Test Exam "Automata and Formal Languages"

- This problem set serves as a preparation for the upcoming exam. It will not be corrected, but solutions will be discussed on Monday, February 2.
- Each problem is supposed to be solvable within 15-20 minutes time.
- You may use all your notes and other written material to solve the problems, since the exam will be open book.
- For MSO, S1S, and LTL, you may use all abbreviations introduced in class.
- Generally, final states are drawn with double circles, while initial states are marked by an incoming arrow.
- This problem set together with problem set 12, gives a good overview of possible exam exercises. It is not an exhaustive list of all possible kinds of exercises.

Exercise 1

Let $L_{1}, L_{2} \subseteq \Sigma^{*}$ be languages.
(a) Suppose L_{1} and L_{2} are accepted by DFAs $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right)$, respectively. Construct a DFA accepting $L_{1} \backslash L_{2}$.
(b) Prove: If L_{1} is regular, L_{2} is not regular, and $L_{1} \cap L_{2}=\emptyset$, then $L_{1} \cup L_{2}$ is not regular.

Exercise 2

Let $\Sigma=\{0,1\}$. For $w \in \Sigma^{*}$, where $w=a_{0} a_{1} a_{2} \ldots a_{k}$, we define $\operatorname{bin}(w):=\Sigma_{i=0}^{k} a_{i} 2^{i}$. We define $R \subseteq \Sigma^{*} \times \Sigma^{*}$ as follows:

$$
R=\left\{\left(w, w^{\prime}\right)\left|\operatorname{bin}(w)>\operatorname{bin}\left(w^{\prime}\right),|w|=\left|w^{\prime}\right|\right\}\right.
$$

(a) Show that R is a regular relation by finding an accepting transducer.
(b) Let $L=(\{0,1\}\{0,1\})^{*}$ be a language. Construct an automaton accepting post ${ }_{R}(L)$.

Exercise 3

Consider the following NFA, A, over $\Sigma=\{0,1\}$.

(a) Minimize A with respect to bisimilarity. Justify your solution.
(b) Construct a minimal DFA accepting $\mathcal{L}(A) \cap\{010,011,110,111\}$.

Exercise 4

Consider the following three automata, A_{1}, A_{2}, and A_{3} over the alphabets $\Sigma_{1}=\left\{p_{1}, v_{1}, e_{1}, l_{1}\right\}$, $\Sigma_{2}=\left\{p_{1}, v_{1}, p_{2}, v_{2}\right\}$, and $\Sigma_{3}=\left\{p_{2}, v_{2}, e_{2}, l_{2}\right\}$, respectively.

A_{1}

A_{2}

(a) Construct the automaton B with $B=A_{1}\left\|A_{2}\right\| A_{3}$.
(b) Find an $\operatorname{MSO}\left(\Sigma_{1} \cup \Sigma_{2} \cup \Sigma_{3}\right)$ formula, φ, such that $L(\varphi)=\mathcal{L}(B)$.

Exercise 5

Consider the following 2DFA, A, over $\{a, b\}$ with states $\left\{s_{0}, s_{1}, s_{2}\right\}$, all of which are final, and with initial state s_{0}. The transition table is given as follows:

	a	b
s_{0}	$\left(s_{0}, R\right)$	$\left(s_{1}, R\right)$
s_{1}	$\left(s_{1}, R\right)$	$\left(s_{2}, L\right)$
s_{2}	$\left(s_{0}, R\right)$	$\left(s_{2}, L\right)$

(a) Give a regular expression, r, such that $\mathcal{L}(r)=\mathcal{L}(A)$.
(b) Give a formula, ψ of $\operatorname{MSO}(\{a, b\})$ such that $L(\psi)=\mathcal{L}(A)$.

Exercise 6

Let $\Sigma=\{a, b\}$ and let $L_{1}, L_{2} \subseteq \Sigma^{\omega}$ be an alphabet and two languages, such that

- $L_{1}=\{\alpha \mid a$ occurs infinitely often in $\alpha\}$,
- $L_{2}=\{\alpha \mid b$ occurs infinitely often in $\alpha\}$, and
- $L=L_{1} \cap L_{2}$
(a) Find a Büchi automaton accepting L.
(b) Find a Muller automaton accepting L.
(c) Find an S1S formula, $\psi\left(A_{a}, A_{b}\right)$, such that $L_{\psi}=L_{\{0,1\}}$.

Exercise 7

Let Σ be an alphabet Let $\mathcal{A}=\left(S, \rightarrow, S_{\text {in }}\right)$ be an automaton over Σ and let $\mathcal{G} \subseteq S$ be a set of states. A universal Co-Büchi automaton $(\mathcal{A}, \mathcal{G})$ accepts an infinite word, $\alpha \in \Sigma^{\omega}$, if for all runs ρ of \mathcal{A} on α holds that $\inf (\rho) \cap F=\emptyset$. The set of all words accepted by a universal Co-Büchi automaton $(\mathcal{A}, \mathcal{G})$ is written $L^{u c}(\mathcal{A}, \mathcal{G})$.
(a) Let $\Sigma=\{a, b\}$ and assume

$$
\begin{aligned}
& \mathcal{A}^{\prime}=\left(\left\{q_{0}, q_{1}\right\},\left\{\left(q_{0}, a, q_{0}\right),\left(q_{0}, b, q_{0}\right),\left(q_{0}, b, q_{1}\right),\left(q_{1}, b, q_{1}\right)\right\},\left\{q_{0}\right\}\right) \\
& \mathcal{G}^{\prime}=\left\{q_{1}\right\}
\end{aligned}
$$

Give an ω-regular expression describing $\mathcal{L}^{u c}\left(\mathcal{A}^{\prime}, \mathcal{G}^{\prime}\right)$.
(b) Prove: $L \subseteq \Sigma^{\omega}$ is ω-regular if and only if it is accepted by a universal Co-Büchi automaton.

Exercise 8

Consider the timed automata A_{1} and A_{2} given below. They operate on the set $\left\{x_{1}, x_{2}\right\}$ of clocks and the shared integer variable $v . A_{i}$ has actions $\left\{a s k_{i}\right.$, enter $\left._{i}\right\}$ and locations $\left\{\right.$ req $_{i}$, wait ${ }_{i}$, crit $\left.t_{i}\right\}$ for $i=1,2$. Guards are given on top of edges, reset and variable updates below edges. Initially, v has value 1 .

(a) Construct $A_{1} \| A_{2}$.
(b) Find a timed trace of the system $A_{1} \| A_{2}$ that ends with an action enter ${ }_{2}$ and no more action is possible after that.
(c) Give a sequence of transitions in $A_{1} \| A_{2}$ starting from the inital state, such that the actions $a s k_{1}, a s k_{2}$, and enter ${ }_{2}$ occur in that order.
(d) Argue that no state of the form $\left(\right.$ crit $_{1}$, crit $\left._{2}, \ldots\right)$ is reachable in $A_{1} \| A_{2}$.

