Automata and Formal Languages - Homework 11

Due 28.1.2010.

Exercise 11.1

Recall the definition of star-free expressions σ over a given alphabet Σ (see also exercise 2.4):

$$
\sigma::=a|\varepsilon| \emptyset|\sigma+\sigma| \sigma \cap \sigma|\bar{\sigma}| \sigma \cdot \sigma
$$

You already know that although every star-free expression represents a regular language, not every regular language can be represented by a star-free expression. For instance, by Schützenberger's theorem $\mathcal{L}\left((a a)^{*}\right)$ is not star-free.

- Show how to obtain from any star-free expression σ an $\mathrm{MSO}(<)$-formula ϕ_{σ} s.t. $\mathcal{L}(\sigma)=\mathcal{L}\left(\phi_{\sigma}\right)$. Does your translation need the full expressiveness of $\mathrm{MSO}(<)$?

Exercise 11.2

In this exercise we study $\mathrm{MSO}(<)$ on infinite words. We fix some finite alphabet Σ for the following.
Similar to the case of finite words, we evaluate a formula ϕ on structures (w, \mathcal{I}) consisting of an infinite word $w=$ $w_{0} w_{1} w_{2} \ldots \Sigma^{*}$ and an interpretation \mathcal{I} which maps any free first-order variable x, resp. second-order variable X of ϕ to a position $\mathcal{I}(x) \in \mathbb{N}$, resp. to a set of positions $\mathcal{I}(X) \subseteq \mathbb{N}$.

When interpreting $\mathrm{MSO}(<)$ over finite words, we of course quantify the second-order variables over finite sets only. When applying it to infinite words or the naturals, we can either keep this kind of quantification (weak semantics of MSO $(<)$), or we can quantify over arbitrary (also infinite) sets which is the usual interpretation of MSO($<$) (full semantics). We denote the respective satisfaction relation w.r.t. the full, resp. weak semantics by $(w, \mathcal{I}) \models \phi$, resp. $(w, \mathcal{I}) \models_{\mathrm{w}} \phi$. Formally, these are then defined by:

$(w, \mathcal{I}) \models Q_{a}(x)$	iff	$w[\mathcal{I}(x)]=a$	$(w, \mathcal{I}) \models_{\mathrm{w}} Q_{a}(x)$	iff	$w[\mathcal{I}(x)]=a$
$(w, \mathcal{I}) \models x \in X$	iff	$\mathcal{I}(x) \in \mathcal{I}(X)$	$(w, \mathcal{I}) \models_{\mathrm{w}} x \in X$	iff	$\mathcal{I}(x) \in \mathcal{I}(X)$
$(w, \mathcal{I}) \models x<y$	iff	$\mathcal{I}(x)<\mathcal{I}(y)$	$(w, \mathcal{I}) \models_{\mathrm{w}} x<y$	iff	$\mathcal{I}(x)<\mathcal{I}(y)$
$(w, \mathcal{I}) \models \neg \phi$	iff	$(w, \mathcal{I}) \not \models \phi$	$(w, \mathcal{I}) \models_{\mathrm{w}} \neg \phi$	iff	$(w, \mathcal{I}) \not \models_{w} \phi$
$(w, \mathcal{I}) \models(\phi \vee \psi)$	iff	$(w, \mathcal{I}) \models \phi$ or $(w, \mathcal{I}) \models \psi$	$(w, \mathcal{I}) \models_{\mathrm{w}}(\phi \vee \psi)$	iff	$(w, \mathcal{I}) \models_{w} \phi$
$(w, \mathcal{I}) \models \exists x \phi$	iff	$\exists i \in \mathbb{N}(w, \mathcal{I}[i / x]) \models \phi$	$(w, \mathcal{I}) \models_{\mathrm{w}} \exists x \phi$	iff	$\exists i \in \mathbb{N}(w, \mathcal{I}$
$(w, \mathcal{I}) \models \exists X \phi$	iff	$\exists S \subseteq \mathbb{N}(w, \mathcal{I}[S / X]) \models \phi$	$(w, \mathcal{I}) \models{ }_{\mathrm{w}} \exists X \phi$	iff	$\exists S \subseteq \mathbb{N}\|S\|$

