
Technische Universit�at M�unchen Winter term 2009/10
I7
Prof. J. Esparza / J. K�ret��nsk�y / M. Luttenberger 2. Dezember 2009

Automata and Formal Languages { Homework 9

Due 14.1.2010.

Exercise 9.1

Let � = frequest; answer; working; idleg.

(a) Build an automaton recognizing all words with the property P1: after every request there is answer later on (not
necessarily immediately).

Does it guarantee that every request has its own answer? More precisely, let us denote w = w1w2 � � �wn and assume
that there are k requests. Let us de�ne f : f1; : : : ; kg ! f1; : : : ;mg such that wf(i) is the ith request in w. Provided w

satis�es P1, is there always an injective function g : f1; : : : ; kg ! f1; : : : ;mg satisfying wg(i) = answer and f(i) < g(i)
for all i 2 f1; : : : ; kg?

If words were in�nite and there were in�nitely many requests, would P1 guarantee that every request has its own
answer? More precisely, let us denote w = w1w2 � � � and assume that there are in�nitely many requests. Let us de�ne
f : N ! N such that wf(i) is the ith request in w. Provided w satis�es P1, is there always an injective function
g : N! N satisfying wg(i) = answer and f(i) < g(i) for all i 2 f1; : : : ; kg?

(b) Build an automaton recognizing all words with the property P2: there is an answer and before that there are only
workings and requests.

(c) Let A be the following automaton

start

�

answer

Using the intersection construction, prove that all accepting runs of A satisfy P1 and �nd all accepting runs violating
P2.

Exercise 9.2

This exercise focuses on modelling and veri�cation of mutual exclusion protocols. Let us consider having two agents, one
having his internal variable id set to 0, the other has her variable id set to 1. They both run the following mutex program:

while(true)
enter(id)
critical-command
leave(id)
loop-arbitrarily-many-times

non-critical-command

The de�nitions of procedures enter(int) and leave(int) as well as global variables used and their initial values are speci�ed
below.

(a) int turn:=0
proc enter(int i)f

while(turn=1-i) do
skip

g
proc leave(int i)f

turn:=1-i
g



Design an asynchronous network of automata capturing this behaviour.

Furthermore, build an automaton recognizing all runs reaching a con�guration with both agents in the critical section.
Using the intersection algorithm, prove that there are no such runs of this system, i.e. it is a mutex algorithm.

Do all in�nite runs satisfy that if a process wants to enter the critical section then it eventually enters it?

(b) bool 
ag[0]:=false
bool 
ag[1]:=false
proc enter(int i)f


ag[i]:=true
while(
ag[1-i]) do

skip
g
proc leave(int i)f


ag[i]:=false
g

Design an asynchronous network of automata capturing this behaviour.

Can a deadlock occur?

(c) Peterson's algorithm combines both approaches:

int turn:=0
bool 
ag[0]:=false
bool 
ag[1]:=false
proc enter(int i)f

turn:=1-i

ag[i]:=true
while(
ag[1-i] & turn=1-i)

skip
g
proc leave(int i)f


ag[i]:=false
g

Can a deadlock occur?

What kind of starving can occur?


