Automata and Formal Languages - Homework 11

Due 27.1.2011.
For a word w, let $\inf (w)$ denote the set of letters that occur infinitely many times in w.

Exercise 11.1

Recall that finite languages of finite words are regular.
Find a language over $\{a, b\}$ consisting of one infinite word such that there is no Büchi automaton recognizing it.

Exercise 11.2

Construct a Büchi automaton recognizing the language L over alphabet $\{a, b, c\}$ where
(a) $L=\{w \mid\{a, b\} \subseteq \inf (w)\}$
(b) $L=\{w \mid\{a, b\}=\inf (w)\}$
(c) $L=\{w \mid\{a, b\} \supseteq \inf (w)\}$
(d) $L=\{w \mid\{a, b, c\}=\inf (w)\}$
(e) $L=\{w \mid$ if $a \in \inf (w)$ then $\{b, c\} \subseteq \inf (w)\}$

Hint: It may be easier to construct a generalized Büchi automaton first and then transform it into a Büchi automaton.
Give the corresponding ω-regular expressions, too.

Exercise 11.3

- You are given finite words $u, v, x, y \in \Sigma^{*}$ which represent the ω-words $w:=u v^{\omega}$ and $z:=x y^{\omega}$.

Give an algorithm for deciding " $w \stackrel{?}{=} z$?".

- You are given a Büchi automaton \mathcal{B} and two finite words u, v representing the ω-word $w:=u v^{\omega}$.

Give an algorithm for deciding " $w \stackrel{?}{\in} \mathcal{L}(\mathcal{B})$ ".

Exercise 11.4

For $L \subseteq\{a, b\}^{\omega}$ below, find an ω-regular expression of the form $\bigcup_{i=1}^{n} U_{i} V_{i}^{\omega}$ representing the language, such that each U_{i} and V_{i} are regular languages of finite words.
(a) $L=\left\{w \mid k\right.$ is even for each substring $b a^{k} b$ of $\left.w\right\}$
(b) $L=\{w \mid w$ has no occurrence of $b a b\}$