In the lecture you have seen how to encode a structure (w, \mathcal{I}) if w is a finite word. This encoding can also be used for an infinite word w. For instance, consider the formula $x \in X \rightarrow Q_{a}(x)$. A structure for this formula is given by

$$
w=(a b)^{\omega} \text { and } \mathcal{I}(x)=2, \mathcal{I}(X)=\{i \in \mathbb{N} \mid i \text { is even }\}
$$

We encode this structure by the infinite word

$$
\begin{array}{cc}
w & \rightarrow \\
x & \rightarrow \\
X & \rightarrow
\end{array}\left[\begin{array}{l}
a \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
b \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
a \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
b \\
0 \\
0
\end{array}\right]\left(\left[\begin{array}{l}
a \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
b \\
0 \\
0
\end{array}\right]\right)^{\omega} .
$$

We write $\mathcal{L}(\phi)$, resp. $\mathcal{L}_{\mathrm{w}}(\phi)$ for the language consisting of the encodings of all (w, \mathcal{I}) satisfying $(w, \mathcal{I}) \models \phi$, resp. $(w, \mathcal{I}) \models_{\mathrm{w}} \phi$. Obviously, we have $\mathcal{L}_{\mathrm{w}}(\phi) \subseteq \mathcal{L}(\phi)$.
(a) Give an $\mathrm{MSO}(<)$-formula finite (X) with one free second-order variable X s.t.

$$
(w, \mathcal{I}) \models \operatorname{finite}(X) \text { iff } \mathcal{I}(X) \text { is a finite set. }
$$

(b) Construct a Büchi automaton \mathcal{B} representing $\mathcal{L}($ finite $(X))$.
(c) Let ϕ be an $\operatorname{MSO}(<)$-formula. Show that there exists a Büchi automaton \mathcal{B} s.t. $\mathcal{L}(\mathcal{B})=\mathcal{L}(\phi)$, resp. $\mathcal{L}(\mathcal{B})=\mathcal{L}_{\mathrm{w}}(\phi)$
(d) Let \mathcal{B} be a Büchi automaton. Show how to construct an MSO $(<)$-formula ϕ s.t. $\mathcal{L}(\mathcal{B})=\mathcal{L}(\phi)$.
(e) Give an example of an $\operatorname{MSO}(<)$-formula that is a tautology w.r.t. the full semantics, but a contradiction w.r.t. weak semantics.

Exercise 11.3

You have seen in the lecture how to construct a finite automaton which represents all solutions for a given linear inequation

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{k} x_{k} \leq b \text { with } a_{1}, a_{2}, \ldots, a_{k}, b \in \mathbb{Z} \tag{*}
\end{equation*}
$$

w.r.t. the least-significant-bit-first representation of \mathbb{N}^{k} (see the algorithm PAtoDFA).

We may also use the most-significant-bit-first (msbf) representation of \mathbb{N}^{k}, e.g.,

$$
\operatorname{msbf}\left(\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)=\mathcal{L}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]^{*}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

(a) Construct a finite automaton for the inequation $2 x-y \leq 2$ w.r.t. the msbf representation.
(b) Try now to adapt the algorithm PAtoDFA to the msbf encoding.
(c) Recall that integers can be encoded as binary strings using two's complement: a binary string $s=b_{0} b_{1} b_{2} \ldots b_{n}$ is interpreted, assuming msbf, as the integer

$$
-b_{0} \cdot 2^{n}+b_{1} \cdot 2^{n-1}+b_{2} \cdot 2^{n-2}+\ldots+b_{n} \cdot 2^{0} .
$$

In particular, s and $\left(b_{0}\right)^{*} s$ represent the same integer. This extends in the standard way to tuples of integers, e.g., the pair $(-3,5)$ has the following encodings:

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{*}\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Construct an automaton accepting all (encondings of) integer solutions of the inequation $2 x-y \leq 2$.
- Extend your algorithm from (b) such that the constructed automaton accepts all two's complement encodings of all integer solutions of (*).

