
Exercise 2.3

In the lecture you have seen the definition of the Myhill-Nerode relation ∼L for a given language L ⊆ Σ∗:

For two words x, y ∈ Σ∗ we write x ∼L y iff xv ∈ L⇔ yv ∈ L holds for all v ∈ Σ∗.

(a) Determine the equivalence classes of ∼L w.r.t. the following languages over Σ = {a, b}:

• L1 := L((ab+ ba)∗),

• L2 := L((aa)∗),

• L3 := {w ∈ {a, b}∗ | the number of occurrences of ab and ba in w is the same }.

• L4 := {anbncn | n ≥ 0}.

(b) In the definition of ∼L we compare two given words by appending all possible words. Instead of appending, we may
also prepend. Consider therefore the binary relation ∼L on Σ∗ defined by

For two words x, y ∈ Σ∗ we write x ∼L y iff ux ∈ L⇔ uy ∈ L holds for all u ∈ Σ∗.

• Determine the equivalence classes of ∼L1 and ∼L2 .

• Show that L is regular iff ∼L has only finitely many equivalence classes.

• Is the number of equivalence classes of ∼L equal to the one of ∼L?

(c) Finally, we may compare two words x, y also by appending and prepending arbitrary words, i.e., define the relation
≡L as follows:

For two words x, y ∈ Σ∗ we write x ≡L y iff uxv ∈ L⇔ uzv ∈ L holds for all u, v ∈ Σ∗.

For x ∈ Σ∗ let [x]L denote the equivalence class of x w.r.t. ≡L, i.e., [x]L = {t ∈ Σ∗ | x ≡L y}. We write Σ∗/ ≡L for
the set of equivalence classes.

• How does ≡L relate to ∼L, resp. ∼L?

• Determine the equivalence classes of ≡L2
.

• Show that the following multiplication on Σ∗/ ≡L is well-defined, associative and has [ε]L as its neutral element:

[w]L · [w′]L := [ww′]L.

Remark : Σ∗/ ≡L is called the syntactic monoid of L.

Solution:

(a) Reminder :

• For L ⊆ Σ∗, the relation ∼L on Σ∗ was defined by

x ∼L y iff ∀z ∈ Σ∗ : xz ∈ L⇔ yz ∈ L.

• Let A = (Q,Σ, δ, qI , F) be a DFA. Set P (q) = {x ∈ Σ∗ | δ(qI , x) = q} for q ∈ Q.

Obviously, for x, y ∈ P (q) we have for any word v ∈ Σ∗ that

δ(qinitial, xv) = δ(δ(qinitial, x), v) = δ(q, v) = δ(δ(qinitial, y), v) = δ(qinitial, yv).

as the automaton is deterministic, i.e.,
x, y ∈ P (q)⇒ x ∼L y.

Hence, the partition {P (q) | q ∈ Q} is a refinement of Σ∗/ ∼L. So, if A is also minimal, then we even have

x, y ∈ P (q)⇔ x ∼L y.

Hence, for calculating the equvialence classes of a regular language L it suffices to construct a minimal DFA for L and
obtain from it the languages P (q).

• L1:

1

q0start

q1

q2

q3

a

b

b
a

a
b

a, b

P (q0) = L((ab+ ba)∗), P (q1) = L((ab+ ba)∗a), P (q2) = L((ab+ ba)∗b) and P (q3) = L((ab+ ba)∗(aa+ bb)).

• L2:

q0start q1

q2

a

b

a

b

a, b

P (q0) = L((aa)∗), P (q1) = L((aa)∗a)) and P (q2) = L((aa)∗(b+ ab)).

• L3:

q0start

q1 q2

q3 q4

a

b

a

b

b

a

b

a

a

b

It’s left to the reader to determine the equivalence classes from the DFA.

• L4:

Although L4 is context-sensitive, but neither context-free nor regular, the same idea as for the preceding languages
can be used, albeit one has to consider an automaton with a infinite number of states (the rejecting state isn’t
shown here):

start
a a

b

a

b b

c

bc b

bc

a

c

2

One easily checks that any two states are inequivalent. We obtain the equivalence classes:

{ak} for k ≥ 0, {akbl} for k > l ≥ 1, {ak+lbk+lcl | l ≥ 0} for k ≥ 1, and the complement of the union of these.

