
Technische Universität München Winter term 2008/2009
Theoretische Informatik Exercise Sheet 8
Prof. J. Esparza / Dr.-Ing. J. Kreiker December 4, 2008

Exercises “Automata and Formal Languages”

Exercise 8.1

Consider the MONA example of the n-adder discussed in class and available as a demo on the
MONA website. Instead of an adder you are supposed to design an n-multiplexer, which is a
circuit implementing a function MUXn : {0, 1}2n+1 → {0, 1}n such that

MUXn(an−1, . . . , a0, bn−1, . . . , b0, s) =
{

an−1, . . . , a0 if s = 1
bn−1, . . . , b0 if s = 0

Verify your design with MONA. Follow the instructions on the back.

Exercise 8.2

Construct Büchi automata accepting the following languages over Σ = {a, b, c}.

(a) L0 = {α ∈ Σω | α contains ab exactly once }.

(b) L1 = {α ∈ Σω | α contains ab at least once }.

(c) L2 = {α ∈ Σω | α contains ab infinitely often }.

(d) L3 = {α ∈ Σω | contains ab only finitely often }.

(e) L4 = {α ∈ Σω | if α contains infinitely many a’s then α contains infinitely many b’s }.

Exercise 8.3

Construct deterministic Büchi automata accepting the following languages over Σ = {a, b, c}.

(a) L1 = {α ∈ Σω | α contains at least one letter c}.

(b) L2 = {α ∈ Σω | in α, every a is immediately followed by a b}.

(c) L3 = {α ∈ Σω | in α, between two successive a’s there are at least two b’s }.

Exercise 8.4

Let B = (A, G) be a Büchi automaton. We say that B co-accepts an input α : N0 → Σ, if there
exists a run ρ of A on α, such that inf(ρ) ∩G = ∅.

(a) Prove: If B co-accepts α then there exists an automaton B′ = (A′, G′), a run ρ′ of A′ on α
and an i ≥ 0 such that ρ′(j) ∈ G′ for all j ≥ i.

(b) Let Σ = {a, b}. Show that there does not exist a Büchi automaton, (A, G), that co-accepts
the language L((b∗a)ω).



An n-bit Multiplexer in MONA

Understand the Adder

Have a close look at the n-adder example on the MONA website, which is linked from the course
website. It may be a good idea to start from this file and modify it to obtain your solution. Here
is a list of things to note:

• The first three lines declare an integer variable, $, that represents a maximal input length,
that is, the n of the n-adder. Variables p and P are declared to be smaller than n (a subset
of {0, . . . , n}) globally for the whole MONA program. Keep these lines for your solution.

• Consider the predicate full adder. Variables of type var0 are essentially bits. The formula
given mimics a digital circuit with input bits A, B, and Cin (the input carry), and output
bits out and Cout (the output carry). The existentially quantified boolean variables W1, W2,
and W3 are needed to store intermediate results. In the circuit they correspond to the output
of a gate. The circuit corresponding to the formula looks as follows:

xor

xor

and

and

 or

A

B

Cin

W1

out

Cout

W3

W2

• Consider the predicate n bit adder(X,Y,Z,Cin,Cout). The first three arguments are now
sets instead of bits. A set X = {0, 2, 4} denotes a binary number whose zeroth, second, and
fourth bits are 1, and all others are 0, that is, X represents the number 20. Set variables C
and D represent the input and output carries at each position, while p ranges over all bits of
the numbers to be added.

• Keep the lines below the comment “theorems”. They restrict the second-order variables
needed to represent n + 1 bit numbers. Instead of two boolean variables Cin and Cout you
will only need a single one, S.

Design your MUX

(a) Draw a digital circuit implementing the MUX1 function. String n such circuits together to
obtain a circuit implementing MUXn.

(b) Write a MONA formula defining the predicate mux1(A,B,C,S), where all arguments are vari-
ables of type var0, that is, bits. The formula should use the pre-defined circuit constructor
relations of the n-adder. It must correspond to the circuit you have drawn.

(c) Write a MONA formula muxn(X,Y,Z,S), where S is still a bit, but where X, Y, and Z are set
variables (var2), such that it computes MUXn for an arbitrary n.

Verify your Design

Verify the following formulas with MONA.

(a) muxn does indeed compute MUXn:
((S & X=Z) | (not(S) & Y=Z)) <=> muxn(X,Y,Z,S);

(b) A concrete example, which computes MUX5(19, 23, 0):
X = {0,1,4} & Y = {0,1,2,4} & (S <=> false) & muxn(X,Y,Z,S);

(c) Output can always be computed:
all2 X, Y: all0 S: ex2 Z: muxn(X,Y,Z,S);

(d) muxn is a function:
all2 X, Y: all0 S: ex2 Z: muxn(X,Y,Z,S) & all2 Z’ : muxn(X,Y,Z’,S) => (Z = Z’);


