Automata and Formal Languages - Homework 1

Due 28.10.2010.

Exercise 1.1

Go to http://www.cs.duke.edu/csed/jflap/ and download JFLAP. Run it and select the finite automata mode.

- Create a non-deterministic automaton and determinize it.

Determinization (NFAtoDFA) can cause an exponential blowup. We now examine the special case in which the alphabet has only one letter.

- Show that for any n, there is a NFA with $2 n$ states so that any DFA recognizing the same language has at least $n(n-1)$ states.
Hint: Since a word over a singleton alphabet is given by its length, consider e.g. FAs accepting words of lengths divisible by some constants.
- Using JFLAP, verify the correctnes of your example for e.g. $n=5$.
- Can you also find an example where the DFA has $\mathcal{O}\left(n^{7}\right)$ states?

Exercise 1.2

During the ε-removal (NFA ε toNFA), no transition is ever again added to the worklist after it has been added to the worklist, processed and removed from the worklist.

- Give an example of an NFA- ε and a run of the ε-removal algorithm where a transition is put into the worklist twice.

Exercise 1.3

We say that $u=a_{1} \cdots a_{n}$ is a scattered subword of $w\left(\right.$ short: $u \triangleleft w$) if $w=w_{0} a_{1} w_{1} a_{2} \cdots a_{n} w_{n}$ for some $w_{0}, \cdots, w_{n} \in \Sigma^{*}$.

- Let $L \subseteq \Sigma^{*}$ be a regular language. Show that $L^{\prime}:=\left\{u \in \Sigma^{*} \mid \exists w \in L: w \triangleleft u\right\}$ is also regular.
- Let $L \subseteq \Sigma^{*}$ be a regular language. Show that $L^{\prime \prime}:=\left\{u \in \Sigma^{*} \mid \exists w \in L: u \triangleleft w\right\}$ is also regular.

Exercise 1.4

Let Σ_{1}, Σ_{2} be two alphabets. A map $h: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ is called a homomorphism if it respects the empty word and concatenation, i.e.,

$$
h(\varepsilon)=\varepsilon \text { and } h\left(w_{1} w_{2}\right)=h\left(w_{1}\right) h\left(w_{2}\right) \text { for all } w_{1}, w_{2} \in \Sigma_{1}^{*} .
$$

Assume that $h: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ is a homorphism. Note that h is completely determined by its values on Σ_{1}.
(a) Let \mathcal{A} be a finite automaton over the alphabet Σ_{1}. Describe how to constuct a finite automaton accepting the language

$$
h(\mathcal{L}(\mathcal{A})):=\{h(w) \mid w \in \mathcal{L}(\mathcal{A})\} .
$$

(b) Let \mathcal{A}^{\prime} be a finite automaton over the alphabet Σ_{2}. Describe how to construct a finite automaton accepting the language

$$
h^{-1}\left(\mathcal{L}\left(\mathcal{A}^{\prime}\right)\right):=\left\{w \in \Sigma_{1}^{*} \mid h(w) \in \mathcal{L}\left(\mathcal{A}^{\prime}\right)\right\} .
$$

(c) Recall that the language $\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ is context free, but not regular. Use the preceding results to show that $\left\{\left(01^{k} 2\right)^{n} 3^{n} \mid k, n \in \mathbb{N}\right\}$ is also not regular.

