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Exercises “Automata and Formal Languages”

Exercise 2.1

Let A1 and A2 be DFAs with states Q1 and Q2, respectively. You learnt how to use the product
automaton to construct a DFA A such that L(A) = L(A1) ∪ L(A2), where A = A1 ⊗ A2 using
the definition from Exercise 1.4. Show that for every n ≥ 2 there exist DFAs A1 and A2 with
|Q1|, |Q2| ≥ n such that the minimal DFA accepting L(A1) ∪ L(A2) has |Q1| · |Q2| states.

Exercise 2.2

Show that the following length-preserving relations are regular:

(a) {(an, bn) | n ≥ 0} over {a, b}.

(b) R0 = {(w#, w′#) | w,w′ ∈ {0, 1}n and w′ = ((2 · w) mod 2n) for n ≥ 2} over {0, 1,#}.

(c) R1 ∩R2, where R1, R2 ⊆ Σ∗ × Σ∗ are length-preserving and regular.

Exercise 2.3

Finite state transducers are often defined to be automata over (Σ ∪ {ε})× (Σ ∪ {ε}) rather than
Σ × Σ, that is, they allow both ε inputs and outputs. Given such transducers and the induced
regular relations, show the following:

• {(w,w′) | w ≤lex w′} is regular over every finite alphabet, where ≤lex denotes the lexico-
graphic order.

• {(w,w′) | w,w′ ∈ L(1(0 + 1)∗) and w ≤ w′} is regular.

• {(anbn, cn) | n ≥ 0} over {a, b, c} is a non-regular relation.

• Regular relations are not closed under intersection.

Exercise 2.4

Let L = {w | w ∈ {0, 1}n for n ≥ 2 and w is divisible by 3} be a language over {0, 1}. What is
postR0

(L) for R0 of Exercise 2.2? Construct an automaton accepting postR0
(L) using an automaton

accepting L and a transducer accepting R0.

Exercise 2.5

Let L ⊆ Σ∗ be a language. The equivalence relation ∼L is defined as follows: x ∼L y iff ∀z ∈ Σ∗ :
xz ∈ L ⇔ yz ∈ L. The Myhill-Nerode Theorem states that L is regular iff Σ∗/ ∼L is finite, that
is, iff the number of equivalence classes of Σ∗ with respect to ∼L is finite.

• Use the Myhill-Nerode Theorem to prove that {akbncm | n = k+m; k, m > 0} is not regular.

• Give the Myhill-Nerode equivalence classes of {0, 1}∗ for the language that has the same
number of occurrences of the substrings 01 and 10. Construct a minimal DFA accepting this
language.


