Exam "Automata and Formal Languages"

Exercise 1

$(3+4+3+4$ points $)$
Let $\Sigma=\{a, b\}$ be an alphabet and let $L_{1}, L_{2} \subseteq \Sigma^{*}$ be languages. We define the symmetric difference, $L_{1} \ominus L_{2}$, as follows:

$$
L_{1} \ominus L_{2}=\left\{w \in \Sigma^{*} \mid w \text { is in } L_{1} \text { or in } L_{2} \text { but not in both }\right\}
$$

(a) Find two DFAs accepting $\mathcal{L}\left(a^{*} b\right)$ and $\mathcal{L}\left(a b^{*}\right)$, respectively. Make sure your DFAs are complete.

(b) Construct a DFA accepting $\mathcal{L}\left(a^{*} b\right) \ominus \mathcal{L}\left(a b^{*}\right)$.

- The systematic way to solve this exercise is to construct a product automaton with final states $F_{1} \times\left(Q_{2} \backslash F_{2}\right) \cup\left(Q_{1} \backslash F_{1}\right) \times F_{2}$, where Q_{i} and F_{i} are the states and final states of the automata of (a). Since this construction effectively uses a complementation, it is crucial that the input automata are complete.

(c) Find a regular expression r such that $\mathcal{L}(r)=\mathcal{L}\left(a^{*} b\right) \ominus \mathcal{L}\left(a b^{*}\right)$.
- This can be read off the automaton of (b) - or directly found by using the definition of symmetric difference: $a+b+a a a^{*} b+a b b b^{*}$
(d) Find an $\operatorname{MSO}(\Sigma)$ formula φ such that $L(\varphi)=\mathcal{L}\left(a^{*} b\right) \ominus \mathcal{L}\left(a b^{*}\right)$. Hint: You can solve (d) without having solved (a), (b), and (c).
- It is easiest, if we write formulas ψ_{1} and ψ_{2} defining $\mathcal{L}\left(a^{*} b\right)$ and $\mathcal{L}\left(a b^{*}\right)$ and then take the xor of these two: $\left(\psi_{1} \wedge \neg \psi_{2}\right) \vee\left(\neg \psi_{1} \wedge \psi_{2}\right)$, where

$$
\begin{aligned}
\psi_{1} & =\exists x \cdot l \operatorname{last}(x) \wedge Q_{b}(x) \wedge \forall y \cdot y<x \rightarrow Q_{a}(x) \\
\psi_{2} & =\exists x \cdot \operatorname{zero}(x) \wedge Q_{a}(x) \wedge \forall y \cdot x<y \rightarrow Q_{b}(x)
\end{aligned}
$$

Exercise 2

Let $\Sigma=2^{\{p\}}$ and consider the following Büchi automaton $(\mathcal{A}, \mathcal{G})$.

Give an LTL formula ψ such that $L_{\psi}=\mathcal{L}(\mathcal{A}, \mathcal{G})$.

- $\neg p \mathrm{U}(p \wedge \mathrm{X}(\neg p \mathrm{U}(p \wedge \mathrm{XG} \neg p)))$

Exercise 3

Let Σ be an alphabet. For $\alpha \in \Sigma^{\omega}$ and $\sigma \in \Sigma$ we write $\operatorname{fin}(\sigma, \alpha)$ if σ occurs finitely often in α. Let $L(\Sigma) \subseteq \Sigma^{\omega}$ be the language $L(\Sigma)=\left\{\alpha \in \Sigma^{\omega} \mid \bigvee_{\sigma \in \Sigma} \operatorname{fin}(\sigma, \alpha)\right\}$
(a) Give a deterministic Muller automaton accepting $L(\{a, b\})$.

- A solution is the Muller automaton $\left(\mathcal{A},\left(\left\{q_{0}\right\},\left\{q_{1}\right\}\right)\right)$, where \mathcal{A} is as follows:

(b) Give an S1S formula $\psi\left(X_{a}, X_{b}, X_{c}\right)$ such that $L_{\psi}=L(\{a, b, c\})_{\{0,1\}}$.
- $\operatorname{Enc}\left(X_{a}, X_{b}, X_{c}\right) \wedge\left(\begin{array}{ll} & \exists x . \forall y \cdot x<y \rightarrow x \notin X_{a} \\ \vee & \exists x . \forall y \cdot x<y \rightarrow x \notin X_{b} \\ \vee & \exists x . \forall y \cdot x<y \rightarrow x \notin X_{c}\end{array}\right)$
(c) Give a deterministic Muller automaton accepting $L(\{a, b, c\})$ and argue its correctness.
- A solution is the Muller automaton $\left(\mathcal{A},\left(\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\}\right)\right)$, where \mathcal{A} is given below. As for why it works, observe that $\mathcal{L}(\{a, b, c\})$ is the set of all words that will not see all of a, b, and c infinitely often. The Muller condition ensures that a word is accepted if and only if it eventually only contains at most two of the three letters. Before that point, in any state each of the three letters can be taken.

