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Abstract

The problem of solving mixed arithmetic and Boolean constraint systems
arises in many different areas, such as verification of soft- and hardware
systems, resource planning or system design and has been studied extensively
in recent time. Yet, the available solvers are neither easily extensible, nor
do they offer ways to apply problem specific heuristics that are required for
most of the hard problems in this area.

To overcome these limitations, a framework has been designed to integrate
state-of-the-art solvers for the Boolean- and parts of the arithmetic domain
to solve the combined problem. Thereby we benefit from the full strength
of each of the tools in their special area. Furthermore, the architecture
of the system emphasises extensibility, which already proved useful for the
implemented extension to non-linear arithmetic constraints.

The results show that our implementation, albeit in in some parts not
yet more than a proof of concept, can already compete with existing solvers.
Due to the extension to non-linear arithmetic we are even able to tackle a
new class of real-world problems.

The present work introduces this class of problems and our approach
to solve them, accompanied by some real-life examples. Along with these
descriptions we provide detailed insight into our tool and the hurdles we had
to overcome.
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Introduction

Once working on the subject of mixed Boolean and arithmetic constraint
systems, one is tempted to see these problems everywhere. Still, let us start
out with an example to illustrate the type of problem we are to deal with.
Consider the following piece of C code, where we added an assertion to ensure
that there is no array access beyond its bounds. This is a common cause of
illegal memory access, also known as “segmentation fault”. Note, that the
code is solely meant to demonstrate an application of mixed Boolean and
arithmetic systems, thus any other commands were left out.

1 void fn( int * a, int width, int size )

2 {

3 int i = 0, j = 0;

4

5 for( i = 0; i < size / width; ++i )

6 for( j = 0; j <= width; ++j )

7 assert( i * width + j < size );

8 }

9

10 int main( int argc, char * argv[] )

11 {

12 int a[ 10 ];

13

14 if( argc > 5 )

15 fn( a, 1, 10 );

16 else

17 fn( a, 2, 10 );

18

19 return 0;

20 }

To decide as to whether the assertion will fail, one has to test for the
satisfiability of the following logical combination of arithmetic constraints
over integers:

xiii



(i ≥ 0)

∧ (j ≥ 0)

∧

(

(

¬(i + j < 10) ∧ (i < 10) ∧ (j ≤ 1)
)

∨
(

¬(2i + j < 10) ∧ (i < 5) ∧ (j ≤ 2)
)

)

This system can be solved manually and we find i = 9, j = 1 and i =
4, j = 2 to be feasible solutions. As any experienced C programmer has
spotted already, the “<=” in line six should have been a “<” instead. That
makes the system unsatisfiable and thus the assertion will never fail, as can
be proved using the modified system where ≤ is replaced by <.

The aims of this thesis

The example scratched on the surface of a class of problems occurring in
model checking (cf. [Clarke et al., 1999]) of systems over infinite domains,
like integers or real numbers. As such, the underlying problem has been
studied extensively in recent time and is part of the emerging field of sat-
isfiability modulo theories (SMT). First results in this area were provided
by LPSAT [Wolfman and Weld, 1999]. Today solvers such as MathSAT
[Bozzano et al., 2005] allow for efficient treatment of many instances of mixed
Boolean- and linear arithmetic problems via tight integration of the logical
and arithmetic solver procedures. As a result, they are not easy to extend
and even more, they do not deliver the growing power of solvers for the
Boolean and various arithmetic domains.

To overcome these limitations, we propose a new Open Source frame-
work that allows the integration of existing Boolean and arithmetic solvers.
Thereby we can even enter new domains, as we do using a non-linear solver.
As the set of use cases in Chapter 3 on page 23 shows, our approach thus
supports new applications of this type of solvers.

Furthermore, the Open Source model features wide spread development
and allows other applications to reuse our code. To simplify the latter, our
framework may as well be used as a library and can thus be integrated in,
e. g. model checkers.

xiv



Outline

The present thesis is organised as follows: In Chapter 1 the problem is spec-
ified more formally and an introduction to the relevant part of complexity
theory is provided. Our approach is presented in Chapter 2, the main exper-
imental results and applications are listed in Chapter 3. We end the main
part with our conclusions and some possible extensions in Chapter 4. In the
appendix we provide the grammar of our input language and an example
session to make the user familiar with our tool.
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Chapter 1

Basic concepts

Even though the problem of mixed Boolean and arithmetic constraints occurs
so frequently in areas such as verification, there is no known common formal
specification. Rather it is redefined by the limitations of each solver, such as
the “math-formula” in [Bozzano et al., 2005]. As they only deal with linear
arithmetic and the framework explained in Chapter 2 by design allows for
any kind of arithmetic or Boolean operation, we are to define the class of
problems we can effectively solve using the current system. To simplify the
notation, we refer to this class as AB, which is inductively defined in the
following paragraphs.

For a set of variables V , let B(V ) denote the Boolean formulae over V ,
built using the operators ∨, ∧ and ¬. Furthermore, let B be the set of Boolean
constants, i. e. B = {true, false}. A substitution is a mapping σ : V → B,
which means a replacement of each variable by a Boolean constant, hence the
truth value of the formula can be obtained. Given σ : V → B and β ∈ B(V ),
we say that σ satisfies β, written as σ |= β, if and only if β(σ) = true. The
Boolean expressions in AB are exactly those of B(V ).

