$

3. Is there any difference when taking the right quotient $L_{1} / L_{2}:=\left\{u \in \Sigma^{*} \mid \exists v \in L_{2}: u v \in L_{1}\right\}$?
4. Determine the inclusion relation between the following languages:

- L_{1}
- $\left(L_{1} / L_{2}\right) \cdot L_{2}$
- $\left(L_{1} \cdot L_{2}\right) / L_{2}$

Solution:

1. Let L_{1} and L_{2} be regular languages over Σ. Let us denote a barred copy of the alphabet Σ by $\bar{\Sigma}=\{\bar{a} \mid a \in \Sigma\}$ (assuming that Σ and $\bar{\Sigma}$ are disjoint). We define a homomorphism $h: \Sigma \cup \bar{\Sigma} \rightarrow \Sigma$ as follows:

$$
\begin{array}{ll}
h(a)=a & \text { for every } a \in \Sigma \\
h(\bar{a})=a & \text { for every } a \in \Sigma
\end{array}
$$

Thus $h^{-1}\left(L_{1}\right)$ consists of words from L_{1} with all possible combinations of letters being barred or not. (E.g. $h^{-1}(\{a b\})=\{a b, a \bar{b}, \bar{a} b, \bar{a} \bar{b}\}$.)
We now intersect $h^{-1}\left(L_{1}\right)$ with a regular language $L_{2} \cdot \bar{\Sigma}^{*}$ in order to get all words from L_{1} with prefix from L_{2} but with the remaining suffix being barred.
We can now apply homomorphism \bar{h} defined by

$$
\begin{array}{ll}
\bar{h}(a)=\varepsilon & \text { for every } a \in \Sigma \\
\bar{h}(\bar{a})=a & \text { for every } a \in \Sigma
\end{array}
$$

in order to obtain the suffixes only, now being unbarred. Hence,

$$
L_{2} \backslash L_{1}=\bar{h}\left(h^{-1}\left(L_{1}\right) \cap L_{2} \cdot \bar{\Sigma}^{*}\right)
$$

proves the regularity of the quotient.
2. In order to accept a word $v \in L_{2} \backslash L_{1}$, we need to guess a word $u \in L_{2}$ and check whether $u v \in L_{1}$. Therefore, we can build a parallel composition of automata accepting L_{1} and L_{2} using the product construction and replace all transitions by ε-transitions (we are guessing the prefix that actually is not there) and adding ε-transitions from all states corresponding to final states for L_{2} to the respective state of the automaton for L_{1}.

Formally, let $\mathcal{A}_{i}=\left(Q_{i}, \Sigma, \delta_{i}, q_{i}, F_{i}\right)$ be such that $\mathcal{L}\left(\mathcal{A}_{i}\right)=L_{i}$ for $i \in\{1,2\}$. We construct

$$
\mathcal{A}=\left(\left(Q_{1} \times Q_{2}\right) \cup Q_{1}, \Sigma, \delta,\left(q_{1}, q_{2}\right), F_{1}\right)
$$

so that $\mathcal{L}(\mathcal{A})=L_{2} \backslash L_{1}$. We set the transition relation δ as follows:

$$
\begin{array}{lll}
(p, r) \xrightarrow{\varepsilon}\left(p^{\prime}, r^{\prime}\right) & \text { for every } a \in \Sigma \text { with } p \xrightarrow{a}_{1} p^{\prime} \text { and } q \xrightarrow{a}_{2} q^{\prime} & \text { (guessing the prefix) } \\
(p, r) \xrightarrow{\varepsilon} p & \text { for every } r \in F_{2} & \text { (prefix is in } L_{2} \text {) } \\
p \xrightarrow{a} p^{\prime} & \text { for every } p \xrightarrow{a} 1 p^{\prime} & \text { (checking the suffix) }
\end{array}
$$

where $q \xrightarrow{a}{ }_{i} q^{\prime}$ denotes $\delta_{i}(q, a) \ni q^{\prime}$.
3. Similarly as in (a), we have

$$
L_{1} / L_{2}=\bar{h}\left(h^{-1}\left(L_{1}\right) \cap \bar{\Sigma}^{*} \cdot L_{2}\right)
$$

The direct construction of an automaton recognizing the right quotient is not as straightforward as in the case with left quotient: we need to check the intersection of L_{2} with the language recognized by the automaton \mathcal{A}_{1} with any initial state. An easier approach is to make use of the reverse construction together with the construction above, since

$$
L_{1} / L_{2}=\left(L_{2}^{R} \backslash L_{1}^{R}\right)^{R}
$$

4. None of the inclusions holds in general. Let

$$
\begin{aligned}
& L_{1}=\{a, b\} \\
& L_{2}=\{b, b b\}
\end{aligned}
$$

Then quotienting removes all words from L_{1} not having a suffix in L_{2} and appending L_{2} may add new suffixes as follows:

$$
\begin{array}{ll}
L_{1} / L_{2} & =\{\varepsilon\} \\
\left(L_{1} / L_{2}\right) \cdot L_{2} & =\{b, b b\} \\
L_{1} \cdot L_{2} & =\{a b, a b b, b b, b b b\} \\
\left(L_{1} \cdot L_{2}\right) / L_{2} & =\{a, a b, \varepsilon, b, b b\}
\end{array}
$$

which disproves all inclusions except for $\left(L_{1} / L_{2}\right) . L_{2} \subseteq\left(L_{1} \cdot L_{2}\right) / L_{2}$ and $L_{1} \subseteq\left(L_{1} \cdot L_{2}\right) / L_{2}$. To disprove the former, let $L_{1}=\{a, b\}, L_{2}=\{b, a b\}$, then $\left(L_{1} / L_{2}\right) . L_{2}=\{b, a b\} \nsubseteq\{\varepsilon, a, b, a a, b a\}=$ $\left(L_{1} \cdot L_{2}\right) / L_{2}$. To disprove the latter, let $L_{1}=\{a\}, L_{2}=\emptyset$, then $\left(L_{1} \cdot L_{2}\right) / L_{2}=\emptyset / \emptyset=\emptyset \nsupseteq\{a\}$.
We can at least prove the last inclusion holds for $L_{1}=\emptyset$ or $L_{2} \neq \emptyset$. The former case is trivial, for the latter let $v \in L_{2}$. If $u \in L_{1}$ then $u v \in L_{1} L_{2}$ and thus $u \in\left(L_{1} \cdot L_{2}\right) / L_{2}$.

