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Solution

Automata and Formal Languages – Homework 5

Due 26.11.2009.

Exercise 5.1

Check whether the NFA depicted below recognizes Σ∗ by means of the algorithm “UnivNFA” presented in the lecture.
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Exercise 5.2

We define the following languages over the alphabet Σ = {a, b}:

• L1 is the set of all words where between any two occurrences of b’s there is at least one a.

• L2 is the set of all words where every maximal sequence of consecutive a’s has odd length.

• L3 is the set of all words where a occurs only at even positions.

• L4 is the set of all words where a occurs only at odd positions.

• L5 is the set of all words of odd length.

• L6 is the set of all words with an even number of a’s.

Remark : For this exercise we assume that the first letter of a nonempty word is at position 1, e.g., a ∈ L4, a 6∈ L3.

Your task is to construct an FA, i.e., DFA or NFA or NFA-ε, for

L := (L1 \ L2) ∪ (L34L4) ∩ L5 ∩ L6 where 4 denotes the symmetric difference.

while sticking to the following rules:

• You have to start from FAs for L1, . . . , L6.

• Any further automaton has to be constructed from already existing automata via an algorithm introduced in the
lecture, e.g., Bisim, BinOp, Comp, NFAtoDFA, etc.

• You are free to transform the propositional formula underlying the definition of L as you see fit.

Try to find an order on the construction steps which yields an FA for L with as few as possible states.



Exercise 2.2

For n ∈ N 0 let msbf(n) be the language of all words over {0, 1} which represent n w.r.t. to the most significant bit first
representation where an arbitrary number of leading zeros is allowed. For example:

msbf(3) = L(0∗11) and msbf(0) = L(0∗).

Similarly, let lsbf(n) denote the language of all least significant bit first representations of n with an arbitrary number of
following zeros, e.g.:

lsbf(6) = L(0110∗) and lsbf(0) = L(0∗).

(a) Construct and compare the minimal DFAs representing all even natural numbers n ∈ N 0 w.r.t. the unary encoding
(i.e., n 7→ an), the msbf encoding, and the lsbf encoding.

(b) Consider the following FA A over the alphabet {00, 01, 10, 11}:
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W.r.t. the msbf encoding, we may interpret any word w ∈ {00, 01, 10, 11}∗ as a pair of natural numbers (X(w), Y (w)) ∈
N 0 × N 0. Example : (Underlined letters correspond to Y (w).)

w = (00)k001011→ (00)k001011→ (0k011, 0k001)→ (3, 1) = (X(w), Y (w))

• Find constants a, b ∈ Z such that aX(w) + bY (w) = 0 for all w ∈ L(A).

(c) Construct the minimal DFA representing the language {w ∈ {0, 1}∗ | msbf−1(w) is divisible by 3}.

Solution:

(a) • Unary encoding:
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• MSBF encoding:
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• LSBF encoding:
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(b) We label the states as follows:

0start −1 −2

00

10

11

00

01

11



We show by induction on the length of a word w ∈ Σ∗ that for δ(0, w) = q we have 3Y (w) −X(w) = q. Obviously,
this will then imply that 3Y (w)−X(w) = 0 for all w ∈ L(A).

Let l denote the length of a word w (w.r.t. the alphabet {00, 01, 10, 11}).

• l = 0:

We have w = ε and both δ(0, ε) = 0 and X(w) = 0 = Y (w).

• l→ l + 1:

We may write w as uab with a, b ∈ {0, 1}. Note that we then have

X(w) = 2X(u) + a and Y (w) = 2Y (w) + b.

Assume that δ(0, w) =: q is defined, otherwise there is nothing to show. Then also δ(0, u) =: q′ is defined. By
induction hypothesis we have 3Y (u)−X(u) = q′.

– Assume q = 0 ∧ q′ = 0:

Then a = 0, b = 0 has to hold, i.e., X(w) = 2X(u) and Y (w) = 2Y (u). Hence,

3Y (w)−X(w) = 3 · 2Y (u)− 2X(u) = 2(3Y (u)−X(u)) = 2 · q′ = 2 · 0 = 0 = q.

– Assume q = 0 ∧ q′ = −1.

Then a = 1, b = 1, and X(w) = 2X(u) + 1 and Y (w) = 2Y (u) + 1 subsequently follow, leading to:

3Y (w)−X(w) = 3 · (2Y (u) + 1)− (2X(u) + 1) = 2(3Y (u)−X(u)) + 2 = 2 · q′ + 2 = 2 · (−1) + 2 = 0 = q.

– Similarly, the remaining cases follow.

One can even show that A accepts exactly those words w with 3Y (w) − X(w) = 0. For this, let w = uab be a
word such that δ(0, u) is defined, but δ(0, w) is undefined, i.e., is the rejecting state.

Assume δ(0, u) = 0. Then either ab = 01 or ab = 11.

– We only consider the case ab = 01, as the case ab = 11 is quite similar. Then by our preceding result we have
3Y (u)−X(u) = 0, which leads to

3Y (w)−X(w) = 3(2Y (u) + 1)− 2X(u) = 3.

Assume we add a letter xy to w. In order to calculate 3Y (wxy)−X(wxy) we double the value 3Y (w)−X(w)
and then add a number from {−1, 0, 2, 3}. Hence, 5 = 2(3Y (w) − X(w)) − 1 ≤ 3Y (wxy) − X(wxy) ≤
2(3Y (w)−X(w)) + 3 = 9, i.e., no matter how we extend w by some word u ∈ {00, 01, 10, 11}∗, we never will
be able to obtain 3Y (wu)−X(wu).

Similarly, one shows for the other cases of δ(0, u) that all words leading to the rejecting state cannot satisfy the
linear equation 3y − x = 0.

(c) The idea is that the state reached after reading the word u corresponds to the remainder of the number represented
by u when dividing by 3.

We therefore take as states {0, 1, 2} with 0 the initial state and define

δ(q, a) = 2q + a (mod 3).

This yields the automaton:
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Obviously, this automaton has to be minimal as two different states encode two different remainder classes. Note that
we also obtain this automaton from the one of (b) by forgetting (projecting) the y-component.