The arithmetic expressions in AB are defined as follows: Let Q be the
set of rational numbers. Any numerical constant c ∈ Q, as limited by the
precision of the effective finite data types, is in AB, as well as any set of
arithmetic variables V ′. An arithmetic term is built of variables v′ ∈ V ′ and
constants, concatenated by multiplication, division, addition or subtraction.
These terms, as well as appropriate parentheses, are in AB. By adding the
comparison of arithmetic terms over V ′ using the operators ≤, <,≥, > and =
we constitute the link to Boolean expressions and denote these comparisons,
similar to B(V ), by A(V ′). Furthermore, we can define a substitution as we
did for Boolean expressions, such that we can obtain the numerical value of
any arithmetic term and the truth value of each comparison in A(V ′).

To constitute a mixed Boolean and arithmetic system, each variable v ∈ V

1



2 CHAPTER 1. BASIC CONCEPTS

may be replaced by an arithmetic comparison from AB using the mapping
α : V → A(V ′). For the example from the introduction one would obtain
the following terms:

β = b1 ∧ b2 ∧
(

(¬b3 ∧ b4 ∧ b5) ∨ (¬b6 ∧ b7 ∧ b8)
)

α(b1) = i ≥ 0

α(b2) = j ≥ 0

α(b3) = i + j < 10

α(b4) = i < 10

α(b5) = j ≤ 1

α(b6) = 2i + j < 10

α(b7) = i < 5

α(b8) = j ≤ 2

This mapping allows for looking at instances of AB as disjoint sets of Boolean
and arithmetic problems, which simplifies the solution process.

Before turning to the actual solvers of this kind of problems, a brief
discussion of the computational complexity of deciding instances of AB is
provided in Section 1.4 on page 7. To allow a consistent discussion of this
matter we provide a short introduction to Turing machines and the relevant
definitions. For a more extensive reference regarding this subject consult,
e. g. [J. E. Hopcroft, 2001].

1.1 Complexity theory

Whereas the idea of efficient algorithms was already known to the ancient
Greeks [Fortnow and Homer, 2002], the research area of computational com-
plexity is still young and roughly dates back to the paper of Hartmanis and
Stearns [Hartmanis and Stearns, 1965], where the definitions of time- and
space complexity on multitape Turing machines were first laid out.

1.1.1 The Turing machine

An alphabet is a finite and nonempty set of symbols, usually denoted by Σ.
A word is a finite sequence of symbols chosen from some alphabet. It may
have a length of 0, in which case it is said to be the empty word, denoted
by ε. A language L is a subset of Σ∗, the set of all words over an alphabet Σ.

A Turing machine M is constituted of a finite control and an infinite
tape of cells, which can hold a symbol as specified below, and a tape head
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control

Figure 1.1: A Turing machine

moving over the tape, which scans the cell. The input is defined to be the
initial content of the tape. More formally, M is defined as follows: It is a
seven tuple M = (Q, Σ, Γ, δ, q0, B, F ), where Q is the finite set of states of
the finite control, Σ ( Γ is the alphabet of input symbols, Γ denotes the set
of tape symbols, q0 ∈ Q is the initial state of the finite control, B is the blank
symbol and F ⊂ Q denotes the final or accepting states. The semantics of
the transition relation δ are as follows: Given a state q and a tape symbol a,
the value of δ(q, a) is a set of triples {(p1, Y1, D1), . . .} with pi being the next
state in Q, Yi ∈ Γ is the symbol written to the cell being scanned, whereby a

is replaced, and Di is the direction of the movement of head, thus it is either
“left” or “right”. In case of a deterministic finite control the set only contains
a single element, whereby the relation shrinks to a well defined function.

We say that M accepts a language L if and only if M halts, i. e. there
exists some sequence of transitions such that it enters an accepting state
after reading w for all w ∈ L. Note, that this sequence is by definition
unique in case of deterministic Turing machines, as well as any sequence
leading to rejection. On the other hand, non-deterministic Turing machines
are assumed to “guess” the correct next step in each transition as there might
as well be paths leading to rejection of words in L or infinite runs.

1.1.2 Problems from a formal perspective

In theoretical computer science there is no syntactic difference between a
problem and a language as the former is the question as to whether a word
is a member of some language. Thus, when speaking of problems, we mean
decision problems, as opposed to functional problems, where we are not only
interested in some yes/no answer but in an effective solution, i. e. an assign-
ment of variables.

Based on this computational model, we can define time- and space com-
plexity classes, i. e. sets of problems that are related in the sense that a
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deterministic or non-deterministic Turing machine M is able to decide them
within a specified time- or space bound. This bound depends on the size of
the input. Thus, when speaking of polynomial time, we mean polynomial in
the size of the input word. The classes relevant for the further discussion of
AB problems will be explained in the next section.

Before doing so we are to establish completeness of some problem L in a
class C. This means that L is at least as hard as any other problem in C.

1.1.3 The complexity classes P, NP and coNP

At first let us consider the class P, i. e. the set of problems solvable in
polynomial time by a deterministic Turing machine. Instances thereof are
usually considered to be decidable efficiently on actual computing systems
[Papadimitriou, 1994]. More formally solvable in polynomial time means that
any language (a problem) in P is accepted by some deterministic Turing ma-
chine after a number of steps polynomial in the size of the input. On the
other hand, solving problems of NP, i. e. the class of problems decidable
in polynomial time by non-deterministic Turing machines, takes exponential
time on any deterministic system, unless a better algorithm is found. This
is the famous question of P = NP, that stands open since Gödel first stated
it in his letter to von Neumann.

