Solution to 2.5

(a) Let $\mathcal{A} = (Q, \Sigma_1, \delta, q_0, F)$ be a DFA. In the lecture, you have seen finite automata whose transitions are labeled by regular expressions, and not only by letters. We make use of this extension here. We construct from \mathcal{A} a finite automoton $\mathcal{A}' = (Q, \Sigma_2, \delta', q_0, F)$ whose transitions are labeled by words over Σ_2 , more precisely by the words $h(\Sigma_1) := \{h(a) \mid a \in \Sigma_1\}$. Note that this set is finite as Σ_1 is finite.

We then set for all $a \in \Sigma_1$

 $\delta'(q, h(a)) := \delta(q, a).$

Otherwise δ' is defined to be the empty set.

This basically means that we apply h to the edge labels of the graph underlying \mathcal{A} , i.e., if $q \xrightarrow{a} q'$ in \mathcal{A} , then $q \xrightarrow{h(a)} q'$ in \mathcal{A}' .

We now show that $\mathcal{L}(\mathcal{A}') = h(\mathcal{L}(\mathcal{A}))$.

• Consider some word $w = a_1 a_2 \dots a_n \in \mathcal{L}(\mathcal{A})$. Hence, there is an accepting run of \mathcal{A} on w, i.e.,

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \dots \xrightarrow{a_n} q_n$$
 with $q_n \in F$.

By definition of δ' we therefore have $q_i \xrightarrow{h(a_i)} q_{i+1}$ in \mathcal{A}' for all transitions along this run, implying that w' = h(w) is accepted by \mathcal{A}' . Hence, $h(\mathcal{L}(\mathcal{A})) \subseteq \mathcal{L}(\mathcal{A}')$

• Assume thus that $w' \in \mathcal{L}(\mathcal{A}')$. Then there is some accepting run of \mathcal{A}'

$$q_0 \xrightarrow{u_1} q_1 \xrightarrow{u_2} q_2 \dots \xrightarrow{u_l} q_n$$
 with $q_n \in F$ and $u_i \in h(\Sigma_1)$.

By definition of δ' we find for every transition $q_i \xrightarrow{u_i} q_{i+1}$ of \mathcal{A}' some $a_i \in \Sigma_1$ with $h(a_i) = u_i$ such that $q_i \xrightarrow{a_i} q_{i+1}$ in \mathcal{A} . By construction,

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \dots \xrightarrow{a_l} q_n$$
 with $q_n \in F$

is a run of \mathcal{A} , in particular, it is an accepting run. So, $a_1a_2...a_l \in \mathcal{L}(\mathcal{A})$ and $h(a_1a_2...a_l) = w'$. Therefore, $\mathcal{L}(\mathcal{A}') \subseteq h(\mathcal{L}(\mathcal{A}))$.

(b) Now we are given a finite automaton $\mathcal{A}' = (Q, \Sigma_2, \delta', q_0, F)$ over the alphabet Σ'_2 , w.l.o.g. \mathcal{A}' is deterministic, and we need to construct a finite automaton \mathcal{A} accepting $h^{-1}(\mathcal{L}(\mathcal{A}'))$.

As \mathcal{A}' is assumed to be deterministic, δ' can be thought of as a map from $Q \times \Sigma_2$ to Q and we may extend this map to $Q \times \Sigma_2^*$ in the natural way:

$$\delta'(q,\varepsilon) := q$$
 and $\delta'(q, a_1 a_2 \dots a_n) := \delta'(\dots \delta'(\delta'(q, a_1), a_2) \dots, a_n)$

The idea now is that a transition of \mathcal{A} labeled by $a \in \Sigma_1$ summarizes the behavior of \mathcal{A}' when reading the word h(a). Hence set

$$\delta(q, a) := \delta'(q, h(a))$$
 for all $a \in \Sigma_1$.

We claim that $\mathcal{A} = (Q, \Sigma_1, \delta, q_0, F)$ then accepts exactly $h^{-1}(\mathcal{L}(\mathcal{A}'))$.

• $\mathcal{L}(\mathcal{A}) \subseteq h^{-1}(\mathcal{L}(\mathcal{A}'))$:

Choose some $w = a_1 a_2 \dots a_n \in \mathcal{L}(\mathcal{A})$, i.e.,

$$F \ni \delta(q_0, w) = \delta(\dots, \delta(\delta(q_0, a_1), a_2) \dots, a_n) \stackrel{\text{by Induction}}{=} \delta'(\dots, \delta'(\delta'(q_0, h(a_1)), h(a_2)) \dots, h(a_n)) = \delta'(q_0, h(w))$$

So,
$$h(w) \in \mathcal{L}(\mathcal{A}')$$
, i.e., $w \in h^{-1}(\mathcal{L}(\mathcal{A}'))$.

•
$$\mathcal{L}(\mathcal{A}) \supseteq h^{-1}(\mathcal{L}(\mathcal{A}'))$$
:
Let $w = a_1 a_2 \dots a_n \in h^{-1}(\mathcal{L}(\mathcal{A}'))$, i.e., $h(w) \in \mathcal{L}(\mathcal{A}')$, i.e.,
 $F \ni \delta'(q_0, h(w)) = \delta'(\dots, \delta'(\delta'(q_0, h(a_1)), h(a_2)) \dots, h(a_n)) \stackrel{\text{by Induction}}{=} \delta(\dots, \delta(\delta(q_0, a_1), a_2) \dots, a_n) = \delta(q_0, w).$

So,
$$w \in \mathcal{L}(\mathcal{A})$$
.

(c) Set $L := \{ (01^k 2)^n 3^n \mid k, n \ge 0 \}.$

Let $h, \{0, 1, 2, 3\}^* \to \{0, 1\}^*$ be the homomorphism uniquely determined by

$$h(0) = 0, h(1) = \varepsilon, h(2) = \varepsilon, h(3) = 1.$$

Then $h(L) = \{0^n 1^n \mid n \ge 0\}.$

So, if L was regular, i.e., if there was some finite automaton \mathcal{A} with $L = \mathcal{L}(\mathcal{A})$, then by the preceding results there would also be a finite automaton \mathcal{A}' with $\mathcal{L}(\mathcal{A}') = \{0^n 1^n \mid n \ge 0\}$. Contradiction.