Automata and Formal Languages – Homework 2

Due 5.11.2009.

Exercise 2.1

Let \mathcal{A} be the following finite automaton:

- (a) Transform the automaton \mathcal{A} into an equivalent regular expression, then transform this expression into an NFA (with ε -transitions), remove the ε -transitions, determinize the automaton and then minimize it using the algorithms from the lecture. Check that the resulting automaton is isomorphic to the original one.
- (b) Use JFLAP (http://www.jflap.org/) to perform the same transformations. Is there any difference?
- (c) Let us denote $\Sigma^* = \{a, b\}$. Then $\mathcal{L}(\mathcal{A}) = \Sigma^* \setminus \Sigma^* bb\Sigma^*$. Prove that \mathcal{A} is minimal by
 - proving that no equivalence relation \sim on Σ^* of index at most 2 can satisfy $x \sim y \Rightarrow \forall w (xw \in \mathcal{L}(\mathcal{A}) \Leftrightarrow yw \in \mathcal{L}(\mathcal{A}))$ (and thus concluding by Nerode theorem);
 - computing the index of $\sim_{\mathcal{L}(\mathcal{A})}$ (and if it is 3 then concluding by Myhill-Nerode theorem);
 - performing the *Bisim* algorithm for minimization (and checking the result is isomorphic to the original automaton).

Exercise 2.2

For $n \in \mathbb{N}_0$ let msbf(n) be the language of all words over $\{0,1\}$ which represent n w.r.t. to the most significant bit first representation where an arbitrary number of leading zeros is allowed. For example:

$$msbf(3) = \mathcal{L}(0^*11) \text{ and } msbf(0) = \mathcal{L}(0^*).$$

Similarly, let lsbf(n) denote the language of all *least significant bit first* representations of n with an arbitrary number of following zeros, e.g.:

$$lsbf(6) = \mathcal{L}(0110^*) \text{ and } lsbf(0) = \mathcal{L}(0^*).$$

- (a) Construct and compare the minimal DFAs representing all even natural numbers $n \in \mathbb{N}_0$ w.r.t. the unary encoding (i.e., $n \mapsto a^n$), the msbf encoding, and the lsbf encoding.
- (b) Consider the following FA \mathcal{A} over the alphabet $\{00, 01, 10, 11\}$:

W.r.t. the msbf encoding, we may interpret any word $w \in \{00, 01, 10, 11\}^*$ as a pair of natural numbers $(X(w), Y(w)) \in \mathbb{N}_0 \times \mathbb{N}_0$. Example: (Underlined letters correspond to Y(w).)

$$w = (00)^k 001011 \rightarrow (00)^k 001011 \rightarrow (0^k 011, 0^k 001) \rightarrow (3, 1) = (X(w), Y(w))$$

- Find constants $a, b \in \mathbb{Z}$ such that aX(w) + bY(w) = 0 for all $w \in \mathcal{L}(A)$.
- (c) Construct the minimal DFA representing the language $\{w \in \{0,1\}^* \mid \text{msbf}^{-1}(w) \text{ is divisible by } 3\}$.

Exercise 2.3

In the lecture you have seen the definition of the Myhill-Nerode relation \sim_L for a given language $L \subseteq \Sigma^*$:

For two words $x, y \in \Sigma^*$ we write $x \sim_L y$ iff $xv \in L \Leftrightarrow yv \in L$ holds for all $v \in \Sigma^*$.

- (a) Determine the equivalence classes of \sim_L w.r.t. the following languages over $\Sigma = \{a, b\}$:
 - $L_1 := \mathcal{L}((ab + ba)^*),$
 - $L_2 := \mathcal{L}((aa)^*),$
 - $L_3 := \{w \in \{a, b\}^* \mid \text{ the number of occurrences of } ab \text{ and } ba \text{ in } w \text{ is the same } \}.$
 - $L_4 := \{a^n b^n c^n \mid n \ge 0\}.$
- (b) In the definition of \sim_L we compare two given words by appending all possible words. Instead of appending, we may also prepend. Consider therefore the binary relation \sim^L on Σ^* defined by

For two words $x, y \in \Sigma^*$ we write $x \sim^L y$ iff $ux \in L \Leftrightarrow uy \in L$ holds for all $u \in \Sigma^*$.

