Automata and Formal Languages - Homework 1

Due 29.10.2009.

Exercise 1.1

In the lecture, it was shown how to obtain from a finite automaton a regular expression representing the same language by iteratively eliminating states of the automaton. In this exercise we will see that eliminating states corresponds to eliminating variables from a linear system of equations over the algebraic structure given by the set of languages $2^{\Sigma^{*}}$ with set union, language concatenation and the Kleene star as operations.
(a) You might remember Arden's Lemma from the introductionary course on formal language theory. Arden's Lemma says:

Given two languages $A, B \subseteq \Sigma^{*}$ with $\varepsilon \notin A$ then there is a unique language $X \subseteq \Sigma^{*}$ satisfying $X=A X \cup B$ and this language is given by $A^{*} B$.
Prove Arden's Lemma.
(b) Solve the following system given in two variables X, Y over $\Sigma=\{a, b, c, d, e, f\}$.

$$
\begin{aligned}
& X=\{a\} X \cup\{b\} Y \cup\{c\} \\
& Y=\{d\} X \cup\{e\} Y \cup\{f\} .
\end{aligned}
$$

Hint: Consider X as a constant language and solve the equation for Y using Arden's Lemma.
We can associate with any finite automaton $\mathcal{A}=\left(Q, \Sigma, \delta, q_{I}, F\right)$ a linear equation system as follows:
We take as variables the states of the automaton. For every state X we then have the equation

$$
X=\left(\bigcup_{Y \in Q} \bigcup_{a \in \Sigma}\{a\} \delta(X, a, Y) Y\right) \cup\{\varepsilon\} \chi_{F}(X)
$$

with $\delta(X, a, Y)=\{\varepsilon\}$ if $Y \in \delta(X, a), \delta(X, a, Y)=\emptyset$ otherwise; and $\chi_{F}(X)=\{\varepsilon\}$ if $X \in F, \chi_{F}(X)=\emptyset$ otherwise.
(c) Consider the automaton depicted on the left and the equation system we obtain from it (shown on the right):

$$
\begin{aligned}
X & =\{a\} Y \cup\{b\} Z \cup\{\varepsilon\} \\
Y & =\{a\} X \cup\{b\} W \\
Z & =\{b\} X \cup\{a\} W \\
W & =\{b\} Y \cup\{a\} Z
\end{aligned}
$$

Calculate the solution of this linear system by iteratively eliminating variables. Start with Y, then eliminate Z, finally W.
Compare the solution you obtain to the regular expression obtained in the script for this automaton.

Exercise 1.2

Let Σ be an alphabet. We define the operator $\|: \Sigma^{*} \times \Sigma^{*} \rightarrow 2^{\Sigma^{*}}$ as follows:

$$
v\|u:=u\| v, \quad u\|\varepsilon:=\{u\}, \quad a u\| b v:=\{a w \mid w \in u \| b v\} \cup\{b w \mid w \in a u \| v\} \text { for } a, b \in \Sigma, u, v \in \Sigma^{*} .
$$

Examples:

$$
b\|d=\{b d, d b\}, \quad a b\| d=\{a b d, a d b, d a b\}, \quad a b \| c d=\{c a b d, a c b d, a b c d, c a d b, a c d b, c d a b\} .
$$

- Show that for two regular languages $L_{1}, L_{2} \subseteq \Sigma^{*}$ their interleaving

$$
L_{1}\left\|L_{2}:=\bigcup_{u \in L_{1}, v \in L_{2}} u\right\| v
$$

is also regular.

Exercise 1.3

Let Σ_{1}, Σ_{2} be two alphabets. A map $h: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ is called a homomorphism if it respects the empty word and concatenation, i.e.,

$$
h(\varepsilon)=\varepsilon \text { and } h\left(w_{1} w_{2}\right)=h\left(w_{1}\right) h\left(w_{2}\right) \text { for all } w_{1}, w_{2} \in \Sigma_{1}^{*} .
$$

Assume that $h: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ is a homorphism. Note that h is completely determined by its values on Σ_{1}.
(a) Let \mathcal{A} be a finite automaton over the alphabet Σ_{1}. Describe how to constuct a finite automaton accepting the language

$$
h(\mathcal{L}(\mathcal{A})):=\{h(w) \mid w \in \mathcal{L}(\mathcal{A})\} .
$$

(b) Let \mathcal{A}^{\prime} be a finite automaton over the alphabet Σ_{2}. Describe how to construct a finite automaton accepting the language

$$
h^{-1}\left(\mathcal{L}\left(\mathcal{A}^{\prime}\right)\right):=\left\{w \in \Sigma_{1}^{*} \mid h(w) \in \mathcal{L}\left(\mathcal{A}^{\prime}\right)\right\}
$$

(c) Recall that the language $\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ is context free, but not regular. Use the preceding two results to show that $\left\{\left(01^{k} 2\right)^{n} 3^{n} \mid k, n \in \mathbb{N}\right\}$ is also not regular.

Exercise 1.4

For L_{1}, L_{2} regular languages over an alphabet Σ, the left quotient of L_{1} by L_{2} is defined by

$$
L_{2} \backslash L_{1}:=\left\{v \in \Sigma^{*} \mid \exists u \in L_{2}: u v \in L_{1}\right\}
$$

(a) Use the fact that regular languages are closed under homomorphisms, inverse homomorphisms, concatenation and intersection to prove they are closed under quotienting.
(b) Given finite automata $\mathcal{A}_{1}, \mathcal{A}_{2}$, construct an automaton \mathcal{A} such that

$$
\mathcal{L}(\mathcal{A})=\mathcal{L}\left(\mathcal{A}_{2}\right) \backslash \mathcal{L}\left(\mathcal{A}_{1}\right)
$$

(c) Is there any difference when taking the right quotient $L_{1} / L_{2}:=\left\{u \in \Sigma^{*} \mid \exists v \in L_{2}: u v \in L_{1}\right\}$?

Exercise 1.5

Let L_{1}, L_{2} be regular languages. Determine the inclusion relation between the following languages:

- L_{1}
- $\left(L_{1} / L_{2}\right) \cdot L_{2}$
- $\left(L_{1} \cdot L_{2}\right) / L_{2}$

