Automata and Formal Languages – Homework 12

Due 4.2.2010.

Exercise 12.1

Recall that finite languages of finite words are regular.

Find a language over $\{a, b\}$ consisting of one infinite word such that there is no Büchi automaton recognizing it.

Exercise 12.2

Construct a Büchi automaton recognizing the language $L = \{w \in \{a, b, c\}^{\omega} \mid \text{if } a \in inf(w) \text{ then } \{b, c\} \subseteq inf(w)\}.$

Exercise 12.3

For this exercise, let $\Sigma := \{a, b\}$. Consider the ω -regular expression

$$\phi_k := ((\Sigma^{k+1})^* \Sigma^k a)^\omega$$
 with $k \ge 1$.

- (a) Describe $\mathcal{L}(\phi_k)$ in words.
- (b) Construct a Büchi automaton \mathcal{B}_k s.t. $\mathcal{L}(\mathcal{B}_k) = \mathcal{L}(\phi_k)$.
- (c) Apply the intersection construction to \mathcal{B}_1 and \mathcal{B}_2 .
- (d) Can you come up with a Büchi automaton for $\mathcal{L}(\phi_1) \cap \mathcal{L}(\phi_2)$ which has less states then the one obtained in (c)?

Exercise 12.4

- You are given finite words $u, v, x, y \in \Sigma^*$ which represent the ω -words $w := u v^{\omega}$ and $z := x y^{\omega}$. Give an algorithm for deciding " $w \stackrel{?}{=} z$?".
- You are given a Büchi automaton \mathcal{B} and two finite words u, v representing the ω -word $w := uv^{\omega}$. Give an algorithm for deciding " $w \in \mathcal{L}(\mathcal{B})$ ".

Exercise 12.5

Consider the following Büchi \mathcal{B} automaton representing the ω -words over $\Sigma = \{a, b\}$ having only finitely many as:

- (a) Sketch dag($abab^{\omega}$) and dag($(ab)^{\omega}$).
- (b) Consider the ranking r defined by $r(\langle q_0, i \rangle) := 1$ and $r(\langle q_1, i \rangle) := 0$ for all $i \in \mathbb{N}$. Is r an odd ranking for dag $(abab^{\omega})$, resp. dag $((ab)^{\omega})$?
- (c) Show that the ranking r defined in (b) is odd for dag(w) iff $w \notin \mathcal{L}(\mathcal{B})$.
- (d) Apply now the complement construction for Büchi automata to \mathcal{B} as seen in the lecture but use the fact that it is sufficient to use $\{0, 1\}$ as ranks.