- Determine the equivalence classes of \sim^{L_1} and \sim^{L_2} .
- Show that L is regular iff \sim^L has only finitely many equivalence classes.
- Is the number of equivalence classes of \sim_L equal to the one of \sim^L ?
- (c) Finally, we may compare two words x, y also by appending and prepending arbitrary words, i.e., define the relation \equiv_L as follows:

For two words $x, y \in \Sigma^*$ we write $x \equiv_L y$ iff $uxv \in L \Leftrightarrow uzv \in L$ holds for all $u, v \in \Sigma^*$.

For $x \in \Sigma^*$ let $[x]_L$ denote the equivalence class of x w.r.t. \equiv_L , i.e., $[x]_L = \{t \in \Sigma^* \mid x \equiv_L y\}$. We write Σ^*/\equiv_L for the set of equivalence classes.

- How does \equiv_L relate to \sim_L , resp. \sim^L ?
- Determine the equivalence classes of \equiv_{L_2} .
- Show that the following multiplication on Σ^*/\equiv_L is well-defined, associative and has $[\varepsilon]_L$ as its neutral element:

$$[w]_L \cdot [w']_L := [ww']_L.$$

Remark: Σ^*/\equiv_L is called the syntactic monoid of L.

Exercise 2.4

Let Σ be an alphabet. The set \mathbb{S}_{Σ} of star-free expression over Σ is inductively defined:

$$\begin{array}{lcl} S^0 & := & \Sigma \cup \{\varepsilon,\emptyset\} \\ S^{k+1} & := & \{(\phi+\psi),(\phi\cdot\psi),\overline{\phi},(\phi\cap\psi) \mid \phi,\psi \in S^k\} \cup S^k \\ \mathbb{S}_\Sigma & := & \bigcup_{k \in \mathbb{N}} S^k. \end{array}$$

The language $\mathcal{L}(\rho)$ represented by a star-free expression $\rho \in \mathbb{S}_{\Sigma}$ is defined as expected:

$$\mathcal{L}(\rho) := \left\{ \begin{array}{ll} \emptyset & \text{if } \rho = \emptyset \\ \{\rho\} & \text{if } \rho \in \Sigma \cup \{\varepsilon\} \\ \Sigma^* \setminus \mathcal{L}(\phi) & \text{if } \rho = \overline{\phi} \end{array} \right. \quad \begin{array}{ll} \mathcal{L}(\phi) \cup \mathcal{L}(\psi) & \text{if } \rho = (\phi + \psi) \\ \mathcal{L}(\phi) \cdot \mathcal{L}(\psi) & \text{if } \rho = (\phi \cdot \psi) \\ \mathcal{L}(\phi) \cap \mathcal{L}(\psi) & \text{if } \rho = (\phi \cap \psi). \end{array}$$

To avoid parentheses, we assume that concatenation has the highest priority, followed by intersection, then addition. Some examples:

$$\mathcal{L}(\overline{\emptyset}) = \Sigma^* \setminus \mathcal{L}(\emptyset) = \Sigma^*, \quad \mathcal{L}(\overline{a} \cap (a+ab)) = \{ab\}.$$

- (a) Show that for every star-free expression $\phi \in \mathbb{S}_{\Sigma}$ it holds that $\mathcal{L}(\phi)$ is a regular languages over Σ .
- (b) Give a star-free expression for the regular language $\mathcal{L}((ab)^*)$ for $\Sigma = \{a, b\}$.

Remark: There is no star-free expression for the language $\mathcal{L}((aa)^*)!$