Technische Universitidt Miinchen Winter term 2009/10
17
Prof. J. Esparza / J. Kfetinsky / M. Luttenberger 11. Februar 2010

Solution

Automata and Formal Languages — Homework 10

Due 18.1.2010.

Exercise 10.1

We interpret the monadic second order logic over finite words with the standard interpretation of < as less than relation.

Let MSO'(S) be a modification of the standard monadic second-order logic given by the following syntax. Assume a set of
second-order logical variables ranged over by X, Y, Z. Let 3 be an alphabet. An M SO’(<) formula over X is defined by the
following BNF, where a € X:

=X CQ, | X <Y |Sing(X)| XCY|~¢|(pVe)|IXep

Although we quantify over set variables only, we want this logic to be equally “powerful” as the original MSO(<). As
there are no first-order variables, the first-order predicates < will be replaced by the second-order predicates, so new atomic
formulas are introduced: Sing(X) (meaning singleton), X C Y (meaning subset inclusion), X C @, for every a € ¥ (meaning
all elements of X are labelled by a), and X <Y (true for singletons X = {x},Y = {y} satisfying = < y).

Show that MSO(<) and MSO’(<) are equally expressive, i.e., a language is definable in M SO(<) iff it is definable in
MSO'(<).

Hint: Express the newly defined predicates in the original M SO and vice versa.

Remark: This logic can be used to create a different (a bit easier) procedure to translate formulae into automata: the problem
of incorrect encodings does not arise.

Solution: The translation from MSO(<) to MSO’(<) is done inductively using the following rules:
e Vxy is translated as VX (Sing(X) — ¢),
e Jdzyp is translated as X (Sing(X) A ¢),
e r <y is translated as Sing(X) A Sing(Y)AX <Y,
e Q. (z) is translated as Sing(X) A X C Q, for each a € X.
The other direction is done by the following translation:
e Sing(X) is translated as Jz(x € X AVy(y € X — y = 1)),
e X CVY istranslated as Vae(z € X —» z €Y),
e X C Q, is translated as Va(z € X — Q. (z)),
e X <Y istranslated as Jzdy(z e X Ay e YAVz((z € X w2=2)A(z€Y = z2=y) Az <y)).

Exercise 10.2

We can show that a given formula of M SO holds on some word, i.e., is satisfiable, as follows. Firstly, we transform the given
formula into the equivalent automaton. Secondly, we decide whether it has an accepting run (note that the automaton can
be input-free and no letters are actually read). The formula is satisfiable iff there is such an accepting run.

Moreover, if the given formula is a sentence, i.e., with no free variables, it is a tautology iff there is an accepting run. Thus
we have a method to prove (and disprove) M .SO formulae.

Prove that every nonempty (finite) subset Z of natural numbers has its minimal element, i.e. show that
VZ3xVyly € Z — (x <y Az € Z))

where x < y is a shortcut for -y < z is true on all words.

Solution: We proceed inductively by the structure of the equivalent formula

~3Z-3X-3Y ~(Sing(X) A ((Sing(Y)AY C Z) = (X <Y AX C 2)))

Obviously, an automaton corresponding to =3Y = (Sing(X) A ((Sing(Y)AY C Z) —» (X <Y A X C Z))) recognizes words
of the form

Z /01 101 -+ or Z |0
X|0 10 0O0 -- X 1|0

and this automaton and the one that we get by projection are

O(O»O) D(LO),(O,O) OO Ol,o
O (1,1) @ O 1 @

(0,1) x
o, oN

The last automaton obviously has a successful run, thus proving the original formula.

— O
S o

Exercise 10.3

Express the addition using MSO(<). More precisely, find a formula Plus(X,Y,Z) € MSO(<) that is true iff x + y = z,
where x,y, z are numbers encoded by the sets X,Y, Z, respectively, in the binary Isbf. You are allowed to use the successor
macro S.

Remarks:

e Thus, we can translate any first-order formula with signature 4+, i.e. any formula of Presburger arithmetic, to an
equivalent M SO(<) formula: the first-order quantification is replaced by the subset quantification and + by Plus. The
same holds for sentences. Since M SO(<) has already been proved to be decidable (see the translation into automata
in the lecture and Exercise 10.2), Presburger arithmetic decidable, i.e. we have an algothm to determine whether a
formula is true for every valuation.

e There is also another approach to prove the decidability of Presburger arithmetic: we find the respective automaton
directly (see the lecture).

Solution: For this, we simulate the algorithm for summing digit by digit with an additional auxiliary subset T' to keep
the carry bits. Firstly, we express the formula that the sum on a particular place is correct. This is true iff the odd number
of summands carries 1.

Sum(a)=((ae X Na¢YANag¢T)V(ag XNacY ANa¢T)

Vieg XNa¢YNaeT)VeeXNaeYNaeT))acZ

where ¢ <> ¥ = (p = ¥) A (¢ — ¢). The formula that the carry bit is 1 is true iff at least two summands carry 1. Note that
if overall overflow should happen, the formula is correctly false by the existential quantification.

Carry(a) = ((a€ X ANa€Y)V(ae X Na€eT)
VieeY ANaeT)) + F(S(a,b) NbeT)

Now, we are able to express the summing of two numbers. It is necessary to ensure that the first carry bit is 0.

Plus(X,Y, Z) = 3TVa(Sum(a) A Carry(a) A ((—3b(S(a,b))) — a ¢ T))

Exercise 10.4

Using the algorithms discussed in the lecutre, construct a finite automaton for the Presburger formula

Jy @ = 3y.

