Automata and Formal Languages - Homework 6

Due 2.12.2010.

Exercise 6.1

Let $k_{1}, k_{2} \in \mathbb{N}_{0}$ be constants. Find a Presburger arithmetic formula, $\varphi(x, y)$, with free variables x and y such that $\mathcal{I} \models \varphi(x, y)$ iff $\mathcal{I}(x) \geq \mathcal{I}(y)$ and $\mathcal{I}(x)-\mathcal{I}(y) \equiv k_{1}\left(\bmod k_{2}\right)$. Find a corresponding automaton for the case $k_{1}=0$ and $k_{2}=2$.

Exercise 6.2

Using the algorithms discussed in the lecture, construct a finite automaton for the Presburger formula

$$
\exists y: x=3 y
$$

Exercise 6.3

You have seen in the lecture how to construct a finite automaton which represents all solutions for a given linear inequation

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{k} x_{k} \leq b \text { with } a_{1}, a_{2}, \ldots, a_{k}, b \in \mathbb{Z} \tag{*}
\end{equation*}
$$

w.r.t. the least-significant-bit-first representation of \mathbb{N}^{k} (see the algorithm PAtoDFA).

We may also use the most-significant-bit-first (msbf) representation of \mathbb{N}^{k}, e.g.,

$$
\operatorname{msbf}\left(\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)=\mathcal{L}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]^{*}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

(a) Construct a finite automaton for the inequation $2 x-y \leq 2$ w.r.t. the msbf representation.
(b) Try now to adapt the algorithm PAtoDFA to the msbf encoding.
(c) Recall that integers can be encoded as binary strings using two's complement: a binary string $s=b_{0} b_{1} b_{2} \ldots b_{n}$ is interpreted, assuming msbf, as the integer

$$
-b_{0} \cdot 2^{n}+b_{1} \cdot 2^{n-1}+b_{2} \cdot 2^{n-2}+\ldots+b_{n} \cdot 2^{0} .
$$

In particular, s and $\left(b_{0}\right)^{*} s$ represent the same integer. This extends in the standard way to tuples of integers, e.g., the pair $(-3,5)$ has the following encodings:

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{*}\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Construct an automaton accepting all (encondings of) integer solutions of the inequation $2 x-y \leq 2$.
- Extend your algorithm from (b) such that the constructed automaton accepts all two's complement encodings of all integer solutions of $(*)$.

