Technische Universität München Prof. J. Esparza / J. Křetínský Winter term 2010/11 Name:

Matrikelnummer:

Automata and Formal Languages – Endterm

Please note: If not stated otherwise, all answers have to be justified.

Exercise 1

each 2P=12P

Each of the following questions admits an answer fitting in one or two lines.

- (a) Prove or disprove: "Every regular language is recognized by an NFA with all states final."
- (b) For every $n \in \mathbb{N}$, let us define a relation $R_n = \{(u, v) \mid lsbf^{-1}(u) = n \cdot lsbf^{-1}(v)\}$. Assuming R_2 and R_3 are regular, prove that R_6 is regular.
- (c) Let $\Sigma = \{a, b\}$ be an alphabet. Give an MSO formula defining the language of $\Sigma(a\Sigma\Sigma)^*a$. You may use any macros defined in the "Skript".
- (d) Construct a Büchi automaton recognizing the following language:

 $L = \{ w \in \{a, b, c, d\}^{\omega} \mid a, b \in \inf(w) \text{ and } d \notin \inf(w) \}$

where inf(w) denotes the set of letters that appear infinitely many times in w.

- (e) Describe a procedure to complement *deterministic* Muller automata directly without using any translation to Büchi automata.
- (f) Consider the following NBA \mathcal{A} .

The following sequences are accepting lassos of \mathcal{A} . The cycles are underlined.

- i) <u>010</u>
- ii) <u>0210</u>
- iii) 02<u>101</u>
- iv) 02<u>33</u>

Which of the lassos can be found by a run of NestedDFS on \mathcal{A} ?

Exercise 2

 $4\mathbf{P}$

Construct an eagerDFA (not a lazyDFA) for the word mammamia over the alphabet $\{m, a, i\}$.

Exercise 3

Consider a variable x with domain $\{0, 1, 2\}$ initialized to 0 and the following program with two parallel processes:

Process 1:		Process 2:	
loop		loop	
1:	$x \leftarrow 1$	1:	$x \leftarrow 2$
2:	$x \leftarrow 0$		

- (a) Construct the corresponding network of the three automata and their asynchronous product.
- (b) Consider a set of atomic propositions $AP = \{x = 0, x = 1, x = 2\}$. Construct a Büchi automaton over AP corresponding to the property that from some point on x = 0 holds forever. Give the corresponding LTL formula, too.
- (c) Is there an ω -execution of the program that satisfies the property in (b)? Why?/Why not?

Exercise 4

Consider languages over $\{0, 1\}$ with fixed length of 3.

- (a) Construct a fragment of the master automaton for the language $L \subseteq \{0, 1\}^3$ of msbf binary encodings of all prime numbers in the range from 0 to 7. (Recall that the smallest prime number is 2.)
- (b) Is there a language $L \subseteq \{0, 1\}^3$ with a minimal DFA having 10 states?

Exercise 5

Prove that the following finite automaton over $\{0, 1, 2\}$ accepts precisely the msbf ternary encodings of even numbers. (E.g. 211 is accepted because $2 \cdot 3^2 + 1 \cdot 3^1 + 1 \cdot 3^0 = 22$ is even.) Proceed by induction on the length of the word.

A DFA is synchronizing if there is a word w and a state q such that after reading w from any state we are always in state q.

(a) Give such a word w showing that the following DFA is synchronizing.

- (b) Give an algorithm to decide if a given DFA is synchronizing.
- (c) Give a *polynomial time* algorithm to decide if a given DFA is synchronizing.

5P

 $4\mathbf{P}$

