Technische Universität München Theoretische Informatik Prof. J. Esparza / Dr.-Ing. J. Kreiker Winter term 2008/2009 Exercise Sheet 3 October 30, 2008

Exercises "Automata and Formal Languages"

Exercise 3.1

Consider the following NFA and show that $s \sim t$. Compute the relations \sim_0, \sim_1, \sim_2 , and \sim_3 and construct the minimal NFA with respect to bisimulation.

Exercise 3.2

Let R be a bisimulation relation. Must R be reflexive? Symmetric? Transitive?

Exercise 3.3

Let $A = (Q, \Sigma, \delta, q_o, F)$ be an NFA and let $A_q = (Q, \Sigma, \delta, q, F)$ for any $q \in Q$. Prove or disprove: If $\mathcal{L}(A_q) = \mathcal{L}(A_{q'})$ then $q \sim q'$.

Exercise 3.4

Let $A = (Q, \Sigma, \delta, q_o, F)$ be an NFA. A relation $R \subseteq Q \times Q$ is called a *simulation* iff $q_1 R q_2$ implies

- $q_1 \in F \iff q_2 \in F$ and
- for every $a \in \Sigma$ and every $q'_1 \in \delta(q_1, a)$ there exists a $q'_2 \in \delta(q_2, a)$ such that $q'_1 R q'_2$.

The relation $\leq = \bigcup \{ R \mid R \text{ is a simulation} \}$ is the largest simulation. If $q \leq q'$ we say that q is simulated by q'.

- Show that $q \leq q'$ implies $\mathcal{L}(A_q) \subseteq \mathcal{L}(A_{q'})$.
- Does $q \leq q'$ and $q' \leq q$ imply $q \sim q'$?