Exercises "Automata and Formal Languages"

Exercise 6.1

Implement the crossing sequence construction and apply your implementation to the 2DFA of Exercise 5.3.

Exercise 6.2

Define the n-ary asynchronous product of n NFAs, such that product states are n-element sets rather than n-tuples! Show that the thus defined n-ary product is associative and commutative.

Exercise 6.3

In this exercise you are supposed to design a k-bit binary counter, C, of k communicating automata A_{0}, \ldots, A_{k-1}, such that $C=A_{0}\|\ldots\| A_{k-1}$. Each automaton represents one bit. The alphabet of automaton A_{i} must contain (at least) the letters ' $0[i]$ ' and ' $1[i]^{\prime}$. If the letter $a_{i}[i]$ is read, it means that the i-th bit currently has value a_{i}. Whenever a letter ' inc' is read, the number represented by the automata must be incremented by 1 (by a number of communications among the k automata). Design the automata A_{i} such that C satisfies the following specification:

- $\left.\mathcal{L}(C)\right|_{\{i n c\}}=i n c^{*}$
- For all $j \geq 0:$ inc $\left.^{j} a_{0}[0] a_{1}[1] \ldots a_{k-1}[k-1] \in \mathcal{L}(C)\right|_{\{i n c, 0[i], 1[i] \mid 0 \leq i<k\}}$ if and only if $j \bmod 2^{k}=\sum_{i=0}^{k-1} a_{i}[i] 2^{i}$

Exercise 6.4

In this exercise you are supposed to design a railway controller. Consider a circular railway of 8 segments: $0 \rightarrow 1 \rightarrow \ldots \rightarrow 7 \rightarrow 0$. There are three trains modeled by the automata T_{0}, T_{1}, and T_{2}. Each automaton T_{i} has the states $Q_{i}=\left\{q_{i, 0}, \ldots, q_{i, 7}\right\}$, the alphabet $\Sigma_{i}=\{\operatorname{enter}[i, j] \mid 0 \leq j \leq 7\}$, the transition relation $\delta_{i}=\left\{\left(q_{i, j}\right.\right.$, enter $\left.\left.\left[i, j+_{8} 1\right], q_{i, j+8}\right) \mid 0 \leq j \leq 7\right\}$, and the initial state $q_{i, 2 i}$, where $+{ }_{8}$ is addition modulo 8 .

Define a family $C_{1}, \ldots C_{k}$ of controllers to make sure that two trains can never be on adjacent segments, while all trains can eventually move, if they want to. Formally, the product $R=$ $C_{1}\|\ldots\| C_{k}\left\|T_{1}\right\| T_{2} \| T_{3}$ shall satisfy the following specification:

- For $i=0,1,2:\left.\mathcal{L}(R)\right|_{\Sigma_{i}}=\left(\text { enter }[i, 2 i] e n t e r\left[i, 2 i+{ }_{8} 1\right] \ldots \text { enter }\left[i, 2 i+{ }_{8} 7\right]\right)^{*}$
- For all wenter $\left.\left.[i, j] \operatorname{enter}\left[i^{\prime}, j^{\prime}\right] w^{\prime} \in \mathcal{L}(R)\right|_{\{\operatorname{enter}[i, j]} \mid i=0,1,2 ; 0 \leq j \leq 7\right\}$ holds that $i^{\prime} \neq i$ implies $\left|j-j^{\prime}\right| \notin\{0,1,7\}$

Hint: Typical values of k could be 1,3 , or 8 (where 8 is preferred).

