Automata and Formal Languages - Endterm

Please note: If not stated otherwise, all answers have to be justified.

Exercise 1

Each of the following questions admits an answer fitting in one or two lines.
(a) Prove or disprove: "Every regular language is recognized by an NFA with all states final."
(b) For every $n \in \mathbb{N}$, let us define a relation $R_{n}=\left\{(u, v) \mid l s b f^{-1}(u)=n \cdot l s b f^{-1}(v)\right\}$.

Assuming R_{2} and R_{3} are regular, prove that R_{6} is regular.
(c) Let $\Sigma=\{a, b\}$ be an alphabet. Give an MSO formula defining the language of $\Sigma(a \Sigma \Sigma)^{*} a$. You may use any macros defined in the "Skript".
(d) Construct a Büchi automaton recognizing the following language:

$$
L=\left\{w \in\{a, b, c, d\}^{\omega} \mid a, b \in \inf (w) \text { and } d \notin \inf (w)\right\}
$$

where $\inf (w)$ denotes the set of letters that appear infinitely many times in w.
(e) Describe a procedure to complement deterministic Muller automata directly without using any translation to Büchi automata.
(f) Consider the following NBA \mathcal{A}.

The following sequences are accepting lassos of \mathcal{A}. The cycles are underlined.
i) $\underline{010}$
ii) $\underline{0210}$
iii) $02 \underline{101}$
iv) 0233

Which of the lassos can be found by a run of NestedDFS on \mathcal{A} ?

Exercise 2

Construct an eagerDFA (not a lazyDFA) for the word mammamia over the alphabet $\{m, a, i\}$.

Consider a variable x with domain $\{0,1,2\}$ initialized to 0 and the following program with two parallel processes:

Process 1:	Process 2:
	loop
1:	$x \leftarrow 1$
2:	$x \leftarrow 0$

(a) Construct the corresponding network of the three automata and their asynchronous product.
(b) Consider a set of atomic propositions $A P=\{x=0, x=1, x=2\}$. Construct a Büchi automaton over $A P$ corresponding to the property that from some point on $x=0$ holds forever. Give the corresponding LTL formula, too.
(c) Is there an ω-execution of the program that satisfies the property in (b)? Why?/Why not?

Exercise 4

Consider languages over $\{0,1\}$ with fixed length of 3 .
(a) Construct a fragment of the master automaton for the language $L \subseteq\{0,1\}^{3}$ of msbf binary encodings of all prime numbers in the range from 0 to 7 . (Recall that the smallest prime number is 2.)
(b) Is there a language $L \subseteq\{0,1\}^{3}$ with a minimal DFA having 10 states?

Exercise 5

Prove that the following finite automaton over $\{0,1,2\}$ accepts precisely the msbf ternary encodings of even numbers. (E.g. 211 is accepted because $2 \cdot 3^{2}+1 \cdot 3^{1}+1 \cdot 3^{0}=22$ is even.) Proceed by induction on the length of the word.

Exercise 6

A DFA is synchronizing if there is a word w and a state q such that after reading w from any state we are always in state q.
(a) Give such a word w showing that the following DFA is synchronizing.

(b) Give an algorithm to decide if a given DFA is synchronizing.
(c) Give a polynomial time algorithm to decide if a given DFA is synchronizing.

