Exercises"Automata and Formal Languages"

Exercise 4.1

Apply the partitioning algorithm to the following NFA and construct the resulting NFA that is minimal with respect to bisimulation.

Exercise 4.2

Let $\Sigma=\{0,1\}$ be our alphabet. We write $\# b$ to denote the interpretation of $b \in \Sigma^{*}$ as a binary number, possibly with leading zeros. Construct minimal DFAs accepting the bounded languages L_{1}, L_{2}, and L_{3}^{2} defined below.

- $L_{1}=\{b \mid \# b \bmod 3=0\} \cap \Sigma^{4}$.
- $L_{2}=\{b \mid \# b$ is prime $\} \cap \Sigma^{4}$.
- $L_{3}^{k}=\left\{w w \mid w \in \Sigma^{k}\right\}$. How many states has a minimal DFA accepting L_{3}^{k} ?.

Use the minimal intersection algorithm for bounded languages to construct a DFA accepting $L_{2} \cap L_{3}^{2}$.

Exercise 4.3

(a) For any $k>0$ and $L \subseteq \Sigma^{k}$ we define \widehat{L}^{k} to be the language $\Sigma^{k} \backslash L$. Given a minimal DFA accepting L, construct a minimal DFA accepting \widehat{L}^{k}.
(b) Given two minimal DFAs accepting bounded languages L_{1} and L_{2} with words of length k, construct a minimal DFA accepting $L_{1} \cup L_{2}$.
(c) For any language $L \subseteq\{0,1\}^{k}$ of binary numbers of length k, we define $L+1$ to be the language $\left\{w+1 \bmod 2^{k} \mid w \in L\right\}$. Construct a minimal DFA accepting $L+1$ from a minimal DFA accepting L.
(d) Let $A=\left(Q,\{0,1\}, \delta, q_{0}, F\right)$ be a minimal DFA such that $\mathcal{L}(A)$ is a bounded language of binary numbers. What language is accepted by the automaton $A^{\prime}=\left(Q,\{0,1\}, \delta^{\prime}, q_{0}, F\right)$, where $\delta^{\prime}(q, b)=\delta(q, 1-b)$?

