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Test Exam “Automata and Formal Languages”

• This problem set serves as a preparation for the upcoming exam. It will not be corrected,
but solutions will be discussed on Monday, February 2.

• Each problem is supposed to be solvable within 15-20 minutes time.

• You may use all your notes and other written material to solve the problems, since the exam
will be open book.

• For MSO, S1S, and LTL, you may use all abbreviations introduced in class.

• Generally, final states are drawn with double circles, while initial states are marked by an
incoming arrow.

• This problem set together with problem set 12, gives a good overview of possible exam
exercises. It is not an exhaustive list of all possible kinds of exercises.

Exercise 1 (4+2 points)

Let L1, L2 ⊆ Σ∗ be languages.

(a) Suppose L1 and L2 are accepted by DFAsA1 = (Q1,Σ, δ1, q01, F1) andA2 = (Q2,Σ, δ2, q02, F2),
respectively. Construct a DFA accepting L1 \ L2.

(b) Prove: If L1 is regular, L2 is not regular, and L1 ∩ L2 = ∅, then L1 ∪ L2 is not regular.

Exercise 2 (3+3 points)

Let Σ = {0, 1}. For w ∈ Σ∗, where w = a0a1a2 . . . ak, we define bin(w) := Σki=0ai2
i. We define

R ⊆ Σ∗ × Σ∗ as follows:

R = {(w,w′) | bin(w) > bin(w′), |w| = |w′|}

(a) Show that R is a regular relation by finding an accepting transducer.

(b) Let L = ({0, 1}{0, 1})∗ be a language. Construct an automaton accepting postR(L).

Exercise 3 (4+4 points)

Consider the following NFA, A, over Σ = {0, 1}.
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(a) Minimize A with respect to bisimilarity. Justify your solution.

(b) Construct a minimal DFA accepting L(A) ∩ {010, 011, 110, 111}.



Exercise 4 (3+3 points)

Consider the following three automata, A1, A2, and A3 over the alphabets Σ1 = {p1, v1, e1, l1},
Σ2 = {p1, v1, p2, v2}, and Σ3 = {p2, v2, e2, l2}, respectively.
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(a) Construct the automaton B with B = A1||A2||A3.

(b) Find an MSO(Σ1 ∪ Σ2 ∪ Σ3) formula, ϕ, such that L(ϕ) = L(B).

Exercise 5 (3+3 points)

Consider the following 2DFA, A, over {a, b} with states {s0, s1, s2}, all of which are final, and with
initial state s0. The transition table is given as follows:

a b
s0 (s0, R) (s1, R)
s1 (s1, R) (s2, L)
s2 (s0, R) (s2, L)

(a) Give a regular expression, r, such that L(r) = L(A).

(b) Give a formula, ψ of MSO({a, b}) such that L(ψ) = L(A).

Exercise 6 (3+3+2 points)

Let Σ = {a, b} and let L1, L2 ⊆ Σω be an alphabet and two languages, such that

• L1 = {α | a occurs infinitely often in α},

• L2 = {α | b occurs infinitely often in α}, and

• L = L1 ∩ L2

(a) Find a Büchi automaton accepting L.

(b) Find a Muller automaton accepting L.

(c) Find an S1S formula, ψ(Aa, Ab), such that Lψ = L{0,1}.



Exercise 7 (2+4 points)

Let Σ be an alphabet Let A = (S,→, Sin) be an automaton over Σ and let G ⊆ S be a set of
states. A universal Co-Büchi automaton (A,G) accepts an infinite word, α ∈ Σω, if for all runs
ρ of A on α holds that inf(ρ) ∩ F = ∅. The set of all words accepted by a universal Co-Büchi
automaton (A,G) is written Luc(A,G).

(a) Let Σ = {a, b} and assume

A′ = ({q0, q1}, {(q0, a, q0), (q0, b, q0), (q0, b, q1), (q1, b, q1)}, {q0})
G′ = {q1}

Give an ω-regular expression describing Luc(A′,G′).

(b) Prove: L ⊆ Σω is ω-regular if and only if it is accepted by a universal Co-Büchi automaton.

Exercise 8 (4+2+2+2 points)

Consider the timed automata A1 and A2 given below. They operate on the set {x1, x2} of clocks
and the shared integer variable v. Ai has actions {aski, enteri} and locations {reqi,waiti, criti} for
i = 1, 2. Guards are given on top of edges, reset and variable updates below edges. Initially, v has
value 1.
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x1 < 1
wait1 crit1

v := 1, x1 := 0

x1 > 1 ∧ v = 1
ask1 enter1

A1
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x2 < 1
wait2

x2 > 1 ∧ v = 2
crit2

v := 2, x2 := 0

ask2 enter2

A2

(a) Construct A1||A2.

(b) Find a timed trace of the system A1||A2 that ends with an action enter2 and no more action
is possible after that.

(c) Give a sequence of transitions in A1||A2 starting from the initial state, such that the actions
ask1, ask2, and enter2 occur in that order.

(d) Argue that no state of the form (crit1, crit2, . . .) is reachable in A1||A2.



Solutions

Exercise 1

Part (a)

Use the product construction, where final states contain F1 states but not F2 states. Obviously,
the product construction preserves determinism. Formally, let A = (Q1 ×Q2,Σ, δ, (q01, q02), F1 ×
(Q2 \ F2)), where δ(q1, q2) = (δ1(q1), δ2(q2)). Now assume w = a1a2 . . . ak is accepted by A. This
is the case iff there exists a (unique) run

(q01, q02)
a1−→(q1, q′1)

a2−→ . . .
ak−→(qk, q′k)

of A on w, where qk ∈ F1 and q′k 6∈ F2. This is in turn equivalent to the existence of two runs

q01
a1−→q1

a2−→ . . .
ak−→qk

q02
a1−→q′1

a2−→ . . .
ak−→q′k

of w on A1 and A2. Since A1 and A2 are both deterministic, this is equivalent to w ∈ L1 and
w 6∈ L2 proving the correctness of the construction.