Boolean satisfiability, which is commonly referred to as SAT, was one of
the first problems where NP completeness was proven [Cook, 1971].

Along with each class one can define its co-class, that is the set of comple-
ments of all languages contained in the class. In case of L ∈ P this does not
change much as the output of some Turing machine deciding L just needs to
be inverted, which can be done easily for deterministic Turing machines by
swapping the results. However, it is impossible for non-deterministic Turing
machines as we only assume them to guess the correct sequence for accepted
words, but make no assumption for words to be rejected.

As SAT is complete for NP, so is UNSAT for coNP, that is the ques-
tion whether there is no solution of some Boolean formula. Most probably
this is even harder than deciding satisfiability, because we need to prove
unsatisfiability for each possible solution.

The relationship of the complexity classes mentioned here is depicted in
Figure 1.2. Note, that apart from P ⊂ NP ∩ coNP none of the relations
have been proven and none of them at all has been shown to be strict. For
further information on this topic and further references take a look at the
Complexity Zoo, http://qwiki.caltech.edu/wiki/Complexity Zoo.
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NP

coNP

P

NP ∩ coNP

Figure 1.2: A possible relationship of P, NP and coNP

1.1.4 Oracles

The complexity theoretic thought experiment of oracles is meant to provide
an algorithm with an “instantaneous correct answer” [Papadimitriou, 1994]
to a question of some complexity class, which defines the power of that ora-
cle. Calls to oracles allows us to easily model subroutine calls, however, no
knowledge is required on how this subroutine works.

1.2 Linear programming

Let R be the set of real numbers and let Z denote the set of integers. The
question of linear programming is to find an assignment to x ∈ Rn, such
that the objective function c · x, for some c ∈ Rn, is minimal and a set of m

constraints is satisfied. The latter are denoted by

A · x = 0 A ∈ Rm×n.

Integer programming deals with the restriction of the entries of A and x to
Z. The standard form of denoting such problems is as follows:

min cx

s. t. Ax = 0

x ≥ 0
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This isequivalent to the general form of linear programs (LPs), where any
combination of inequalities and equations is allowed. A complete treatment
of this matter can be found in, e. g. [Papadimitriou and Steiglitz, 1982].

Whereas the restriction to integers yields an NP complete problem, the
real or rational problem is commonly solved using the Simplex algorithm,
despite its worst-case exponential runtime, because it showed to behave well
in all common cases and usually converges faster than polynomial time algo-
rithms, such as the ellipsoid method [Khachiyan, 1979].

1.3 Non-linear arithmetic problems

In case of general non-linear optimisation problems the specification is as
follows:

min f(x)

s. t. gL ≤ g(x) ≤ gU

xL ≤ x ≤ xU

Thereby f(x) : Rn → R denotes the objective function and g(x) : Rn →
Rm are the non-linear constraints, that have upper (gU) and lower (gL)
bounds.

To clarify this definition, an example shall be given:

min
x∈R4

x1x4(x1 + x2 + x3) + x3

s. t. x1x2x3x4 ≥ 25

x2

1
+ x2

2
+ x2

3
+ x2

4
= 40

1 ≤ x1, x2, x3, x4 ≤ 5

An optimal solution would be

x =









1.0
4.743
3.821
1.379









,

but finding such a solution might depend a lot on a starting point that must
be given to all kinds of solvers of this problem. For details on this problem
refer to, e. g. [Cooper, 2005].
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1.4 On the hardness of AB problems

The decision problem of linear AB problems is NP complete as it can be
solved by a Turing machine deciding Boolean satisfiability using an additional
P or NP oracle for arithmetic constraints over real or, respectively, integer
variables. As neither of these oracles pushes the computational power of the
model, the problem can as well be decided by some other non-deterministic
Turing machine as a whole. Note, that the related functional problem of
providing a single solution induces only an at most polynomial overhead and
thus a single solution can be provided within the same time bounds.

Non-linear problems, however, cannot be classified as simple as that be-
cause, as Abel proved in 1827 [Pan, 1997], there is no closed formula to solve
polynomial equations of degree greater than four. Thus all approaches must
resort to some numerical algorithms whose runtime depends on the desired
accuracy.

1.5 Conjunctive normal form

In contrast to disjunctive normal form (DNF), a Boolean formula in con-
junctive normal form (CNF) is constituted of clauses connected by a logical
“AND”. Each clause is composed of literals joined by a logical “OR”. A lit-
eral, in turn, is a Boolean variable and may be prefixed by a logical “NOT”.
A DNF formula, on the other hand, has clauses joined by “OR”, composed
of “AND”-ed literals. One should note, that the satisfiability of DNF for-
mulae can be computed in linear time, because each clause can be looked
at in isolation. However, the conversion of CNF formulae to DNF yields an
exponential blow-up and thus is usually infeasible.

Boolean formulae in CNF format are also what SAT solvers usually ac-
cept, thus an efficient conversion of arbitrary first-order-logic formulae is
desired. For details of this algorithm and possible optimisations refer to,
e. g. [Nonnengart and Weidenbach, 2001]. However, an example shall be
given. Consider the formula

(¬b1 ∨ b2) ⇒ (b3 ∧ b4).

