Exercises"Automata and Formal Languages"

Exercise 9.1

Show that $\{a, b\}^{\omega}$ is not countable. Hint: A set, M, is countable, iff there exists a surjective function $f: \mathbb{N} \rightarrow M$.

Exercise 9.2

For each $L_{1}, L_{2} \subseteq\{a, b\}^{\omega}$ below, find an ω-regular expression of the form $\bigcup_{i=1}^{n} U_{i} V_{i}^{\omega}$ representing the language, such that each U_{i} and V_{i} are regular languages of finite words.

- $L_{1}=\left\{\alpha \mid k\right.$ is even for each substring $b a^{k} b$ of $\left.\alpha\right\}$
- $L_{2}=\{\alpha \mid \alpha$ has no occurrence of $b a b\}$

Exercise 9.3

Use the product construction to obtain a Büchi automaton accepting $L_{1} \cap L_{2} \cap L_{3} \subseteq\{a, b\}^{\omega}$, where

- $L_{1}=\{\alpha \mid$ infinitely many a 's occur in $\alpha\}$
- $L_{2}=\{\alpha \mid$ finitely many b 's occur in $\alpha\}$
- $L_{3}=\{\alpha \mid$ each a in α is immediately followed by a $b\}$

Exercise 9.4

Show that deterministic Büchi automata are closed under union and intersection.

