Technische Universität München Theoretische Informatik Prof. J. Esparza / Dr.-Ing. J. Kreiker Winter term 2008/2009 Exercise Sheet 4 November 6, 2008

Exercises "Automata and Formal Languages"

Exercise 4.1

Apply the partitioning algorithm to the following NFA and construct the resulting NFA that is minimal with respect to bisimulation.

Exercise 4.2

Let $\Sigma = \{0, 1\}$ be our alphabet. We write #b to denote the interpretation of $b \in \Sigma^*$ as a binary number, possibly with leading zeros. Construct minimal DFAs accepting the bounded languages L_1, L_2 , and L_3^2 defined below.

- $L_1 = \{b \mid \#b \mod 3 = 0\} \cap \Sigma^4$.
- $L_2 = \{b \mid \#b \text{ is prime}\} \cap \Sigma^4$.
- $L_3^k = \{ww \mid w \in \Sigma^k\}$. How many states has a minimal DFA accepting L_3^k ?.

Use the minimal intersection algorithm for bounded languages to construct a DFA accepting $L_2 \cap L_3^2$.

Exercise 4.3

- (a) For any k > 0 and $L \subseteq \Sigma^k$ we define \widehat{L}^k to be the language $\Sigma^k \setminus L$. Given a minimal DFA accepting L, construct a minimal DFA accepting \widehat{L}^k .
- (b) Given two minimal DFAs accepting bounded languages L_1 and L_2 with words of length k, construct a minimal DFA accepting $L_1 \cup L_2$.
- (c) For any language $L \subseteq \{0,1\}^k$ of binary numbers of length k, we define L + 1 to be the language $\{w + 1 \mod 2^k \mid w \in L\}$. Construct a minimal DFA accepting L + 1 from a minimal DFA accepting L.
- (d) Let $A = (Q, \{0, 1\}, \delta, q_0, F)$ be a minimal DFA such that $\mathcal{L}(A)$ is a bounded language of binary numbers. What language is accepted by the automaton $A' = (Q, \{0, 1\}, \delta', q_0, F)$, where $\delta'(q, b) = \delta(q, 1 b)$?