Test Exam "Automata and Formal Languages"

- This problem set serves as a preparation for the upcoming exam. It will not be corrected, but solutions will be discussed on Monday, February 2.
- Each problem is supposed to be solvable within 15-20 minutes time.
- You may use all your notes and other written material to solve the problems, since the exam will be *open book*.
- For MSO, S1S, and LTL, you may use all abbreviations introduced in class.
- Generally, final states are drawn with double circles, while initial states are marked by an incoming arrow.
- This problem set together with problem set 12, gives a good overview of possible exam exercises. It is not an exhaustive list of all possible kinds of exercises.

Exercise 1

Let $L_1, L_2 \subseteq \Sigma^*$ be languages.

- (a) Suppose L_1 and L_2 are accepted by DFAs $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$, respectively. Construct a DFA accepting $L_1 \setminus L_2$.
- (b) Prove: If L_1 is regular, L_2 is not regular, and $L_1 \cap L_2 = \emptyset$, then $L_1 \cup L_2$ is not regular.

Exercise 2

Let $\Sigma = \{0, 1\}$. For $w \in \Sigma^*$, where $w = a_0 a_1 a_2 \dots a_k$, we define $bin(w) := \sum_{i=0}^k a_i 2^i$. We define $R \subseteq \Sigma^* \times \Sigma^*$ as follows:

$$R = \{(w, w') \mid bin(w) > bin(w'), \ |w| = |w'|\}$$

- (a) Show that R is a regular relation by finding an accepting transducer.
- (b) Let $L = (\{0, 1\}\{0, 1\})^*$ be a language. Construct an automaton accepting $post_R(L)$.

Exercise 3

Consider the following NFA, A, over $\Sigma = \{0, 1\}$.

- (a) Minimize A with respect to bisimilarity. Justify your solution.
- (b) Construct a minimal DFA accepting $\mathcal{L}(A) \cap \{010, 011, 110, 111\}$.

(4+4 points)

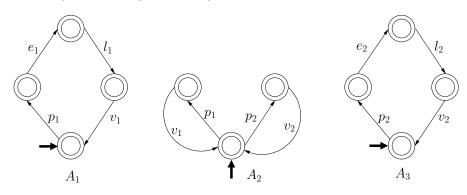
(4+2 points)

(3+3 points)

(3+3 points)

Exercise 4

Consider the following three automata, A_1 , A_2 , and A_3 over the alphabets $\Sigma_1 = \{p_1, v_1, e_1, l_1\}$, $\Sigma_2 = \{p_1, v_1, p_2, v_2\}$, and $\Sigma_3 = \{p_2, v_2, e_2, l_2\}$, respectively.



- (a) Construct the automaton B with $B = A_1 ||A_2||A_3$.
- (b) Find an MSO($\Sigma_1 \cup \Sigma_2 \cup \Sigma_3$) formula, φ , such that $L(\varphi) = \mathcal{L}(B)$.

Exercise 5

(3+3 points)

Consider the following 2DFA, A, over $\{a, b\}$ with states $\{s_0, s_1, s_2\}$, all of which are final, and with initial state s_0 . The transition table is given as follows:

	a	b
s_0	(s_0, R)	(s_1, R)
s_1	(s_1, R)	(s_2, L)
s_2	(s_0, R)	(s_2, L)

- (a) Give a regular expression, r, such that $\mathcal{L}(r) = \mathcal{L}(A)$.
- (b) Give a formula, ψ of MSO($\{a, b\}$) such that $L(\psi) = \mathcal{L}(A)$.

Exercise 6

(3+3+2 points)

Let $\Sigma = \{a, b\}$ and let $L_1, L_2 \subseteq \Sigma^{\omega}$ be an alphabet and two languages, such that

- $L_1 = \{ \alpha \mid a \text{ occurs infinitely often in } \alpha \},$
- $L_2 = \{ \alpha \mid b \text{ occurs infinitely often in } \alpha \}, \text{ and }$
- $L = L_1 \cap L_2$
- (a) Find a Büchi automaton accepting L.
- (b) Find a Muller automaton accepting L.
- (c) Find an S1S formula, $\psi(A_a, A_b)$, such that $L_{\psi} = L_{\{0,1\}}$.

(2+4 points)

Exercise 7

Let Σ be an alphabet Let $\mathcal{A} = (S, \to, S_{in})$ be an automaton over Σ and let $\mathcal{G} \subseteq S$ be a set of states. A universal Co-Büchi automaton $(\mathcal{A}, \mathcal{G})$ accepts an infinite word, $\alpha \in \Sigma^{\omega}$, if for all runs ρ of \mathcal{A} on α holds that $\inf(\rho) \cap F = \emptyset$. The set of all words accepted by a universal Co-Büchi automaton $(\mathcal{A}, \mathcal{G})$ is written $L^{uc}(\mathcal{A}, \mathcal{G})$.

(a) Let $\Sigma = \{a, b\}$ and assume

$$\begin{aligned} \mathcal{A}' &= (\{q_0, q_1\}, \{(q_0, a, q_0), (q_0, b, q_0), (q_0, b, q_1), (q_1, b, q_1)\}, \{q_0\}) \\ \mathcal{G}' &= \{q_1\} \end{aligned}$$

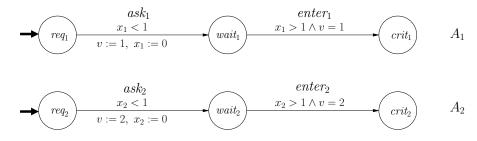
Give an ω -regular expression describing $\mathcal{L}^{uc}(\mathcal{A}', \mathcal{G}')$.

(b) Prove: $L \subseteq \Sigma^{\omega}$ is ω -regular if and only if it is accepted by a universal Co-Büchi automaton.

Exercise 8

(4+2+2+2 points)

Consider the timed automata A_1 and A_2 given below. They operate on the set $\{x_1, x_2\}$ of clocks and the shared integer variable v. A_i has actions $\{ask_i, enter_i\}$ and locations $\{req_i, wait_i, crit_i\}$ for i = 1, 2. Guards are given on top of edges, reset and variable updates below edges. Initially, v has value 1.



- (a) Construct $A_1 || A_2$.
- (b) Find a timed trace of the system $A_1 || A_2$ that ends with an action *enter*₂ and no more action is possible after that.
- (c) Give a sequence of transitions in $A_1 || A_2$ starting from the initial state, such that the actions ask_1 , ask_2 , and $enter_2$ occur in that order.
- (d) Argue that no state of the form $(crit_1, crit_2, ...)$ is reachable in $A_1 || A_2$.