Exercises "Automata and Formal Languages"

Exercise 1.1

Let r be the regular expression $((0+1)(0+1))^*$ over $\Sigma = \{0,1\}$, where + denotes choice.

- Describe $\mathcal{L}(r)$ in words.
- Give a regular expression r' such that $\mathcal{L}(r') = \overline{\mathcal{L}(r)}$, where $\overline{L} = \Sigma^* \setminus L$.
- Construct a regular expression r' such that $\mathcal{L}(r') = \overline{\mathcal{L}(r)}$ using constructions learnt in class.

Exercise 1.2

Let Σ be a finite alphabet. A function $h: \Sigma \to \Sigma^*$ is called a *homomorphism*. We define:

$$\begin{array}{lll} h(\sigma_1\ldots\sigma_n) &=& h(\sigma_1)\ldots h(\sigma_n) & \text{ for } \sigma_1,\ldots,\sigma_n\in\Sigma\\ h(L) &=& \{h(w)\mid w\in L\} & \text{ for } L\subseteq\Sigma^*\\ h^{-1}(L) &=& \{w\mid h(w)\in L\} & \text{ for } L\subseteq\Sigma^* \end{array}$$

Let $L \subseteq \Sigma^*$ be regular and let $h: \Sigma \to \Sigma^*$ be a homomorphism.

- Show that h(L) regular.
- Show that $h^{-1}(L)$ is regular.
- Use only closure properties and the fact that $\{0^n 1^n \mid n \ge 0\}$ is not regular to show that the following languages over $\{0, 1, 2\}$ are not regular:
 - $\{0^n 1^n 2^m \mid n, m \ge 0\}$
 - $\{0^{2n} 1 2^{3n} \mid n \ge 0\}$
 - $\{w \mid |w|_0 = |w|_2\}$, where $|w|_{\sigma}$ denotes the number of occurrences of letter σ in word w.

Exercise 1.3

Since regular languages are closed under complement and intersection, we may extend regular expressions with such primitives: If r and r' are regular expressions, then also \overline{r} and $r \cap r'$ are regular expressions. A language $L \subseteq \Sigma^*$ is called *star-free*, iff there exists an extended regular expression r without a Kleene star such that $L = \mathcal{L}(r)$. For example, Σ^* is star-free, because it is the same as $\mathcal{L}(\overline{\emptyset})$. Show that $\mathcal{L}((01 + 10)^*)$ is star-free.

Exercise 1.4

An NFA $(Q, \Sigma, \delta, q_0, F)$ (where $\delta : Q \times \Sigma \to 2^Q$) is called *complete*, iff $|\delta(q, a)| \ge 1$ for all $q \in Q$ and $a \in \Sigma$. We define the *or-product* of two NFAs $A_i = (Q_i, \Sigma, \delta_i, q_{0i}, F_i)$ (i = 1, 2) to be $A_1 \otimes A_2 = (Q_1 \times Q_2, \Sigma, \delta, (q_{01}, q_{02}), F)$, where δ is as in $A_1 \times A_2$ and where $F = \{(q_1, q_2) \mid q_1 \in F_i \text{ or } q_2 \in F_2\}$.

- Prove: If A_1 and A_2 are complete NFAs, then $\mathcal{L}(A_1 \otimes A_2) = \mathcal{L}(A_1) \cup \mathcal{L}(L_2)$.
- Completeness is thus sufficient for $\mathcal{L}(A_1 \otimes A_2) = \mathcal{L}(A_1) \cup \mathcal{L}(L_2)$. Is it also necessary?