Exercise 4

A strict Büchi automaton is syntactically like a Büchi automaton $(\mathcal{A}, \mathcal{G})$. It accepts a word $\alpha \in \Sigma^{\omega}$ if there exists a run ρ of \mathcal{A} on α such that $\inf (\rho)=\mathcal{G}$. Show that the language $\left\{a^{\omega}, b^{\omega}\right\} \subset\{a, b\}^{\omega}$ is not accepted by any strict Büchi automaton.

- Suppose there exists a strict Büchi automaton accepting $\left\{a^{\omega}, b^{\omega}\right\}$. Then there are runs ρ and ρ^{\prime} accepting a^{ω} and b^{ω}, respectively. Let $q \in \mathcal{G}$ be arbitrary (note that $\mathcal{G} \neq \emptyset$). Then ρ visits q infinitely often and there must be a path from q to itself reading only a 's and visiting all states in \mathcal{G}. Since the same argument holds for q, ρ^{\prime}, and b 's, the automaton will also accept words containing both a 's and b 's. Contradiction.

Exercise 5

(4+4 points)
(a) Consider the timed automata A_{1}, A_{2}, which operate on the set $\left\{x_{1}, x_{2}\right\}$ of clocks and the shared integer variable $v . A_{i}$ has actions $\left\{\right.$ ask $_{i}$, enter $\left._{i}\right\}$ and locations $\left\{\right.$ req $_{i}$, wait $_{i}$, crit $\left._{i}\right\}$ for $i=1,2$. Guards are given on top of edges, reset and variable updates below edges. Initially, v has value 1. Moreover, $k_{i} \in \mathbb{R}^{+}$. Determine one value for each k_{i} for $i \in\{1,2,3,4\}$ such that a state of the form $\left(\right.$ crit $_{1}$, crit $\left._{2}, v=?, x_{1}=?, x_{2}=?\right)$ is reachable in $A_{1} \| A_{2}$. Give a witnessing sequence of transitions.

- Choose $k_{1}=k_{2}=k_{4}=1$ and $k_{3}=2$ and the following sequence of transitions.

$$
\begin{aligned}
& \left(r e q_{1}, r e q_{2}, 1,0,0\right) \xrightarrow[{\xrightarrow{\text { ask }}}]{\xrightarrow{\text { ask }}} \quad\left(\text { wait }_{1}, \text { req }_{2}, 1,0,0\right), ~\left(\text { wait }_{1}, r e q_{2}, 1,1.1,1.1\right) \\
& \xrightarrow{\text { enter }_{1}}\left(\text { crit }_{1}, \text { req }_{2}, 1,1.1,1.1\right) \\
& \xrightarrow{\text { ask }_{2}}\left(\text { crit }_{1}, \text { wait }_{2}, 2,1.1,0\right) \\
& \xrightarrow{1.1} \quad\left(\text { crit }_{1}, \text { wait }_{2}, 2,2.2,1.1\right) \\
& \xrightarrow{\text { enter }}{ }^{2}\left(\text { crit }_{1}, \text { crit }_{2}, 2,2.2,1.1\right)
\end{aligned}
$$

(b) Now consider the timed automata A_{3} and A_{4} below. They are similar to A_{1} and A_{2} with $k_{i}=2$, but have $>$ replaced with \geq in the guard on enter r_{1} and $<$ replaced with \leq in the guard on $a s k_{2}$. Give a timed trace of $A_{3} \| A_{4}$ such that both action enter r_{1} and action enter ${ }_{2}$ occur.

- $\left(0, a s k_{1}\right)\left(2\right.$, enter $\left._{1}\right)\left(2, a s k_{2}\right)\left(4.1\right.$, enter $\left._{2}\right)$