Part (b)

Suppose L1 ∪ L2 is regular. Then (L1 ∪ L2) \ L1 is regular because of (a). Because of L1 and L2

being disjoint this means that (L1 ∪ L2) \ L1 = L2 is regular. Contradiction.

Exercise 2

Part (a)

An accepting transducer T :

0/0
1/1

1/0

Σ/Σ

Part (b)

To construct postR(L), we construct the product of T with the following automaton accepting L:

0, 1

0, 1

As a result, we obtain:

0, 1

0, 1

0, 1

0, 1

0

0



Exercise 3

Part (a)

Use the partition algorithm:

• the final state gets into a partition of its own

• initial state gets into a partition of its own, since it is the only non-final state with only a 1
to other non-final states.

• finally, the second and third columns can be distinguished, because the third is connected
to final states and the second is not.

• We obtain:

1 0, 1 0

Part (b)

Observe that L(A) is a bounded language, as well as the one explicitly given. We can thus apply
the layer-wise, combined minimization and product construction for bounded languages. The
automaton accepting {010, 011, 110, 111} and the final result are as follows:

1 0

0, 1 0, 11

1

Exercise 4

Part (a)

p1

e1 l1

v1

p2

e2 l2

v2

Part (b)

The second-order variable X contains the positions divisible by 4:

∃X. ∀x.(x ∈ X ↔ (zero(x) ∨ ∃y ∈ X.x = y + 4))
∧ ∀x0 ∈ X.∃x1.∃x2.∃x3.succ(x0, x1) ∧ succ(x1, x2) ∧ succ(x2, x3)∧

( (Qp1(x0) ∧Qe1(x1) ∧Ql1(x2) ∧Qv1(x3)) ∨
(Qp2(x0) ∧Qe2(x1) ∧Ql2(x2) ∧Qv2(x3)) )

Exercise 5

(a) The accepted words are those without consecutive 1’s. A regular expression for that language
is (ε+ 1)(0 + 01)∗

(b) ∀x.∀y.(Q1(x) ∧ succ(x, y)) → (¬Q1(y))



Exercise 6

(a)

a, b a, b

a, b
a

b

(b) The following Muller automaton is a solution with acceptance condition ({q0, q1}):
b

a

b
a

q0 q1

(c) ∀x.∃y.∃z.y > x ∧ z > x ∧ y ∈ Aa ∧ z ∈ Ab ∧ Enc(Aa, Ab), where Enc is the formula in the
script guaranteeing a correct encoding of a as [ 10 ] and of b as [ 01 ]

Exercise 7

(a) The given universal Co-Büchi automaton accepts the language with infinitely many a’s:
(b∗a)ω.

(b) The claim is proven by the following chain of equivalences:

L is an ω-regular language

⇔ L̄ = Σω \ L is an ω-regular language, because these are closed under complement.

⇔ there exists a non-deterministic Büchi automaton, (A,G) such that L(A,G) = L̄

⇔ Luc(A,G) = L

⇔ L is accepted by a universal Co-Büchi automaton.

In order to understand the penultimate equivalence, observe the following: A word α ∈ Σω

is accepted by the Büchi automaton (A,G) if and only if there exists a run ρ such that
inf(ρ)∩G 6= ∅. This means that α is not accepted by (A,G) if and only if for all runs ρ holds
that inf(ρ)∩G = ∅. And this means that α is accepted by the universal Co-Büchi automaton
(A,G).

Exercise 8

(a) see next page

(b) (.5, ask2)(1.6, enter2)

(c)

(req1, req2, v = 1, 0, 0) ask1−→ (wait1, req2, 1, 0, 0)
ask2−→ (wait1,wait2, 2, 0, 0)
1.1−→ (wait1,wait2, 2, 1.1, 1.1)

enter2−→ (wait1, crit2, 2, 1.1, 1.1)

(d) If one automaton moves to the wait location, it must do so within 1 time unit. Now it has to
wait for more than 1 time unit in order to proceed. If the other automaton wants to move
at all, it must do so before that one unit has elapsed. If it does, it effectively prevents the
first automaton to move to the critical location because of the constraint on v. If it does
not, then it won’t be able to do anything at all. In any case, not both automata can be at
the critical location at the same time.



x2 > 1

〈wait1,wait2, 2〉

〈wait1.crit2, 2〉

〈wait1,wait2, 1〉 〈crit1.req2, 1〉

x1 > 1 x2 > 1

x1 > 1

〈req1, req2, 1〉

〈wait1, req2, 1〉

〈wait1.crit2, 1〉

〈crit1, crit2, 1〉

〈req1.crit2, 2〉

x2 > 1

〈req1, req2, 2〉

〈req1,wait2, 2〉

〈crit1, crit2, 2〉

〈crit1.wait2, 2〉

x1 < 1

〈crit1.wait2, 1〉

x1 < 1

x1 > 1

x2 < 1
x1 < 1 x2 < 1

x2 < 1

x1 := 0 x2 := 0
x2 := 0 x1 := 0

x1 := 0 x2 := 0

x1 < 1 ; x1 := 0 x2 < 1 ; x2 := 0

Action annotations are left our for clarity.