(b) For w ∈ Σ∗ let wR be its reverse, i.e., the word we obtain when reading w from right to left, e.g., (abb)R = bba. For
L ⊆ Σ∗ we then set LR := {wR | w ∈ L}.

It is well-known that L is regular if and only if LR is regular (exercise!).

Consider the definition of ∼L now:

x ∼L y iff ∀u ∈ Σ∗ux ∈ L⇔ uy ∈ L
iff ∀u ∈ Σ∗(ux)R ∈ LR ⇔ (uy)R ∈ LR

iff ∀u ∈ Σ∗xRuR ∈ LR ⇔ yRuR ∈ LR

iff ∀v ∈ Σ∗xRv ∈ LR ⇔ yRv ∈ LR

iff ∀v ∈ Σ∗xRv ∈ LR ⇔ yRv ∈ LR

iff xR ∼LR yR.

The crucial point here is that uR is any possible word as we consider all u ∈ Σ∗ which allows us to replace uR and u
by v.

This means that we can obtain the equivalence classes of ∼L from those of ∼LR by simply reversing the members of
the equivalence classes, and we already know how to obtain the equivalence classes of ∼LR (see (a)).

In both cases, L1 and L2, LR
i = Li, so we have already obtained the sought equivalence classes in (a).

It also immediately follows that ∼L is finite iff L is regular, as
∣∣∼L

∣∣ = |∼LR | and we know that (i) L is regular iff LR

is regular, and (ii) LR is regular iff |∼LR | is finite.

Finally, we show that in general ∼L and ∼L do not need to have the same number of classes: Let L ⊆ Σ∗ consist of
those words whose third letter is an a. It is easy to see that a minimal DFA for L consists of 4 + 1 states; four states
are required to count how many letters have already been read, while the fifth state is the rejecting state.

On the other hand, LR consists of all words whose third last letter is an a. A corresponding minimal DFA has to remem-
ber the last a seen within a window of three letters, leading to the equivalence classes [ε], [a], [aa], [aaa], [aab], [ab], [aba], [abb]:

εstart a aa aaa

aab

ab aba

abb

a

b

a

b

a

b

a

b

a

b
a

b

b
a

b

(c) • Obviously, x ≡L y implies both x ∼L y and x ∼L y.

But in general, ≡L has more equivalence classes than ∼L or ∼L. Consider for example L1: We have both ε ∼L1 ab
and ε ∼L1 ab, but ε 6≡L1 ab as aεb ∈ L1, but a(ab)b 6∈ L1. (See also exercise 3.2.)

• In the case of L2 one easily checks x ∼L2 y iff x ≡L2 y

• It remains to show that the defined multiplication on Σ∗/ ≡L is independent of the representative taken from
the equivalence class.

Choose x, y, x′, y′ ∈ Σ∗ s.t. x ≡L x
′ and y ≡L y

′. We have to show that xy ≡L x
′y′:

– x ≡L x
′ implies xy ≡L x

′y. (Set v = yv′ in the definition with v′ ∈ Σ∗).

– y ≡L y
′ implies x′y ≡L x

′y′. (Set u = u′x in the definition with u′ ∈ Σ∗.)

– As ≡L is a equivalence relation, it is transitive, and we obtain xy ≡L x
′y′.

3

Exercise 3.1

Let A = (Q,Σ, δ, qinitial, F) be some NFA. We assume that Q = {q1, q2, . . . , qn}. With every word w ∈ Σ∗ we then associate
the boolean matrix Mw ∈ {0, 1}n×n with

(Mw)i,j = 1 iff A can end up in state qj when reading the word w starting from state qi.

The set TA := {Mw | w ∈ Σ∗} is then called the transition monoid of A.

Example : Consider the following FA:

q1start q2

a

a, b

a

For this automaton, the matrices Ma, Mb, Maa and Mab are:

Ma =

(
0 1
1 1

)
, Mb =

(
0 0
0 1

)
, Maa =

(
1 1
1 1

)
and Mab =

(
0 1
0 1

)
.

