Exercise 4.4

For L_1, L_2 regular languages over an alphabet Σ , the *left quotient* $L_2 \setminus L_1$ of L_1 by L_2 (note that this is different from the set difference $L_2 \setminus L_1$) is defined by

$$L_2 \setminus L_1 := \{ v \in \Sigma^* \mid \exists u \in L_2 : uv \in L_1 \}$$

- 1. Use the fact that regular languages are closed under homomorphisms, inverse homomorphisms, concatenation and intersection to prove they are closed under quotienting.
- 2. Given finite automata A_1, A_2 , construct an automaton A such that

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_2) \backslash \mathcal{L}(\mathcal{A}_1)$$

- 3. Is there any difference when taking the right quotient $L_1/L_2:=\{u\in\Sigma^*\mid \exists v\in L_2:\ uv\in L_1\}$?
- 4. Determine the inclusion relation between the following languages:
 - L₁
 - $(L_1/L_2).L_2$
 - $(L_1.L_2)/L_2$

Solution:

1. Let L_1 and L_2 be regular languages over Σ . Let us denote a barred copy of the alphabet Σ by $\overline{\Sigma} = \{ \overline{a} \mid a \in \Sigma \}$ (assuming that Σ and $\overline{\Sigma}$ are disjoint). We define a homomorphism $h: \Sigma \cup \overline{\Sigma} \to \Sigma$ as follows:

$$h(a) = a$$
 for every $a \in \Sigma$

$$h(\overline{a}) = a$$
 for every $a \in \Sigma$

Thus $h^{-1}(L_1)$ consists of words from L_1 with all possible combinations of letters being barred or not. (E.g. $h^{-1}(\{ab\}) = \{ab, a\overline{b}, \overline{a}b, \overline{a}\overline{b}\}$.)

We now intersect $h^{-1}(L_1)$ with a regular language $L_2.\overline{\Sigma}^*$ in order to get all words from L_1 with prefix from L_2 but with the remaining suffix being barred.

We can now apply homomorphism \overline{h} defined by

$$\overline{h}(a) = \varepsilon$$
 for every $a \in \Sigma$

$$\overline{h}(\overline{a}) = a$$
 for every $a \in \Sigma$

in order to obtain the suffixes only, now being unbarred. Hence,

$$L_2 \diagdown L_1 = \overline{h}(h^{-1}(L_1) \cap L_2.\overline{\Sigma}^*)$$

proves the regularity of the quotient.

2. In order to accept a word $v \in L_2 \setminus L_1$, we need to guess a word $u \in L_2$ and check whether $uv \in L_1$. Therefore, we can build a parallel composition of automata accepting L_1 and L_2 using the product construction and replace all transitions by ε -transitions (we are guessing the prefix that actually is not there) and adding ε -transitions from all states corresponding to final states for L_2 to the respective state of the automaton for L_1 .

Formally, let $A_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$ be such that $\mathcal{L}(A_i) = L_i$ for $i \in \{1, 2\}$. We construct

$$\mathcal{A} = ((Q_1 \times Q_2) \cup Q_1, \Sigma, \delta, (q_1, q_2), F_1)$$

so that $\mathcal{L}(A) = L_2 \setminus L_1$. We set the transition relation δ as follows:

$$\begin{array}{ll} (p,r) \stackrel{\varepsilon}{\to} (p',r') & \text{for every } a \in \Sigma \text{ with } p \stackrel{a}{\to}_1 p' \text{ and } q \stackrel{a}{\to}_2 q' & \text{(guessing the prefix)} \\ (p,r) \stackrel{\varepsilon}{\to} p & \text{for every } r \in F_2 & \text{(prefix is in } L_2) \\ p \stackrel{a}{\to} p' & \text{for every } p \stackrel{a}{\to}_1 p' & \text{(checking the suffix)} \end{array}$$

where $q \xrightarrow{a}_i q'$ denotes $\delta_i(q, a) \ni q'$.

3. Similarly as in (a), we have

$$L_1 \diagup L_2 = \overline{h}(h^{-1}(L_1) \cap \overline{\Sigma}^*.L_2)$$

The direct construction of an automaton recognizing the right quotient is not as straightforward as in the case with left quotient: we need to check the intersection of L_2 with the language recognized by the automaton A_1 with any initial state. An easier approach is to make use of the *reverse* construction together with the construction above, since

$$L_1/L_2 = (L_2^R \setminus L_1^R)^R$$

4. None of the inclusions holds in general. Let

$$L_1 = \{a, b\}$$

$$L_2 = \{b, bb\}$$

Then quotienting removes all words from L_1 not having a suffix in L_2 and appending L_2 may add new suffixes as follows:

$$\begin{array}{rcl} L_{1}/L_{2} & = & \{\varepsilon\} \\ (L_{1}/L_{2}).L_{2} & = & \{b,bb\} \\ L_{1}.L_{2} & = & \{ab,abb,bb,bbb\} \\ (L_{1}.L_{2})/L_{2} & = & \{a,ab,\varepsilon,b,bb\} \end{array}$$

which disproves all inclusions except for $(L_1/L_2).L_2 \subseteq (L_1.L_2)/L_2$ and $L_1 \subseteq (L_1.L_2)/L_2$. To disprove the former, let $L_1 = \{a,b\}, L_2 = \{b,ab\}, \text{ then } (L_1/L_2).L_2 = \{b,ab\} \not\subseteq \{\varepsilon,a,b,aa,ba\} = (L_1.L_2)/L_2$. To disprove the latter, let $L_1 = \{a\}, L_2 = \emptyset$, then $(L_1.L_2)/L_2 = \emptyset/\emptyset = \emptyset \not\supseteq \{a\}$.

We can at least prove the last inclusion holds for $L_1 = \emptyset$ or $L_2 \neq \emptyset$. The former case is trivial, for the latter let $v \in L_2$. If $u \in L_1$ then $uv \in L_1L_2$ and thus $u \in (L_1.L_2)/L_2$.