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Automata and Formal Languages – Homework 3

Due 12.11.2009.

Exercise 3.1

Let A = (Q,Σ, δ, qinitial, F ) be some NFA. We assume that Q = {q1, q2, . . . , qn}. With every word w ∈ Σ∗ we then associate
the boolean matrix Mw ∈ {0, 1}n×n with

(Mw)i,j = 1 iff A can end up in state qj when reading the word w starting from state qi.

The set TA := {Mw | w ∈ Σ∗} is then called the transition monoid of A.

Example : Consider the following FA:

q1start q2

a

a, b

a

For this automaton, the matrices Ma, Mb, Maa and Mab are:

Ma =

(

0 1
1 1

)

, Mb =

(

0 0
0 1

)

, Maa =

(

1 1
1 1

)

and Mab =

(

0 1
0 1

)

.

(a) Assuming standard multiplication of boolean matrices, we have in our example thatMaa = Ma ·Ma andMab = Ma ·Mb.

• Show that Mu ·Mv = Muv holds for all u, v ∈ Σ∗ for any given NFA A.

• Check that TA w.r.t. this multiplication is indeed a monoid.

Reminder :
〈S, ·〉 is a monoid if (i) ∀a, b ∈ S : a·b ∈ S, (ii) ∀a, b, c ∈ S : a·(b·c) = (a·b)·c, and (iii) ∃1 ∈ S∀a ∈ S : a·1 = a = 1·a.

(b) Consider the following FA A:

q1start q2 q3

a, b

b a, b

• Draw the labeled graph with states the elements of TA and edges Mu
a
−→ Mua for a ∈ Σ, u ∈ Σ∗.

Note that TA has at most 29 elements; construct the graph on the fly starting from Mε. You should end up with
7 elements/states.

• How can you obtain from this graph a deterministic finite automaton accepting the same language as the original
nondeterministic automaton? How does this construction relate to the determinization procedure you have seen
in the lecture?

Exercise 3.2

In the preceding exercise, the transition monoid TA of a finite automaton A has been introduced. Recall also the syntactic
monoid SL := Σ∗/ ≡L of a language L ⊆ Σ∗ which was the set of equivalence classes w.r.t. the binary relation ≡L on Σ∗

defined by
x ≡L y iff ∀u, v ∈ Σ∗ : uxv ∈ L ⇔ uyv ∈ L.



(a) Let A = (Q,Σ, δ, qi, F ) be an NFA. Show that for x, y ∈ Σ∗ we have

Mx = My ⇒ x ≡L y.

(b) Let L be a regular language over Σ. Let AL be a minimal DFA with L = L(A). Show that for x, y ∈ Σ∗ it holds that

x ≡L y ⇒ Mx = My.

Is it necessary for A to be deterministic or minimal?

(c) Calculate the size of the syntatic monoid of the following languages:

• L((aa)∗) for Σ = {a}.

• L((ab+ ba)∗) for Σ = {a, b}.

You can find some incomplete C++-code on the webpage for an easier calculation of the transition monoid.

(d) A famous result by Schützenberger says that a regular language L is representable by a star-free expression if and only
if its syntactic monoid SL is aperiodic. (A monoid 〈M, ·, 1〉 is aperiodic if for any a ∈ M there is a natural number n
such that an = an+1.)

• Show that syntactic monoid of a regular language L is isomorphic to the transition monoid of a minimal DFA for
L, i.e., show:

∀x, y, z ∈ Σ∗ : [x]L · [y]L = [z]L iff Mx ·My = Mz.

• Decide for the two languages considered in (c) whether they are representable by star-free expressions. Use a
computer.

Exercise 3.3

Let A = (Q,Σ, δ, q0, F ) be an NFA and ∼ its bisimilarity relation.

(a) Prove or disprove that L(q) = L(q′) ⇒ q ∼ q′ for q, q′ ∈ Q.

(b) A binary relation R ⊆ Q×Q is called a simulation if for any pair (q, q′) ∈ R we have

(q ∈ F ⇔ q′ ∈ F ) ∧ ∀a ∈ Σ∀qa ∈ δ(q, a) ∃q′a ∈ δ(q′, a) : (qa, q
′
a) ∈ R.

Let � denote
⋃

{R | R is a simulation w.r.t. A}.

• Show that q � q′ ⇒ L(q) ⊆ L(q′).

• Prove or disprove: (q � q′ ∧ q′ � q) ⇒ q ∼ q′.

Exercise 3.4

Consider the following NFA A:

q0start

q1 q2

q3 q4

qf

a

a

b

a

a

a, b

a

b

a

a, b

a

a

(a) Determine L := L(A).

(b) Determine the bisimilarity relation ∼ of A. Use the partitioning algorithm presented in the lecture.