(a) Assuming standard multiplication of boolean matrices, we have in our example that Maa = Ma ·Ma and Mab = Ma ·Mb.

• Show that Mu ·Mv = Muv holds for all u, v ∈ Σ∗ for any given NFA A.

• Check that TA w.r.t. this multiplication is indeed a monoid.

Reminder :
〈S, ·〉 is a monoid if (i) ∀a, b ∈ S : a·b ∈ S, (ii) ∀a, b, c ∈ S : a·(b·c) = (a·b)·c, and (iii) ∃1 ∈ S∀a ∈ S : a·1 = a = 1·a.

(b) Consider the following FA A:

q1start q2 q3

a, b

b a, b

• Draw the labeled graph with states the elements of TA and edges Mu
a−→Mua for a ∈ Σ, u ∈ Σ∗.

Note that TA has at most 29 elements; construct the graph on the fly starting from Mε. You should end up with
7 elements/states.

• How can you obtain from this graph a deterministic finite automaton accepting the same language as the original
nondeterministic automaton? How does this construction relate to the determinization procedure you have seen
in the lecture?

Solution:

(a) By definition of TA, for any M ∈ TA we find a u such that Mu = M . It therefore suffices to consider matrices
Mu,Mv,Mw with u, v, w ∈ Σ∗.

Notation: We also write δ for its extension to words (sometimes also explicitly denoted by δ̂). We then may write the
definition of Mw also as follows:

(Mw)i,j =

{
1 if qj ∈ δ(qi, w)
0 else

One then easily checks then that for any two words u, v ∈ Σ∗ we have Mu ·Mv = Muv (∗):

(Mu ·Mv)i,j = 1 iff ∃k ∈ [n] : (Mu)i,k = 1 ∧ (Mv)k,j = 1
iff ∃k ∈ [n] : δ(qi, u) 3 qk ∧ δ(qk, v) 3 qj
iff δ(qi, uv) 3 qj
iff (Muv)i,j = 1.

By (∗) we therefore have immediately that

Mu ·Mv = Muv ∈ TA and, in particular, Mε ·Mu = Mu = Mu ·Mε.

That is, TA is closed w.r.t. the multiplication of boolean matrices and Mε is a neutral element. Associativity also
follows easily, as matrix multiplication is associativ.

4

(b) • 1 0 0
0 1 0
0 0 1

start

1 0 0
0 0 1
0 0 0

 1 0 0
0 0 0
0 0 0



1 1 0
0 0 0
0 0 0

 1 0 1
0 0 0
0 0 0



1 1 1
0 0 0
0 0 0



1 1 0
0 0 1
0 0 0



a a
a

b
b

a

a

b

b
a

b

b

a

b

• In the determinization procedure we only remember which states have been reached starting from the initial state.
We therefore simply have to multiply (from the left) the states of above graph by the (row) vector encoding the
initial state(s) (this also generalizes to FAs with multiple initial states). In our example, this vector is (1, 0, 0),
yielding (after unifying states):

(
1 0 0

)
start

(
1 0 1

)

(
1 1 1

)

(
1 1 0

)

a

b

a

b

a

b

b

a

In order to determine the final states, we similarly have to multiply (from the right) with the (column) vector
encoding the final states (here: (0, 0, 1)>).

Exercise 3.2

In the preceding exercise, the transition monoid TA of a finite automaton A has been introduced. Recall also the syntactic
monoid SL := Σ∗/ ≡L of a language L ⊆ Σ∗ which was the set of equivalence classes w.r.t. the binary relation ≡L on Σ∗

defined by
x ≡L y iff ∀u, v ∈ Σ∗ : uxv ∈ L⇔ uyv ∈ L.

(a) Let A = (Q,Σ, δ, qi, F) be an NFA. Show that for x, y ∈ Σ∗ we have

Mx = My ⇒ x ≡L y.

(b) Let L be a regular language over Σ. Let AL be a minimal DFA with L = L(A). Show that for x, y ∈ Σ∗ it holds that

x ≡L y ⇒Mx = My.

Is it necessary for A to be deterministic or minimal?