The equivalent CNF formula is obtained by first eliminating the implica-
tion:

¬(¬b1 ∨ b2) ∨ (b3 ∧ b4)

Next, de Morgan’s rules are applied and the negations are shifted towards
the literals:
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(b1 ∧ ¬b2) ∨ (b3 ∧ b4)

We have now actually obtained a DNF formula, which can be rewritten
to a CNF formula using the distributive law:

(b1 ∨ b3) ∧ (b1 ∨ b4) ∧ (¬b2 ∨ b3) ∧ (¬b2 ∨ b4)



Chapter 2

A framework for AB problems

To be able to tackle instances of the class AB, as defined in Chapter 1,
we developed an extensible Open Source solver system. In this chapter the
architecture of our framework is explained and examples of how to use it
are given. Furthermore, we describe the external solvers used, and their
capabilities.

2.1 Design

Despite the problem we are trying to solve being computationally so hard,
efficient solvers for the Boolean and arithmetic domains have been developed
to solve most of the effectively occurring instances. Thus our aim was to
combine those existing solvers to form a system for AB problems. To do so,
we designed a layered framework, which is sketched in Figure 2.1.

Our system allows for the representation of arbitrary Boolean and arith-
metic operations. Thus we could even add arithmetic operators other than
+,−, · or ÷, such as, e. g. sin().

2.1.1 Input layer

The top level of our framework is the interface to the user, which is currently
only provided by a parser. It is, however, meant to be left out in case of
applications that intend to link the framework as a library.

The parser accepts an extended version of the DIMACS CNF format (see
[DIMACS, 1993] for a full specification), whereby we preserve compatibil-
ity to existing SAT solvers as we only added semantics to specially crafted
comments. On the other hand the user is not forced to learn yet another
file syntax. Thus the Boolean part of an AB problem is taken care of by

9



10 CHAPTER 2. A FRAMEWORK FOR AB PROBLEMS

Figure 2.1: Layered approach

DIMACS. Consider, e. g. the formula (¬b1∨ b2)∧ (b3∨¬b2), which is encoded
as shown below:

p cnf 3 2

-1 2 0

3 -2 0

In DIMACS CNF format commentary lines start with a single “c”, which,
in case of our extension, must be followed by the newly defined keyword
“def”. To be able to declare integer or floating point expressions, “def” must
in turn be followed by “int” or, respectively, “real”. To express the mapping
of arithmetic expressions to Boolean variables, as defined in the introduction
of AB in Chapter 1, we resort to the positive integer representing a Boolean
variable in DIMACS syntax. As we have thereby established all required
definitions, the rest of line is meant to contain the arithmetic comparison,
written down using the operators +, -, *, /, <, <=, =, >=, >. As a
whole, such a line looks like

c def real 1 a * x + 3.5 / ( 4 - y ) + 2 * y >= 7.1

The sole purpose of the parser is the conversion of textual input to a
format acceptable by the core of our framework, where it can be handled
efficiently and by means of objects.
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2.1.2 The core

We considered the model of integrated circuits as the appropriate real-world
equivalent to AB instances, because all Boolean and arithmetic operators
can be seen as gates. This input is either directly connected to one of the
input pins or the result of some other gate. The resulting object hierarchy is
thus an instance of the Composite Pattern [Gamma et al., 1994].

In Figure 2.2 the model of the above input lines is drawn, which corre-
spond to the following system of mixed arithmetic and Boolean constraints:

(

¬

(

a · x +
3.5

4 − y
+ 2y ≥ 7.1

)

∨ b2

)

∧ (b3 ∨ ¬b2)

The figure shows an artificial operation named “PROP” that represents
the mapping of Boolean variables to arithmetic comparisons (see Section 2.4
on page 16 for further details). To avoid confusion with numbers, the Boolean
variables {1, 2, 3} were renamed to {b1, b2, b3}, which happens within our
application in a similar manner.

The resulting input pins of the circuit correspond to the variables of the
AB problem, whereas the circuit offers only a single output pin representing
the truth value of the problem for a given assignment, which may be “true”,
“false” or “don’t know” in case some variables have not been assigned to.

It should be noted that a circuit object is self-contained in the sense that
all necessary evaluations are done internally. As such, given some circuit, it
suffices to pass around sets of variable assignments, apply them to the circuit
and request the output value.

For the ease of use we keep track of variable names assigned by the user,
whereby we can also provide readable solutions once they are found. Unique-
ness of these variables within a circuit is guaranteed by a so called variable
pool, which is part of each circuit. Additionally, the implementation of vari-
ables within our framework allows for clear distinction between real and
integer arithmetic and thus for an efficient implementation of each of them.

2.1.3 Interface to external solvers

A crucial point of our approach is the integration of external solvers, which
must be as tight as possible to allow for an efficient implementation, how-
ever, it must still be as loose as to make solvers interchangeable. We try to
achieve the best possible results using a well defined interface as described
in Section 2.3.2 on page 15. Each instance of this interface must itself take
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Figure 2.2: The internal representation
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care of the efficient application of the underlying solver, but the main task
remains the conversion of the circuit to the format the solver requires. To
this end we make heavy use of the Visitor Pattern to extract the parts of the
circuit relevant for each solver.

2.2 A short glance at existing solvers

In this section we provide a detailed explanation of the external solvers we
are using and add some notes, why each of them is particularly useful for our
system.

2.2.1 SAT solvers

Current solvers of the Boolean satisfiability problem rely on the DPLL pro-
cedure ([M. Davis and H. Putnam, 1960], [Davis et al., 1962]) extended by
various optimisations and heuristics. These algorithms enable them to solve
even very large instances in reasonable time and the SAT competition (http:
//www.satcompetition.org) pushes further improvement. Whereas nearly
all of these solvers accept input in DIMACS syntax, their output varies
largely. Thus an important task of each solver’s interface is to parse the
output provided by the solver and rewrite it to constitute an assignment to
the circuit.

