Automata and Formal Languages – Homework 9

Due 13.1.2011.

Exercise 9.1 *

In the lecture, you have seen that we can save on space using the *lazy* DFAs. However, this does not come for free. There is a space vs. running-time trade-off because of extra steps with head not moving in the case with lazy DFAs.

Find a word w and a pattern p such that the run of **wordDFA**(p) on w takes at most n steps and the run of **lazyDFA**(p) takes at least 2n - 1 steps.

Hint: a simple pattern of the form a^k is sufficient.

Exercise 9.2 *

Design an algorithm that solves the following problem for a finite alphabet Σ . Discuss the complexity of your solution.

- Given: $w \in \Sigma^*$ and a regular expression r over Σ .
- Find: A shortest prefix $w_1 \in \Sigma^*$ of w such that there exists a prefix $w_1 w_2$ of w and $w_2 \in \mathcal{L}(r)$.