Automata and Formal Languages - Homework 5

Due 26.11.2009.

Exercise 5.1

Check whether the NFA depicted below recognizes Σ^{*} by means of the algorithm "UnivNFA" presented in the lecture.

Exercise 5.2

We define the following languages over the alphabet $\Sigma=\{a, b\}$:

- L_{1} is the set of all words where between any two occurrences of b 's there is at least one a.
- L_{2} is the set of all words where every maximal sequence of consecutive a 's has odd length.
- L_{3} is the set of all words where a occurs only at even positions.
- L_{4} is the set of all words where a occurs only at odd positions.
- L_{5} is the set of all words of odd length.
- L_{6} is the set of all words with an even number of a 's.

Remark: For this exercise we assume that the first letter of a nonempty word is at position 1, e.g., $a \in L_{4}, a \notin L_{3}$.
Your task is to construct an FA, i.e., DFA or NFA or NFA- ε, for

$$
L:=\left(L_{1} \backslash L_{2}\right) \cup \overline{\left(L_{3} \triangle L_{4}\right) \cap L_{5} \cap L_{6}} \text { where } \triangle \text { denotes the symmetric difference. }
$$

while sticking to the following rules:

- You have to start from FAs for L_{1}, \ldots, L_{6}.
- Any further automaton has to be constructed from already existing automata via an algorithm introduced in the lecture, e.g., Bisim, BinOp, Comp, NFAtoDFA, etc.
- You are free to transform the propositional formula underlying the definition of L as you see fit.

Try to find an order on the construction steps which yields an FA for L with as few as possible states.

Exercise 2.2

For $n \in \mathbb{N}_{0}$ let $\operatorname{msbf}(n)$ be the language of all words over $\{0,1\}$ which represent n w.r.t. to the most significant bit first representation where an arbitrary number of leading zeros is allowed. For example:

$$
\operatorname{msbf}(3)=\mathcal{L}\left(0^{*} 11\right) \text { and } \operatorname{msbf}(0)=\mathcal{L}\left(0^{*}\right)
$$

Similarly, let $\operatorname{lsbf}(n)$ denote the language of all least significant bit first representations of n with an arbitrary number of following zeros, e.g.:

$$
\operatorname{lsbf}(6)=\mathcal{L}\left(0110^{*}\right) \text { and } \operatorname{lsbf}(0)=\mathcal{L}\left(0^{*}\right) .
$$

(a) Construct and compare the minimal DFAs representing all even natural numbers $n \in \mathbb{N}_{0}$ w.r.t. the unary encoding (i.e., $n \mapsto a^{n}$), the msbf encoding, and the lsbf encoding.
(b) Consider the following FA \mathcal{A} over the alphabet $\{00,01,10,11\}$:

W.r.t. the msbf encoding, we may interpret any word $w \in\{00,01,10,11\}^{*}$ as a pair of natural numbers $(X(w), Y(w)) \in$ $\mathbb{N}_{0} \times \mathbb{N}_{0}$. Example: (Underlined letters correspond to $Y(w)$.)

$$
w=(00)^{k} 001011 \rightarrow(0 \underline{0})^{k} 0 \underline{0} 1 \underline{0} 1 \underline{1} \rightarrow\left(0^{k} 011,0^{k} 001\right) \rightarrow(3,1)=(X(w), Y(w))
$$

- Find constants $a, b \in \mathbb{Z}$ such that $a X(w)+b Y(w)=0$ for all $w \in \mathcal{L}(\mathcal{A})$.
(c) Construct the minimal DFA representing the language $\left\{w \in\{0,1\}^{*} \mid \operatorname{msbf}^{-1}(w)\right.$ is divisible by 3$\}$.