Due to the fact, that our algorithm, as described in Section 2.4 on page 16,
possibly requires all solution of the Boolean problem we started out using
the LSAT [Bauer, 2005] solver, which is capable of computing all solutions
in a single run.

Next, support for GRASP [Marques-Silva and Sakallah, 1996] has been
added, which is faster that LSAT for some problems, but proved not to be
as stable and aborted on problems with a high number of solutions. Further-
more, GRASP prints solutions in a compressed format, i. e. for each set of
solutions where only some variables are fixed and the others may be “true”
and “false”, only the fixed ones are printed. Even though improvements are
being considered in this area, the current implementation requires the full
set of solutions and thus the interface needs to build the remaining parts.

One of the best known solvers is zChaff [Moskewicz et al., 2001], which
can cope easily cope with hard instances, but for our application it has the
disadvantage that it does not offer any means to obtain all possible solutions
at once. Consequently it has to be called again and again while adding the
negated result as a new clause until the system becomes unsatisfiable. This
loop incurs a notable overhead of invoking the process in each iteration, thus
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this solver should only be used for very hard instances. However, there is
also a C++ library delivered with the solver, whereby the forking overhead
is eliminated and our system can fully benefit from zChaff’s strength.

As the computation, and even more so the storage, of all solutions of the
Boolean system at once is likely to be infeasible on actual systems, we added
code to return only a single solution at each call to the interface to the zChaff
library – the same feature will be added to other solvers in the future.

2.2.2 Linear solvers

Linear optimisation problems play an important role in business and thus
there is a whole load of linear solvers, yet very few of them are freely
available. Whereas lp_solve [Berkelaar et al., 2005] is fairly well known
in the area of free software, the Common Optimization Interface (COIN)
[Lougee-Heimer, 2003] seems to be a lot more professional and includes inte-
ger solvers that perform very well. As we already had some experience using
it, embedding it in our framework was a straight forward task. Furthermore
COIN itself provides interfaces to other, mostly commercial, linear solvers
that could be used via a single interface.

2.2.3 Non-linear solvers

As opposed to linear programming, code for non-linear programming is still
very seldom and mostly restricted to Fortran functions. One of the freely
available non-linear solvers offering a C++ interface is the Interior Point Op-
timizer (IPOPT) [Wächter and Biegler, 2006], but, as do most of the solvers
in this area, it requires a lot more information about the problem, including
derivatives, which we compute using CppAD [Bell, 2003], a tool for auto-
matic differentiation.

2.3 Aspects of the implementation

The whole project contains more than 12,000 lines of code, half of which ac-
counts for the core. The build environment is managed using GNU autotools
[Vaughan and Tromey, 2000], which supported a structured organisation of
the source files. Thus, even though urrently the control task is completely
implemented in the main function, the movement of which to other parts of
the code soon to facilitate the use of the system as a library will be easy.
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2.3.1 Reasons for using C++

The framework has been implemented using C++ as it offers, e. g. templates,
which are handy when it comes to implementing the operations like addition
or multiplication for different data types, which also holds for the imple-
mentation of variables. Furthermore it features many ways of optimisation
[Meyers, 1998], which we made heavy use of as far as the core is concerned,
whereas the solver interfaces still demand a lot of profiling and improvement.
As our system continues to be a growing software project, we also benefit
from the scalability of the language [Lakos, 1996].

2.3.2 Solver interface

To get a better idea of the algorithm we present in the next section, we briefly
discuss the interface to external solvers in terms of the methods. Note, that
we omitted any implementation details, such as constness or namespaces.

unsigned solve( CircuitConcept *, SolutionSet &,

SolutionSet & );

This function is the only one required for communication between the algo-
rithmic control and the solver itself. Whereas the CircuitConcept, which
is the representation as discussed in Section 2.1.2 on page 11, is an input
only, the SolutionSets are also ways to provide output in the sense that
each solver it meant to store, if applicable, a feasible solution and computed
conflicts in those objects. The return value provides some status informa-
tion, if supported by the solver interface. To obtain information on whether
something is supported or not, the function

unsigned capabilities();

is part of the interface. Besides the definition of applicable status codes, the
returned value includes information on the arithmetic or Boolean domains
supported by the underlying solver.

One of the major design goals were means of providing access to solver-
specific heuristics. As such, each solver may be configured on the command
line without any need to modify the main procedure for each option. To this
end, each solver must have a unique name, which can internally be obtained
using the

string name();

function. For the actual parameters, the following methods are provided:
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void set_option( string & name, Parameter const & p );

string list_options();

Both of which are meant to be used by any kind of front-end, which can
thereby list the available parameters and set any of them.

2.4 The basic algorithm

The current control loop, which is run until either the desired number of
solutions has been found or no further valid assignments can be obtained, is
very simple and improvements as explained in, e. g. [Hofstedt, 2001] are to
be considered.

The basic idea is as follows: The SAT solver is queried for all solutions
to the Boolean part of the problem and possibly returns a set of valid as-
signments. Each of them is then applied to the circuit, whereby all Boolean
variables attain values, as well as the propositional gates, which take care of
the mapping to arithmetic comparisons. They do so by ensuring the equality
of the value of the Boolean variable, which is attached to the first input, and
the truth value of all attached arithmetic comparisons. The gate evaluates
to “true” if and only if the value of the Boolean variable is “true”, as well as
the truth value of all attached comparisons.