(c) Calculate the size of the syntatic monoid of the following languages:

• L((aa)∗) for Σ = {a}.

• L((ab+ ba)∗) for Σ = {a, b}.

You can find some incomplete C++-code on the webpage for an easier calculation of the transition monoid.

5

(d) A famous result by Schützenberger says that a regular language L is representable by a star-free expression if and only
if its syntactic monoid SL is aperiodic. (A monoid 〈M, ·, 1〉 is aperiodic if for any a ∈ M there is a natural number n
such that an = an+1.)

• Show that syntactic monoid of a regular language L is isomorphic to the transition monoid of a minimal DFA for
L, i.e., show:

∀x, y, z ∈ Σ∗ : [x]L · [y]L = [z]L iff Mx ·My = Mz.

• Decide for the two languages considered in (c) whether they are representable by star-free expressions. Use a
computer.

Solution:

(a) Assume Mx = My. Let u, v ∈ Σ∗ be arbitrary words. Further, let vI be the row vector which encodes the initial states
of A. Similarly, let vF be the column vector encoding the final states. It then holds:

uxv ∈ L iff vIMuxvvF = 1
iff vIMuMxMvvF = 1
iff vIMuMyMvvF = 1 (as Mx = My)
iff vIMuyvvF = 1
iff uyv ∈ F.

So, Mx = My ⇒ x ≡L y indeed holds.

(b) Assume x ≡L y and Mx 6= My. We then find i, j such that (Mx)i,j 6= (My)i,j . W.l.o.g. we may assume that (Mx)i,j = 1
(otherwise swap x and y), i.e., δ(qi, x) = qj 6= δ(qi, y). As A is deterministic, δ(qi, y) is defined, hence, set qk := δ(qi, y).

By minimality of A, any state is reachable from the initial state, so there is a word u ∈ Σ∗ s.t. δ(qinitial, u) = qi.
We now have ux ∈ P (qi) and uy ∈ P (qk), and, again by minimality of A, we conclude ux 6∼L uy (see ex.2.3), and
subsequently ux 6≡L uy which contradicts our assumption.

(c) From (a) and (b) it follows:

Let A be a minimal DFA for L ⊆ Σ∗. Then x ≡L y iff Mx = My.

This means that the transition monoid of a minimal DFA for L has the same number of elements as Σ∗/ ≡L. It
therefore suffices to determine the size of TA in order to determine |Σ∗/ ≡L|:

• The minimal DFA for (aa)∗ is drawn below:

0start 1a

a

This yields the transition matrix

Ma =

(
0 1
1 0

)
.

One easily checks that M2
a = Id = Mε. So, the syntactic monoid consists of the equivalence classes [ε] = L((aa)∗)

and [a] = L(a(aa)∗).

• The minimal DFA for (ab+ ba)∗:

0start

1

2

3

a

b

b

a

a

b

a, b

This yields the matrices:

Ma =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 0 1

 and Mb =


0 0 1 0
1 0 0 0
0 0 0 1
0 0 0 1


Using the supplied code, one can check that the transition monoid consists of 15 elements. By (a) and (b) the
transition monoid of the minimal DFA has the same size as the syntactic monoid.

6

(d) • The multiplication on SL was defined by
[x]L · [y]L := [xy]L.

In exercise 2.3 it was shown that this multiplication is well-defined. So

[x]L · [y]L = [z]L iff xy ≡L z
iff Mxy = Mz (cf. (a) and (b))
iff Mx ·My = Mz

Therefore we have
[x]nL = [x]n+1

L iff [xn]L = [xn+1]L
iff Mxn = Mxn+1

iff (Mx)n = (Mx)n+1.

It therefore suffices to check that the transition monoid of a minimal DFA for L is aperiodic.

• For (aa)∗ we have already seen that the transition monoid of the minimal DFA is periodic as M2k
a = Mε,M

2k+1
a =

Ma for all k ∈ N 0. As the syntactic monoid is isomorphic to this transition monoid, (aa)∗ is not representable by
a star-free expression.

For (ab + ba)∗) one easily extends the supplied code to also check that the transition, and therefore syntactic
monoid are aperiodic. Thus a star-free expression exists for L((ab+ ba)∗).

7

