Exercises "Automata and Formal Languages"

Exercise 10.1

You have seen the Büchi automaton (\mathcal{A}, G) accepting words over $\{a, b\}$ with finitely many a's.

- Construct $dag((ab)^{\omega})$ and $dag(aab^{\omega})$.
- Construct just enough of $comp(\mathcal{A}, G)$ to show that $(ab)^{\omega}$ is accepted by it.

Exercise 10.2

Consider the Büchi automaton (\mathcal{A}, G) over $\Sigma = \{a, b\}$, where $\mathcal{A} = (\{q\}, \{(q, a, q)\}, \{q\})$ and $G = \{q\}$. Construct a Büchi automaton accepting $\Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A}, G)$ using the level ranking construction.

Exercise 10.3

A parity automaton is a pair (\mathcal{A}, c) , where $\mathcal{A} = (S, \longrightarrow, S_{in})$ is as for Büchi automata, and where $c : S \to \mathbb{N}$ is a mapping called *coloring*. A run ρ of a parity automaton is accepting iff $\max\{c(s) \mid s \in \inf(\rho)\}$ is even.

- Find a parity automaton accepting the language $L = \{w \in \{a, b\}^{\omega} \mid w \text{ has exactly two occurrences of } ab\}.$
- Show that each language accepted by a parity automaton is also accepted by a Rabin automaton and vice versa.
- Show that *deterministic* parity automata are closed under complement.