Using the preconditions provided by the current assignment, the arith-
metic solvers are called, whose input is built using the arithmetic terms and
a comparison operator depending on the value supposed by the propositional
gate and the operator of the original problem. To clarify this idea, reconsider
the the Boolean variable b1 in Figure 2.2 on page 12 and the related com-
parison ≥. Under the assumption that b1 were assigned “false”, this would
result in the inversion of ≥ to <.

Let us elaborate on this workflow using the following example of mixed
Boolean, linear and non-linear constraints. The set of assignments found is
directly taken from the output provided by our system – the complete session
is printed in Appendix B. The AB instance reads as follows:

((i ≥ 0) ∧ (j ≥ 0))

∧ (¬(2i + j < 10) ∨ (i + j < 5))

∧

(

a · x +
3.5

4 − y
+ 2y ≥ 7.1

)

Spelled out in terms of our input format, the following input must be
provided to our solver:
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Figure 2.3: Control loop
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p cnf 4 3

1 0

-2 3 0

4 0

c def int 1 i >= 0

c def int 1 j >= 0

c def int 2 2*i + j < 10

c def int 3 i + j < 5

c def real 4 a * x + 3.5 / ( 4 - y ) + 2 * y >= 7.1

The solver is then called as, e. g.

ABsolver -f inputfile -ssat:zchafflib -Sall_solutions=false \

-sl:coin -Sverbosity=0 -snl:ipopt

This set of parameters tells our tool to read the input from inputfile

and to use the solvers sat:zchafflib, which is the library version of zChaff,
and l:coin, which is the COIN linear solver, and the non-linear solver
IPOPT, internally named nl:ipopt. Furthermore the solver-specific options
verbosity and all_solutions are set. For a detailed description of these
and all further options run ABsolver --help.

Back at the workflow, the next step is processing the input, whereby the
circuit is built by the parser. This circuit is then read by the interface of the
SAT solver and, in this case, converted to a set of instructions for the zChaff
library. The first solution returned by the SAT solver is

b1 = true, b2 = false, b3 = true, b4 = true.

As the truth value of the complete system is still “don’t know”, the linear
solver is called to solve the system

i ≥ 0

j ≥ 0

2i + j ≥ 10

i + j < 5

This linear system, however, is infeasible and thus the control gets back
at the SAT solver, which is asked for another solution. It provides

b1 = true, b2 = false, b3 = false, b4 = true,
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which implies

i ≥ 0

j ≥ 0

2i + j ≥ 10

i + j ≥ 5

with the solution of i = 5, j = 0. Yet, the overall value is still “don’t know”
as the feasibility of the non-linear inequality has not been proven. This is,
however, an easy task for IPOPT, which provides a = 0, x = 0, y = 2.52904
as a valid assignment, whereby the mixed system attains “true”.

2.5 Extensions and optimisations

Lists of solvers. Despite the strength of existing solvers in the various
domains one should be aware of the fact that not all of them are equally well
suited for all instances and might even abort on hard problems. Thus we
added support for the use of a list of solvers at each stage, which are queried
until one of them provide a decent result, i. e. either is able to tell infeasibility
or to return a solution. To this end we add that infeasibility is not defined as
returning no solution, but rather via the status code provided by the solve

method. This is due to the fact that not all arithmetic solvers are able to
reliably prove unsatisfiability, but might instead stop after a certain number
of iterative steps.

Conflict learning. On the other hand, if an arithmetic solver is able to
prove infeasibility of the current instance passed to the solver, it can be
extended to compute a smaller unsatisfiable subset of the arithmetic expres-
sions. This is done by sequentially removing constraints until a satisfiable
system is obtained, thus the last expression that has been removed must be
part of a conflict. This process is continued until removal of all constraints
has been attempted once, so this takes as many steps as the number of con-
straints.

2.6 Domain-specific issues

2.6.1 Exponential number of Boolean assignments

In case the Boolean part of the AB instance at hand has a huge number of
solutions, having the SAT solver find all solutions at once will likely result
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in enormous memory consumption and is thus infeasible. To circumvent this
issue, the interface to the zChaff SAT library has been extended to compute
only a single assignment each time its solve method is called. Still, the
result is retained to guarantee that the is solution is only returned once. A
similar extension is planned for all other SAT solvers as well.

2.6.2 Defining an objective function

Even though we are not interested in finding an – in any way – optimal
solution to the arithmetic problem, the external arithmetic solvers require
use to specify an objective function of the optimisation problem, as defined
in Section 1.2 on page 5. In case of the linear solver we resort to the constant
zero function, which causes the Simplex algorithm to stop as soon as a feasible
point has been computed, because no improvement of the object value is seen
in any search direction.

For the non-linear solver, on the other hand, we refrained from doing so as
experiments proved a very bad performance. There we resort to the absolute
value of the constraint violation and, in case of IPOPT, we are also required
to provide derivative information and can use it as a further measure to guide
the solver to a feasible solution.

2.6.3 Starting point for non-linear optimisation

As noted in Section 1.3 on page 6, the non-linear solvers require us to provide
a starting point. The current implementation tries to provide 0 as an initial
value for all variables, but searches for alternatives by adding 0.1 to each of
the variables, if the prior assignments would have resulted in divisions by
zero.

