Automata and Formal Languages - Homework 2

Due 5.11.2009.

Exercise 2.1

Let \mathcal{A} be the following finite automaton:

(a) Transform the automaton \mathcal{A} into an equivalent regular expression, then transform this expression into an NFA (with ε-transitions), remove the ε-transitions, determinize the automaton and then minimize it using the algorithms from the lecture. Check that the resulting automaton is isomorphic to the original one.
(b) Use JFLAP (http://www.jflap.org/) to perform the same transformations. Is there any difference?
(c) Let us denote $\Sigma^{*}=\{a, b\}$. Then $\mathcal{L}(\mathcal{A})=\Sigma^{*} \backslash \Sigma^{*} b b \Sigma^{*}$. Prove that \mathcal{A} is minimal by

- proving that no equivalence relation \sim on Σ^{*} of index at most 2 can satisfy $x \sim y \Rightarrow \forall w(x w \in \mathcal{L}(\mathcal{A}) \Leftrightarrow y w \in \mathcal{L}(\mathcal{A}))$ (and thus concluding by Nerode theorem);
- computing the index of $\sim_{\mathcal{L}(\mathcal{A})}$ (and if it is 3 then concluding by Myhill-Nerode theorem);
- performing the Bisim algorithm for minimization (and checking the result is isomorphic to the original automaton).

Exercise 2.2

For $n \in \mathbb{N}_{0}$ let $\operatorname{msbf}(n)$ be the language of all words over $\{0,1\}$ which represent n w.r.t. to the most significant bit first representation where an arbitrary number of leading zeros is allowed. For example:

$$
\operatorname{msbf}(3)=\mathcal{L}\left(0^{*} 11\right) \text { and } \operatorname{msbf}(0)=\mathcal{L}\left(0^{*}\right)
$$

Similarly, let $\operatorname{lsbf}(n)$ denote the language of all least significant bit first representations of n with an arbitrary number of following zeros, e.g.:

$$
\operatorname{lsbf}(6)=\mathcal{L}\left(0110^{*}\right) \text { and } \operatorname{lsbf}(0)=\mathcal{L}\left(0^{*}\right)
$$

(a) Construct and compare the minimal DFAs representing all even natural numbers $n \in \mathbb{N}_{0}$ w.r.t. the unary encoding (i.e., $n \mapsto a^{n}$), the msbf encoding, and the lsbf encoding.
(b) Consider the following FA \mathcal{A} over the alphabet $\{00,01,10,11\}$:

W.r.t. the msbf encoding, we may interpret any word $w \in\{00,01,10,11\}^{*}$ as a pair of natural numbers $(X(w), Y(w)) \in$ $\mathbb{N}_{0} \times \mathbb{N}_{0}$. Example: (Underlined letters correspond to $Y(w)$.)

$$
w=(00)^{k} 001011 \rightarrow(0 \underline{0})^{k} 0 \underline{0} 1 \underline{0} 1 \underline{1} \rightarrow\left(0^{k} 011,0^{k} 001\right) \rightarrow(3,1)=(X(w), Y(w))
$$

- Find constants $a, b \in \mathbb{Z}$ such that $a X(w)+b Y(w)=0$ for all $w \in \mathcal{L}(\mathcal{A})$.
(c) Construct the minimal DFA representing the language $\left\{w \in\{0,1\}^{*} \mid \operatorname{msbf}^{-1}(w)\right.$ is divisible by 3$\}$.

Exercise 2.3

In the lecture you have seen the definition of the Myhill-Nerode relation \sim_{L} for a given language $L \subseteq \Sigma^{*}$:
For two words $x, y \in \Sigma^{*}$ we write $x \sim_{L} y$ iff $x v \in L \Leftrightarrow y v \in L$ holds for all $v \in \Sigma^{*}$.
(a) Determine the equivalence classes of \sim_{L} w.r.t. the following languages over $\Sigma=\{a, b\}$:

- $L_{1}:=\mathcal{L}\left((a b+b a)^{*}\right)$,
- $L_{2}:=\mathcal{L}\left((a a)^{*}\right)$,
- $L_{3}:=\left\{w \in\{a, b\}^{*} \mid\right.$ the number of occurrences of $a b$ and $b a$ in w is the same $\}$.
- $L_{4}:=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
(b) In the definition of \sim_{L} we compare two given words by appending all possible words. Instead of appending, we may also prepend. Consider therefore the binary relation \sim^{L} on Σ^{*} defined by

For two words $x, y \in \Sigma^{*}$ we write $x \sim^{L} y$ iff $u x \in L \Leftrightarrow u y \in L$ holds for all $u \in \Sigma^{*}$.

