Automata and Formal Languages - Homework 7

Due 17.12.2009.

Exercise 7.1

Let $\Sigma=\{0,1\}$ and for $a, b \in \Sigma$ we define $a \cdot b$ to be the usual multiplication (also an analog of Boolean and) and $a \oplus b$ to be 0 if $a=b=0$, and 1 otherwise (an analog of Boolean or).
Consider the following function $f: \Sigma^{6} \rightarrow \Sigma$ defined by

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\left(x_{1} \cdot x_{2}\right) \oplus\left(x_{3} \cdot x_{4}\right) \oplus\left(x_{5} \cdot x_{6}\right)
$$

(a) Construct the minimal DFA recognizing $L_{1}=\left\{x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} \mid f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=1\right\}$.
(b) Construct the minimal DFA recognizing $L_{2}=\left\{x_{1} x_{3} x_{5} x_{2} x_{4} x_{6} \mid f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=1\right\}$.

Note the difference in the ordering! Give an example of $w \in L_{1} \backslash L_{2}$.
Note the diffrence in the size of the automata. More generally, consider

$$
f\left(x_{1}, \ldots, x_{2 n}\right)=\bigoplus_{1 \leq k \leq n}\left(x_{2 k-1} \cdot x_{2 k}\right)
$$

and languages according to orderings $x_{1} x_{2} \ldots x_{2 n-1} x_{2 n}$ and $x_{1} x_{3} \ldots x_{2 n-1} x_{2} x_{4} \ldots x_{2 n}$. Although both languages encode "equivalent" information, their minimal automata differ vastly in the size: for the former ordering the size is linear in n, wheareas for the latter it is exponential.

Exercise 7.2

(a) Given two minimal DFAs accepting bounded languages L_{1} and L_{2} with words of length k, construct a minimal DFA accepting $L_{1} \cup L_{2}$.
(b) For any language $L \subseteq\{0,1\}^{k}$ of binary numbers of length k, we define $L+1$ to be the language $\left\{w+1 \bmod 2^{k} \mid w \in L\right\}$. Construct a minimal DFA accepting $L+1$ from a minimal DFA accepting L.
(c) Let $A=\left(Q,\{0,1\}, \delta, q_{0}, F\right)$ be a minimal DFA such that $\mathcal{L}(A)$ is a bounded language of binary numbers. What language is accepted by the automaton $A^{\prime}=\left(Q,\{0,1\}, \delta^{\prime}, q_{0}, F\right)$, where $\delta^{\prime}(q, b)=\delta(q, 1-b)$?