2.6.4 Exponential number of arithmetic systems

Given a proposed truth value of some arithmetic comparison, we possibly
need to invert the comparison operator, as discussed in Section 2.4 on page 16.
Consequently, in case of equalities, we obtain expressions that must not be
equal. Inevitably this results in an exponential number of arithmetic sys-
tems as these hyperplanes split the n-dimensional space into an exponential
number of simplexes and feasible solutions could be located in any of these.
Even though the hyperplanes form a null set for real arithmetic (see any
textbook on analysis and linear algebra, such as [Fischer, 2002], for an ex-
haustive treatment of these topics), this is not true for integer and finite
precision computation and the methods suggested by [Bozzano et al., 2005]
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are, in our opinion, not fully applicable. However, due to the way we de-
fined the objective function for non-linear arithmetic in the IPOPT solver
interface, the idea of [Bozzano et al., 2005], that is simply removing any “not-
equal” constraints and only verifying that possible solutions do not violate
the constraints, might be viable.

Additionally it should be noted that the conflict deduction is disabled in
such cases as only those conflicts would be valid that can be found in all of
the systems.

2.6.5 Precision in floating point comparisons

Due to the limited precision of data types for real arithmetic, such as double,
testing for equality might yield unexpected results. For a detailed treatment
refer to, e. g. [Kahan, 1997], but as a simple example just consider that 1.6 ·3
and 4.8 are off by approximately 10−16. Thus such comparisons must be
implemented as tests for the absolute difference being below some threshold.

For the same reasons working with strict inequalities on computer systems
is different than in theory, because for an expression like x > 1 there might
be a solution that is slightly greater than 1 with the difference being beyond
the precision of the data type. Due to the fact that the used external routines
only deal with non-strict inequalities we need to convert strict inequalities
by adding or, respectively, subtracting some threshold which depends on
precision of the solver, as it should be as low as possible. The resulting
conversions are, e. g. as follows:

Integer: x + y < 10 → x + y ≤ 9

Real: a + b > 1.5 → a + b ≥ 1.500001

Besides the dependence on the solver’s precision, the desired threshold
might be problem specific and can be specified as an option to the arithmetic
solvers.
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Results

In this chapter we present the main experimental results of our work, as well
as a set of applications.

3.1 Use cases

In the following pages we list a few use cases, where aspects of our implemen-
tation allow for either totally new applications or performance improvements
over existing solvers. Even though our system has not been planned with
those particular applications in mind, the design showed to allow for unique
features that make the tool applicable in various areas. One should consider
that the domain of verification is what satisfiability modulo theories aims at,
however, the problem as described in Section 3.1.4 on the following page was
not solvable by any of the competitors. Still, we must be aware of the fact,
that tools like MathSAT or CVC Lite [Barrett and Berezin, 2004] perform
very well when problems are restricted to linear real arithmetic. Further-
more, CVC Lite is even able to deal with polynomial expressions and thus
covers parts of the non-linear domain.

3.1.1 Diagnosis

The task of diagnosis is, given an observation that deviates from the ex-
pected outcome, to find faulty components that explain such a behaviour.
The related background and methods to perform this task were introduced
by Reiter [Reiter, 1987], another approach using propositional logic was pre-
sented in [Bauer, 2005]. In either case, the correctness of numerical values
is tested by monitors, as the Boolean reasoning can only take care of truth
values.

23
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Using mixed logical and arithmetic solvers instead allows for modelling
the diagnostic task directly, but the tools must meet a few requirements:
They must be capable of printing a solution as satisfiability is already known,
given the observation of an error. Furthermore all solutions must be provided
to facilitate the computation of minimal conflicts. Both of these requirements
are met by our tool.

3.1.2 Test case generation

Testing software and hardware systems is commonly performed using a set
of input vectors and checking correctness of the corresponding output. To
obtain reliable results that offer full statement coverage or even full path
coverage the effective system has to be analysed and modelled. Several ap-
proaches are discussed in [Broy et al., 2005], which also offers a more exten-
sive reference on this topic.

The applicability of mixed Boolean and arithmetic solvers has already
been shown in [Fallah et al., 2001], where these tools were proposed to sup-
port directed test case generation for a selected path. As we are able to
compute all solutions of a mixed system, we can examine all paths at once
and return the set of test vectors required for full path coverage.

3.1.3 Puzzles and games

Even though all interesting games are at least NP complete and can thus
be encoded as Boolean satisfiability problems, this approach may be quite
difficult, especially if numbers other than 0 and 1 are involved. Instead it is a
lot easier to rewrite the problem as a mixed arithmetic and Boolean problem.

As an example, consider the following problem of a coloured cube, given
nine red, nine blue and nine white pieces: Form a 3 × 3 × 3 cube, such
that every diagonal, every space diagonal and all vertical or horizontal rows
contain exactly two different colours.

As a possible encoding of this problem collapses to a system of linear
integer constraints, we benefit from the strength of our linear solvers, as seen
in Section 3.2 on page 27.

On the other hand, for puzzle developers it is interesting to verify, whether
a problem has only a single solution or more of them. This is supported by
our approach by simply asking the solver to find two solutions.
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3.1.4 Verification

Figure 3.2 depicts an aspect of the the steering control system of a car,
including some black boxes whose function is known and includes Boolean
and arithmetic operations. These are sketched as follows: The controller
obtains floating point data from a yaw sensor, a lateral acceleration sensor,
speed sensors at each wheel and the steering angle. Using these inputs, it
is due to the system to detect over- or under-steering and to direct a step
motor accordingly to keep the car stable, whereby critical driving situations
should be avoided.

