Exercises"Automata and Formal Languages"

Exercise 1.1

Let r be the regular expression $((0+1)(0+1))^{*}$ over $\Sigma=\{0,1\}$, where + denotes choice.

- Describe $\mathcal{L}(r)$ in words.
- Give a regular expression r^{\prime} such that $\mathcal{L}\left(r^{\prime}\right)=\overline{\mathcal{L}(r)}$, where $\bar{L}=\Sigma^{*} \backslash L$.
- Construct a regular expression r^{\prime} such that $\mathcal{L}\left(r^{\prime}\right)=\overline{\mathcal{L}(r)}$ using constructions learnt in class.

Exercise 1.2

Let Σ be a finite alphabet. A function $h: \Sigma \rightarrow \Sigma^{*}$ is called a homomorphism. We define:

$$
\begin{array}{rll}
h\left(\sigma_{1} \ldots \sigma_{n}\right) & =h\left(\sigma_{1}\right) \ldots h\left(\sigma_{n}\right) & \text { for } \sigma_{1}, \ldots, \sigma_{n} \in \Sigma \\
h(L) & =\{h(w) \mid w \in L\} & \text { for } L \subseteq \Sigma^{*} \\
h^{-1}(L) & =\{w \mid h(w) \in L\} & \text { for } L \subseteq \Sigma^{*}
\end{array}
$$

Let $L \subseteq \Sigma^{*}$ be regular and let $h: \Sigma \rightarrow \Sigma^{*}$ be a homomorphism.

- Show that $h(L)$ regular.
- Show that $h^{-1}(L)$ is regular.
- Use only closure properties and the fact that $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular to show that the following languages over $\{0,1,2\}$ are not regular:
$-\left\{0^{n} 1^{n} 2^{m} \mid n, m \geq 0\right\}$
$-\left\{0^{2 n} 12^{3 n} \mid n \geq 0\right\}$
$-\left\{\left.w| | w\right|_{0}=|w|_{2}\right\}$, where $|w|_{\sigma}$ denotes the number of occurrences of letter σ in word w.

Exercise 1.3

Since regular languages are closed under complement and intersection, we may extend regular expressions with such primitives: If r and r^{\prime} are regular expressions, then also \bar{r} and $r \cap r^{\prime}$ are regular expressions. A language $L \subseteq \Sigma^{*}$ is called star-free, iff there exists an extended regular expression r without a Kleene star such that $L=\mathcal{L}(r)$. For example, Σ^{*} is star-free, because it is the same as $\mathcal{L}(\bar{\emptyset})$. Show that $\mathcal{L}\left((01+10)^{*}\right)$ is star-free.

Exercise 1.4

An NFA $\left(Q, \Sigma, \delta, q_{0}, F\right)$ (where $\delta: Q \times \Sigma \rightarrow 2^{Q}$) is called complete, iff $|\delta(q, a)| \geq 1$ for all $q \in Q$ and $a \in \Sigma$. We define the or-product of two NFAs $A_{i}=\left(Q_{i}, \Sigma, \delta_{i}, q_{0 i}, F_{i}\right)(i=1,2)$ to be $A_{1} \otimes A_{2}=$ $\left(Q_{1} \times Q_{2}, \Sigma, \delta,\left(q_{01}, q_{02}\right), F\right)$, where δ is as in $A_{1} \times A_{2}$ and where $F=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in F_{i}\right.$ or $\left.q_{2} \in F_{2}\right\}$.

- Prove: If A_{1} and A_{2} are complete NFAs, then $\mathcal{L}\left(A_{1} \otimes A_{2}\right)=\mathcal{L}\left(A_{1}\right) \cup \mathcal{L}\left(L_{2}\right)$.
- Completeness is thus sufficient for $\mathcal{L}\left(A_{1} \otimes A_{2}\right)=\mathcal{L}\left(A_{1}\right) \cup \mathcal{L}\left(L_{2}\right)$. Is it also necessary?

