Technische Universitidt Miinchen Winter term 2010/11
17
Prof. J. Esparza / J. Kietinsky 9.12.2010

Automata and Formal Languages — Programming Assignment

Due 30.1.2010

Your task is to write a program in Java/C++ that transforms a given Presburger formula into a finite automaton recognizing
its solution space. All referred files are accessible on the web of the course.

1 Functionality

1.1 Input

The executable main method has one parameter, namely a string with a name <name> of a file in the same (working)
directory. This file contains a Presburger formula ¢(z1,...,z,) according to the grammar PA2.g that contains (possibly
zero) free variables z1,...,2y,.

1.2 Output

Your program should create a file <name>.dotty which contains a description of a canonic finite automaton over alphabet
{0, 1}"™ recognizing the solution space ¢(z1,...,z,) and a list of the free variables in alphabetical order. The ith component
of the alphabet corresponds to the ith free variable. For instance, if the formula contains free variables z and x, then a letter
01 corresponds to reading 0-bit of x and 1-bit of z.

A canonic finite automaton for a language L is the minimal DFA for L where, moreover, we have the following requirement
on the names of the states. Since the alphabet {0,1}" can be ordered in the obvious increasing manner (e.g. {0,1}? is
ordered as 00 < 01 < 10 < 11), there is a unique breadth-first-search run through the automaton graph starting from the
inital state. We require that when a state s is found as the ith state, then s =4 (starting with the inital state being 0).

The output file has the following structure:

digraph G {

<list of edges>

<list of final states>
<initial state>

}

<list of free variables>
where:

e <list of edges> is a sequence of lines each containing <source> -> <target> [label=<label>]; and is ordered
by <source> and edges from the same <source> are ordered by <target>

e <list of final states> is a sequence of lines each containing <state>[peripheries=2]; sorted by <state>
e <initial state> is a line containing <state>[shape=<diamond>];
e <source>, <target>, <state> are decimal numbers

e <label> is described by the regular expression ((0 4+ 1)"<space>)* and contains all letters between <source> and
<target> in the increasing order

e <list of free variables> is a sequence of letters with no spaces if it is nonempty, true if it is empty and the
fomula is a tautology, and false if it is empty and the fomula is a contradiction.

You can check that your solution is displayed properly by running dotty on your output file.

1.3 An example

The file formula0.txt contains (((2x-y<=2 && Ew y-4w==0) && x+y>=4) && Ez x-4z==0)

Running your program on the input file, i.e. pa2fa formula0O.txt (or java -jar pa2fa.jar formulaO.txt) should pro-
duce a file formula0.txt.dotty in the same directory with the following content



digraph G {

0 -> 1 [label="00 "];
[label="01 10 11 "];
[label="01 10 11 "];
[label="00 "]1;
[label="00 01 10 11 "J;
[label="00 "];
[label="01 "];
[label="10 11 "];
[label="00 01 "];
[label="10 11 "];
[label="01 "];
[label="00 11 "];
[label="10 "1;
[label="00 01 "];

6 -> 6 [label="10 11 "];

4 [peripheries=2];
0[shape=diamond] ;

}

Xy

o
|
\4

OO0 WWWN R~
[
VvV Vv

GO o od O 0 WNWNN

1.4 Another example

On the input file formula3.txt with ! (Ax Ez -2x+3z <= 4 -> Ex Az 3z-2x>4) the output file formula3.txt.dotty
contains

digraph G {

0 -> 0 [label=" "];
O[peripheries=2];

0 [shape=diamond] ;

}

true

2 What to hand in?

By January 30 you have to hand in the following:
e a compiled executable file or executable .jar file;

e zipped source codes (.zip, .rar, .tar,..., or as a part of .jar); the code should be well structured, easily readable and
properly commented and documented, in particular every class and method should be (apart from comments in the
code) immediately preceded by a comment on what it does;

e a file description.txt containing the command used to compile your files in order to get the executable; further, the
structure of your source files is very briefly discussed here, i.e. which file implements what; it may also contain any
other comments from your side if necessary.

Note that the sources must be compilable on halle.in.tum.de using the command written in description.txt. Otherwise,
no points will be awarded. Your solution should be uploaded to an svn directory that we will asssign to you shortly.

3 Points

You are allowed to work in pairs. Hence, an oral questioning will take place after evaluating your solutions. Points will only
be awarded after passing this questioning. Moreover, the source codes will be checked by the standard tools for plagiarism.

2/3 of points will be awarded for correct solution to formulae similar to the ones published as “Basic examples” within the
time limit of 5 seconds.

1/3 of points will be awarded for correct solution to formulae similar to the ones published as “Advanced examples” depending
on the time required, however, not exceeding 1 minute.



