Exam "Automata and Formal Languages"

Exercise 1

(3+4+3+4 points)

Let $\Sigma = \{a, b\}$ be an alphabet and let $L_1, L_2 \subseteq \Sigma^*$ be languages. We define the symmetric difference, $L_1 \ominus L_2$, as follows:

 $L_1 \ominus L_2 = \{ w \in \Sigma^* \mid w \text{ is in } L_1 \text{ or in } L_2 \text{ but not in both} \}$

- (a) Find two DFAs accepting $\mathcal{L}(a^*b)$ and $\mathcal{L}(ab^*)$, respectively. Make sure your DFAs are complete.
- (b) Construct a DFA accepting $\mathcal{L}(a^*b) \ominus \mathcal{L}(ab^*)$.
- (c) Find a regular expression r such that $\mathcal{L}(r) = \mathcal{L}(a^*b) \ominus \mathcal{L}(ab^*)$.
- (d) Find an MSO(Σ) formula φ such that $L(\varphi) = \mathcal{L}(a^*b) \ominus \mathcal{L}(ab^*)$. *Hint:* You can solve (d) without having solved (a), (b), and (c).

Exercise 2

Let $\Sigma = 2^{\{p\}}$ and consider the following Büchi automaton $(\mathcal{A}, \mathcal{G})$.

 $\rightarrow \begin{array}{c} \checkmark & \{p\} & \checkmark & \{p\} \\ \hline \end{array}$

Give an LTL formula ψ such that $L_{\psi} = \mathcal{L}(\mathcal{A}, \mathcal{G})$.

Exercise 3

Let Σ be an alphabet. For $\alpha \in \Sigma^{\omega}$ and $\sigma \in \Sigma$ we write $fin(\sigma, \alpha)$ if σ occurs finitely often in α . Let $L(\Sigma) \subseteq \Sigma^{\omega}$ be the language $L(\Sigma) = \{\alpha \in \Sigma^{\omega} \mid \bigvee_{\sigma \in \Sigma} fin(\sigma, \alpha)\}$

- (a) Give a deterministic Muller automaton accepting $L(\{a, b\})$.
- (b) Give an S1S formula $\psi(X_a, X_b, X_c)$ such that $L_{\psi} = L(\{a, b, c\})_{\{0,1\}}$.
- (c) Give a deterministic Muller automaton accepting $L(\{a, b, c\})$ and argue its correctness.

Exercise 4

A strict Büchi automaton is syntactically like a Büchi automaton $(\mathcal{A}, \mathcal{G})$. It accepts a word $\alpha \in \Sigma^{\omega}$ if there exists a run ρ of \mathcal{A} on α such that $\inf(\rho) = \mathcal{G}$. Show that the language $\{a^{\omega}, b^{\omega}\} \subset \{a, b\}^{\omega}$ is not accepted by any strict Büchi automaton.

— Turn page —

(5 points)

(3+3+3 points)

(4 points)

(4+4 points)

Exercise 5

(a) Consider the timed automata A_1 , A_2 , which operate on the set $\{x_1, x_2\}$ of clocks and the shared integer variable v. A_i has actions $\{ask_i, enter_i\}$ and locations $\{req_i, wait_i, crit_i\}$ for i = 1, 2. Guards are given on top of edges, reset and variable updates below edges. Initially, v has value 1. Moreover, $k_i \in \mathbb{R}^+$. Determine one value for each k_i for $i \in \{1, 2, 3, 4\}$ such that a state of the form $(crit_1, crit_2, v =?, x_1 =?, x_2 =?)$ is reachable in $A_1 || A_2$. Give a witnessing sequence of transitions.

(b) Now consider the timed automata A_3 and A_4 below. They are similar to A_1 and A_2 with $k_i = 2$, but have > replaced with \geq in the guard on *enter*₁ and < replaced with \leq in the guard on *ask*₂. Give a timed trace of $A_3 || A_4$ such that both action *enter*₁ and action *enter*₂ occur.

$$\begin{array}{c} & ask_1 & enter_1 \\ \hline x_1 < 2 & wait_1 & x_1 \ge 2 \land v = 1 \\ \hline v := 1, x_1 := 0 & wait_1 & x_1 \ge 2 \land v = 1 \\ \hline & & & \\ \hline \end{array} \begin{array}{c} & ask_2 & enter_2 \\ \hline & & & \\ \hline \end{array} \end{array}$$