- Determine the equivalence classes of $\sim^{L_{1}}$ and $\sim^{L_{2}}$.
- Show that L is regular iff \sim^{L} has only finitely many equivalence classes.
- Is the number of equivalence classes of \sim_{L} equal to the one of \sim^{L} ?
(c) Finally, we may compare two words x, y also by appending and prepending arbitrary words, i.e., define the relation \equiv_{L} as follows:

For two words $x, y \in \Sigma^{*}$ we write $x \equiv_{L} y$ iff $u x v \in L \Leftrightarrow u z v \in L$ holds for all $u, v \in \Sigma^{*}$.
For $x \in \Sigma^{*}$ let $[x]_{L}$ denote the equivalence class of x w.r.t. \equiv_{L}, i.e., $[x]_{L}=\left\{t \in \Sigma^{*} \mid x \equiv_{L} y\right\}$. We write Σ^{*} / \equiv_{L} for the set of equivalence classes.

- How does \equiv_{L} relate to \sim_{L}, resp. \sim^{L} ?
- Determine the equivalence classes of $\equiv_{L_{2}}$.
- Show that the following multiplication on Σ^{*} / \equiv_{L} is well-defined, associative and has $[\varepsilon]_{L}$ as its neutral element:

$$
[w]_{L} \cdot\left[w^{\prime}\right]_{L}:=\left[w w^{\prime}\right]_{L}
$$

Remark: Σ^{*} / \equiv_{L} is called the syntactic monoid of L.

Exercise 2.4

Let Σ be an alphabet. The set \mathbb{S}_{Σ} of star-free expression over Σ is inductively defined:

$$
\begin{array}{ll}
S^{0} & :=\Sigma \cup\{\varepsilon, \emptyset\} \\
S^{k+1} & :=\left\{(\phi+\psi),(\phi \cdot \psi), \bar{\phi},(\phi \cap \psi) \mid \phi, \psi \in S^{k}\right\} \cup S^{k} \\
\mathbb{S}_{\Sigma} & :=\bigcup_{k \in \mathbb{N}} S^{k} .
\end{array}
$$

The language $\mathcal{L}(\rho)$ represented by a star-free expression $\rho \in \mathbb{S}_{\Sigma}$ is defined as expected:

$$
\mathcal{L}(\rho):=\left\{\begin{array}{llll}
\emptyset & \text { if } \rho=\emptyset & \mathcal{L}(\phi) \cup \mathcal{L}(\psi) & \text { if } \rho=(\phi+\psi) \\
\{\rho\} & \text { if } \rho \in \Sigma \cup\{\varepsilon\} & \mathcal{L}(\phi) \cdot \mathcal{L}(\psi) & \text { if } \rho=(\phi \cdot \psi) \\
\Sigma^{*} \backslash \mathcal{L}(\phi) & \text { if } \rho=\bar{\phi} & \mathcal{L}(\phi) \cap \mathcal{L}(\psi) & \text { if } \rho=(\phi \cap \psi)
\end{array}\right.
$$

To avoid parentheses, we assume that concatenation has the highest priority, followed by intersection, then addition. Some examples:

$$
\mathcal{L}(\bar{\emptyset})=\Sigma^{*} \backslash \mathcal{L}(\emptyset)=\Sigma^{*}, \quad \mathcal{L}(\bar{a} \cap(a+a b))=\{a b\}
$$

(a) Show that for every star-free expression $\phi \in \mathbb{S}_{\Sigma}$ it holds that $\mathcal{L}(\phi)$ is a regular languages over Σ.
(b) Give a star-free expression for the regular language $\mathcal{L}\left((a b)^{*}\right)$ for $\Sigma=\{a, b\}$.

Remark: There is no star-free expression for the language $\mathcal{L}\left((a a)^{*}\right)$!

