
Technische Universität München Winter term 2010/11
I7
Prof. J. Esparza / J. Křet́ınský 12.1.2011

Automata and Formal Languages – Homework 10

Due 19.1.2011.

Exercise 10.1

Let Σ = {request, answer, working, idle}.

(a) Build an automaton recognizing all words with the property P1: after every request there is answer later on (not
necessarily immediately).

Does it guarantee that every request has its own answer? More precisely, let us denote w = w1w2 · · ·wn and assume
that there are k requests. Let us define f : {1, . . . , k} → {1, . . . ,m} such that wf(i) is the ith request in w. Provided w
satisfies P1, is there always an injective function g : {1, . . . , k} → {1, . . . ,m} satisfying wg(i) = answer and f(i) < g(i)
for all i ∈ {1, . . . , k}?

If words were infinite and there were infinitely many requests, would P1 guarantee that every request has its own
answer? More precisely, let us denote w = w1w2 · · · and assume that there are infinitely many requests. Let us define
f : N → N such that wf(i) is the ith request in w. Provided w satisfies P1, is there always an injective function
g : N → N satisfying wg(i) = answer and f(i) < g(i) for all i ∈ {1, . . . , k}?

(b) Build an automaton recognizing all words with the property P2: there is an answer and before that there are only
workings and requests.

(c) Let A be the following automaton

start

Σ

answer

Using the intersection construction, prove that all accepting runs of A satisfy P1 and find all accepting runs violating
P2.

Exercise 10.2

This exercise focuses on modelling and verification of mutual exclusion protocols. Let us consider having two agents, one
having his internal variable id set to 0, the other has her variable id set to 1. They both run the following mutex program:

while(true)
enter(id)
critical-command
leave(id)
loop-arbitrarily-many-times

non-critical-command

The definitions of procedures enter(int) and leave(int) as well as global variables used and their initial values are specified
below.

(a) int turn:=0
proc enter(int i){

while(turn=1-i) do
skip

}
proc leave(int i){

turn:=1-i
}



Design an asynchronous network of automata capturing this behaviour.

Furthermore, build an automaton recognizing all runs reaching a configuration with both agents in the critical section.
Using the intersection algorithm, prove that there are no such runs of this system, i.e. it is a mutex algorithm.

Do all infinite runs satisfy that if a process wants to enter the critical section then it eventually enters it?

(b) bool flag[0]:=false
bool flag[1]:=false
proc enter(int i){

flag[i]:=true
while(flag[1-i]) do

skip
}
proc leave(int i){

flag[i]:=false
}

Design an asynchronous network of automata capturing this behaviour.

Can a deadlock occur?

(c) Peterson’s algorithm combines both approaches:

int turn:=0
bool flag[0]:=false
bool flag[1]:=false
proc enter(int i){

turn:=1-i
flag[i]:=true
while(flag[1-i] & turn=1-i)

skip
}
proc leave(int i){

flag[i]:=false
}

Can a deadlock occur?

What kind of starving can occur?


