Exercises "Automata and Formal Languages"

Exercise 2.1

Let A_1 and A_2 be DFAs with states Q_1 and Q_2 , respectively. You learnt how to use the product automaton to construct a DFA A such that $\mathcal{L}(A) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$, where $A = A_1 \otimes A_2$ using the definition from Exercise 1.4. Show that for every $n \geq 2$ there exist DFAs A_1 and A_2 with $|Q_1|, |Q_2| \geq n$ such that the *minimal* DFA accepting $\mathcal{L}(A_1) \cup \mathcal{L}(A_2)$ has $|Q_1| \cdot |Q_2|$ states.

Exercise 2.2

Show that the following length-preserving relations are regular:

- (a) $\{(a^n, b^n) \mid n \ge 0\}$ over $\{a, b\}$.
- (b) $R_0 = \{(w\#, w'\#) \mid w, w' \in \{0, 1\}^n \text{ and } w' = ((2 \cdot w) \mod 2^n) \text{ for } n \ge 2\} \text{ over } \{0, 1, \#\}.$
- (c) $R_1 \cap R_2$, where $R_1, R_2 \subseteq \Sigma^* \times \Sigma^*$ are length-preserving and regular.

Exercise 2.3

Finite state transducers are often defined to be automata over $(\Sigma \cup \{\epsilon\}) \times (\Sigma \cup \{\epsilon\})$ rather than $\Sigma \times \Sigma$, that is, they allow both ϵ inputs and outputs. Given such transducers and the induced regular relations, show the following:

- $\{(w, w') \mid w \leq_{\text{lex}} w'\}$ is regular over every finite alphabet, where \leq_{lex} denotes the lexicographic order.
- $\{(w, w') \mid w, w' \in \mathcal{L}(1(0+1)^*) \text{ and } w \leq w'\}$ is regular.
- $\{(a^n b^n, c^n) \mid n \ge 0\}$ over $\{a, b, c\}$ is a non-regular relation.
- Regular relations are *not* closed under intersection.

Exercise 2.4

Let $L = \{w \mid w \in \{0,1\}^n \text{ for } n \geq 2 \text{ and } w \text{ is divisible by } 3\}$ be a language over $\{0,1\}$. What is $post_{R_0}(L)$ for R_0 of Exercise 2.2? Construct an automaton accepting $post_{R_0}(L)$ using an automaton accepting L and a transducer accepting R_0 .

Exercise 2.5

Let $L \subseteq \Sigma^*$ be a language. The equivalence relation \sim_L is defined as follows: $x \sim_L y$ iff $\forall z \in \Sigma^*$: $xz \in L \Leftrightarrow yz \in L$. The Myhill-Nerode Theorem states that L is regular iff Σ^* / \sim_L is finite, that is, iff the number of equivalence classes of Σ^* with respect to \sim_L is finite.

- Use the Myhill-Nerode Theorem to prove that $\{a^k b^n c^m \mid n = k + m; k, m > 0\}$ is not regular.
- Give the Myhill-Nerode equivalence classes of $\{0,1\}^*$ for the language that has the same number of occurrences of the substrings 01 and 10. Construct a minimal DFA accepting this language.