Exercises "Automata and Formal Languages"

Exercise 2.1

Let A_{1} and A_{2} be DFAs with states Q_{1} and Q_{2}, respectively. You learnt how to use the product automaton to construct a DFA A such that $\mathcal{L}(A)=\mathcal{L}\left(A_{1}\right) \cup \mathcal{L}\left(A_{2}\right)$, where $A=A_{1} \otimes A_{2}$ using the definition from Exercise 1.4. Show that for every $n \geq 2$ there exist DFAs A_{1} and A_{2} with $\left|Q_{1}\right|,\left|Q_{2}\right| \geq n$ such that the minimal DFA accepting $\mathcal{L}\left(A_{1}\right) \cup \mathcal{L}\left(A_{2}\right)$ has $\left|Q_{1}\right| \cdot\left|Q_{2}\right|$ states.

Exercise 2.2

Show that the following length-preserving relations are regular:
(a) $\left\{\left(a^{n}, b^{n}\right) \mid n \geq 0\right\}$ over $\{a, b\}$.
(b) $R_{0}=\left\{\left(w \#, w^{\prime} \#\right) \mid w, w^{\prime} \in\{0,1\}^{n}\right.$ and $w^{\prime}=\left((2 \cdot w) \bmod 2^{n}\right)$ for $\left.n \geq 2\right\}$ over $\{0,1, \#\}$.
(c) $R_{1} \cap R_{2}$, where $R_{1}, R_{2} \subseteq \Sigma^{*} \times \Sigma^{*}$ are length-preserving and regular.

Exercise 2.3

Finite state transducers are often defined to be automata over $(\Sigma \cup\{\epsilon\}) \times(\Sigma \cup\{\epsilon\})$ rather than $\Sigma \times \Sigma$, that is, they allow both ϵ inputs and outputs. Given such transducers and the induced regular relations, show the following:

- $\left\{\left(w, w^{\prime}\right) \mid w \leq_{\text {lex }} w^{\prime}\right\}$ is regular over every finite alphabet, where $\leq_{\text {lex }}$ denotes the lexicographic order.
- $\left\{\left(w, w^{\prime}\right) \mid w, w^{\prime} \in \mathcal{L}\left(1(0+1)^{*}\right)\right.$ and $\left.w \leq w^{\prime}\right\}$ is regular.
- $\left\{\left(a^{n} b^{n}, c^{n}\right) \mid n \geq 0\right\}$ over $\{a, b, c\}$ is a non-regular relation.
- Regular relations are not closed under intersection.

Exercise 2.4

Let $L=\left\{w \mid w \in\{0,1\}^{n}\right.$ for $n \geq 2$ and w is divisible by 3$\}$ be a language over $\{0,1\}$. What is $\operatorname{post}_{R_{0}}(L)$ for R_{0} of Exercise 2.2? Construct an automaton accepting post $R_{R_{0}}(L)$ using an automaton accepting L and a transducer accepting R_{0}.

Exercise 2.5

Let $L \subseteq \Sigma^{*}$ be a language. The equivalence relation \sim_{L} is defined as follows: $x \sim_{L} y$ iff $\forall z \in \Sigma^{*}$: $x z \in L \Leftrightarrow y z \in L$. The Myhill-Nerode Theorem states that L is regular iff Σ^{*} / \sim_{L} is finite, that is, iff the number of equivalence classes of Σ^{*} with respect to \sim_{L} is finite.

- Use the Myhill-Nerode Theorem to prove that $\left\{a^{k} b^{n} c^{m} \mid n=k+m ; k, m>0\right\}$ is not regular.
- Give the Myhill-Nerode equivalence classes of $\{0,1\}^{*}$ for the language that has the same number of occurrences of the substrings 01 and 10 . Construct a minimal DFA accepting this language.

