Automata and Formal Languages – Homework 11

Due 27.1.2011.

For a word w, let inf(w) denote the set of letters that occur infinitely many times in w.

Exercise 11.1

Recall that finite languages of finite words are regular.

Find a language over $\{a, b\}$ consisting of one infinite word such that there is no Büchi automaton recognizing it.

Exercise 11.2

Construct a Büchi automaton recognizing the language L over alphabet $\{a, b, c\}$ where

- (a) $L = \{w \mid \{a, b\} \subseteq inf(w)\}$
- (b) $L = \{w \mid \{a, b\} = inf(w)\}$
- (c) $L = \{ w \mid \{a, b\} \supseteq inf(w) \}$
- (d) $L = \{w \mid \{a, b, c\} = inf(w)\}$
- (e) $L = \{w \mid \text{if } a \in inf(w) \text{ then } \{b, c\} \subseteq inf(w)\}$

Hint: It may be easier to construct a generalized Büchi automaton first and then transform it into a Büchi automaton.

Give the corresponding ω -regular expressions, too.

Exercise 11.3

- You are given finite words $u, v, x, y \in \Sigma^*$ which represent the ω -words $w := u v^{\omega}$ and $z := x y^{\omega}$. Give an algorithm for deciding " $w \stackrel{?}{=} z$?".
- You are given a Büchi automaton \mathcal{B} and two finite words u, v representing the ω -word $w := uv^{\omega}$. Give an algorithm for deciding " $w \in \mathcal{L}(\mathcal{B})$ ".

Exercise 11.4

For $L \subseteq \{a,b\}^{\omega}$ below, find an ω -regular expression of the form $\bigcup_{i=1}^{n} U_i V_i^{\omega}$ representing the language, such that each U_i and V_i are regular languages of finite words.

- (a) $L = \{w \mid k \text{ is even for each substring } ba^k b \text{ of } w\}$
- (b) $L = \{w \mid w \text{ has no occurrence of } bab\}$