Exercises"Automata and Formal Languages"

Exercise 12.1

Let $A P=\{p, q\}$ and let $\Sigma=2^{A P}$. Give S1S and LTL formulas defining the following languages:

- $\{p, q\} \emptyset \Sigma^{\omega}$
- We use free second-order variables A_{1}, A_{2}, A_{3}, and A_{4} to denote the positions, where each of the four letters, $\emptyset,\{p\},\{q\}$, and $\{p, q\}$ of Σ occurs. As in the construction of a formula from a Büchi automaton, we need the formula expressing that there is a unique letter at each position:

$$
\psi=\forall x . \bigvee_{1 \leq i \leq 4}\left(x \in A_{i}\right) \wedge \bigwedge_{1 \leq i \leq 4}\left(x \in A_{i} \Rightarrow \bigwedge_{j \neq i} x \notin A_{j}\right)
$$

. Then we have as a solution:

$$
\psi \wedge 0 \in A_{4} \wedge \operatorname{succ}(0) \in A_{0}
$$

$-p \wedge q \wedge \mathrm{X}(\neg p \wedge \neg q)$

- $\Sigma^{*}\{q\}^{\omega}$
$-\psi \wedge \exists x . \forall y . y \geq x \Rightarrow y \in A_{3}$
$-\mathrm{FG}(q \wedge \neg p)$
- $\Sigma^{*}\{p\} \Sigma^{*}\{q\} \Sigma^{\omega}$
$-\psi \wedge \exists x . \exists y \cdot x<y \wedge x \in A_{2} \wedge y \in A_{3}$
$-\mathrm{F}(p \wedge \neg q \wedge \mathrm{XF}(q \wedge \neg p))$
- $\{p\}^{*}\{q\}^{*} \emptyset^{*} \Sigma^{\omega}$
$-\psi$, because $\{p\}^{*}\{q\}^{*} \emptyset^{*} \Sigma^{\omega}=\Sigma^{\omega}$.
- true

Exercise 12.2

Let $A P=\{p, q\}$. Find Büchi automata accepting the languages defined by the following LTL formulas:

- XG $\neg p$

where $\Sigma=2^{A P}$.
- $(\mathrm{GF} p) \Rightarrow(\mathrm{F} q)$. One should read the formula as finitely many p 's or eventually q :

- $p \wedge \neg \mathrm{XF} p$

Exercise 12.3

Consider an autonomous elevator with the following behavior:

- The elevator operates between two floors, ground floor and first floor.
- Initially, the elevator is at the ground floor with its door open.
- Upon arrival at a certain floor, its door automatically opens. It takes at least 2 seconds from its arrival before the door opens but the door must definitely open within 5 seconds.
- Whenever the door is open, passengers can enter. They enter one by one, and we assume that the elevator has a sufficient capacity to accommodate any number of passengers.
- The door can close only 4 seconds after the last passenger entered.
- After the door closes, the elevator waits at least 2 seconds and then travels up or down to the other floor.
Design a timed automaton model of the elevator. Use the actions $u p$ and down to model the movement of the elevator, open and close to describe the door operation and the action enter which means that a passenger is entering the elevator. Provide two timed traces starting from the initial state.
Solution: Apart from the five actions, we use only one clock, x. Location invariants are shown within states, clock resets are written explicitly as an assignment, $x:=0$.

Two timed traces:
$(1$, enter $)(5$, close $)(6$, up $)(11$, open $)(11$, enter $) \ldots$
(0.2, enter) $(0.3$, enter $)(0.3$, enter $)(100$, close $)(102.2$, up $) \ldots$

