Exam "Automata and Formal Languages"

Exercise 1

Let $\Sigma=\{a, b\}$ be an alphabet and let $L_{1}, L_{2} \subseteq \Sigma^{*}$ be languages. We define the symmetric difference, $L_{1} \ominus L_{2}$, as follows:

$$
L_{1} \ominus L_{2}=\left\{w \in \Sigma^{*} \mid w \text { is in } L_{1} \text { or in } L_{2} \text { but not in both }\right\}
$$

(a) Find two DFAs accepting $\mathcal{L}\left(a^{*} b\right)$ and $\mathcal{L}\left(a b^{*}\right)$, respectively. Make sure your DFAs are complete.
(b) Construct a DFA accepting $\mathcal{L}\left(a^{*} b\right) \ominus \mathcal{L}\left(a b^{*}\right)$.
(c) Find a regular expression r such that $\mathcal{L}(r)=\mathcal{L}\left(a^{*} b\right) \ominus \mathcal{L}\left(a b^{*}\right)$.
(d) Find an $\operatorname{MSO}(\Sigma)$ formula φ such that $L(\varphi)=\mathcal{L}\left(a^{*} b\right) \ominus \mathcal{L}\left(a b^{*}\right)$. Hint: You can solve (d) without having solved (a), (b), and (c).

Exercise 2

Let $\Sigma=2^{\{p\}}$ and consider the following Büchi automaton $(\mathcal{A}, \mathcal{G})$.

Give an LTL formula ψ such that $L_{\psi}=\mathcal{L}(\mathcal{A}, \mathcal{G})$.

Exercise 3

Let Σ be an alphabet. For $\alpha \in \Sigma^{\omega}$ and $\sigma \in \Sigma$ we write fin (σ, α) if σ occurs finitely often in α. Let $L(\Sigma) \subseteq \Sigma^{\omega}$ be the language $L(\Sigma)=\left\{\alpha \in \Sigma^{\omega} \mid \bigvee_{\sigma \in \Sigma} \operatorname{fin}(\sigma, \alpha)\right\}$
(a) Give a deterministic Muller automaton accepting $L(\{a, b\})$.
(b) Give an S1S formula $\psi\left(X_{a}, X_{b}, X_{c}\right)$ such that $L_{\psi}=L(\{a, b, c\})_{\{0,1\}}$.
(c) Give a deterministic Muller automaton accepting $L(\{a, b, c\})$ and argue its correctness.

Exercise 4

A strict Büchi automaton is syntactically like a Büchi automaton $(\mathcal{A}, \mathcal{G})$. It accepts a word $\alpha \in \Sigma^{\omega}$ if there exists a run ρ of \mathcal{A} on α such that $\inf (\rho)=\mathcal{G}$. Show that the language $\left\{a^{\omega}, b^{\omega}\right\} \subset\{a, b\}^{\omega}$ is not accepted by any strict Büchi automaton.

Exercise 5

(a) Consider the timed automata A_{1}, A_{2}, which operate on the set $\left\{x_{1}, x_{2}\right\}$ of clocks and the shared integer variable $v . A_{i}$ has actions $\left\{a^{\prime} k_{i}\right.$, enter $\left._{i}\right\}$ and locations $\left\{\right.$ req $_{i}$, wait $_{i}$, crit $\left._{i}\right\}$ for $i=1,2$. Guards are given on top of edges, reset and variable updates below edges. Initially, v has value 1 . Moreover, $k_{i} \in \mathbb{R}^{+}$. Determine one value for each k_{i} for $i \in\{1,2,3,4\}$ such that a state of the form $\left(\right.$ crit $_{1}$, crit $\left._{2}, v=?, x_{1}=?, x_{2}=?\right)$ is reachable in $A_{1} \| A_{2}$. Give a witnessing sequence of transitions.

(b) Now consider the timed automata A_{3} and A_{4} below. They are similar to A_{1} and A_{2} with $k_{i}=2$, but have $>$ replaced with \geq in the guard on enter r_{1} and $<$ replaced with \leq in the guard on $a s k_{2}$. Give a timed trace of $A_{3} \| A_{4}$ such that both action enter r_{1} and action enter ${ }_{2}$ occur.