The task is to prove that there are no faults in this design that could lead
to hazardous driving situations. To do so, the controller and the environment,
i. e. the car, need to be modelled. Whereas the model of the controller can be
linearised with some effort, the model of the environment inevitably yields
non-linear expressions. As such the industry relies on extensive simulation
to ensure the correctness of the controller, because tools like SCADE cannot
cope with non-linear problems.

Figure 3.1: Workflow of the conversion

The extensible design of our tool and the resulting integration of non-
linear solvers allowed the expression of the complete system, yet a conversion
from Mathlab Simulink was required. The procedure is depicted in Figure 3.1
and involved 21 stages, but was done automatically apart from the import
into SCADE. The result were 976 Boolean CNF clauses and 24 non-linear
expressions that were obtained within 3 hours on a 3.2 GHz Intel Xeon
system.
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Figure 3.2: Aspect of a controller of a car steering
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The detailed workflow is as follows: As SCADE writes each component
of the controller into a file, these are combined using the C preprocessor and
some dependency deduction. In the next steps, expressions such as “if–then–
else”, “Abs” and “<>” are replaced to obtain valid AB expressions. After
splitting the Boolean and the arithmetic parts, the logical formulae must be
rewritten to CNF, which causes a huge blow-up. As the size of intermediate
expressions exceeded 1 GByte, we were to write our own tool, which writes
the formulae to the hard drive and only works on subexpressions, whereby
we are able to work at a constant memory consumption of approximately
25 MBytes. Before generating the final output, the Boolean formulae are
checked for redundancies and tautologies, which allowed for the reduction to
a size of 20 KBytes.

3.2 Benchmarks

Table 3.1 summarises the times it took us to solve some problems. A detailed
description of each benchmark is given below. The second and the third
benchmark were run on a x86 system with 2.1 GHz and 1024 MBytes of RAM,
because MathSAT is only distributed in binary form. The other experiments
were conducted on a 1.5 GHz PowerPC-based system with 1280 MBytes
of memory. In all cases we used the command line parameters given in
Section 2.4 on page 16.

Name Time Competitor Time
Presentation 0.2 s - -
Cube 12 s MathSAT 304 m
MathSAT/DTP k2 n35 c175 s1 410 m MathSAT 0.1 s
Steering control 59 s - -
ISCAS/s344 0.2 s zChaff 0.03 s

Table 3.1: Benchmark summary

Presentation. This is the example described in Section 2.4 on page 16.
As it contains a non-linear part, we had no competitors to test.

Cube. An encoding of the puzzle explained in Section 3.1.3 on page 24,
the resulting system had 634 linear integer inequalities over 81 variables. In
contrast to out competitor, MathSAT, we benefit from the powerful linear
integer solver provided by COIN.
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MathSAT/DTP k2 n35 c175 s1. This is an artificial problem, taken
from the MathSAT benchmark suite, which should soon be available again
at http://mathsat.itc.it/benchmarks.html. This particular instance has
35 real valued variables in 350 inequalities. These are part of 175 Boolean
CNF clauses with two literals each. The Boolean system on its own is triv-
ial and has 3175 possible solutions. Without a conflict strategy, finding a
solution is merely infeasible.

Steering control. This is the industrial application as discussed in Sec-
tion 3.1.4 on page 24.

ISCAS/s344. This example has been taken from the ISCAS89 bench-
mark suite, which models real logic circuits and their faults, and is avail-
able from http://www.visc.vt.edu/∼mhsiao/ISCAS89/s344.bench. It is
merely used to measure the overhead of our parser, which accounts for most
of the 0.2 seconds as computing two solutions takes only 0.03 seconds longer.



Chapter 4

Conclusions

In this thesis we presented a new approach towards the problem of mixed
arithmetic and Boolean constraint systems. The importance of this kind of
problems, which we defined to be the class of AB was underlined by the set
of use cases explained in Chapter 3 on page 23. However, this list is most
probably still far from complete.

To be able to tackle the new set of problems we developed an extensible
framework that offers new features, such as the applicability of domain spe-
cific heuristics or computing any number of solutions of the system, which
my even come in handy for Boolean-only problems.

The benchmark results (cf. Section 3.2 on page 27) are promising, how-
ever, a lot more testing is required which was impossible due to the time
constraints of this thesis as it requires a lot of format conversion. This will
be a lot easier once the new parser has been implemented (see Section 4.2 on
the next page).

4.1 Contribution

Even though the primary goal of this thesis was a solver for mixed logical and
linear systems, the idea of doing non-linear arithmetic came up very early.
This was due to the real-life problem of the car steering control system, which
could not be solved by any of our competitors. The extensible design proved
very useful as there was no need for extensions within the core of our system
to support these constraints.

It was again the extensibility that was useful as the hardness of some
benchmarks required the addition of zChaff as a more powerful SAT solver,
which was very little work.

To a very different end, the system is intended for the working program-
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mer and all interfaces are well documented, which will be helpful for further
extensions that are not yet predictable, but will surely be required. Although
the area of satisfiability modulo theories and the corresponding tools seem
to provide a lot of functionality, our tool will be used by at least two other
diploma thesis in the next months. Therefore we conclude that the existing
tools do not satisfy the needs of the potential users.

4.2 Possible extensions

As the framework is published under an Open Source license and available at
http://absolver.sf.net, all programmers are welcome to contribute new
ideas. However, our own list of open tasks includes many desired improve-
ments, a few of which shall be presented here.

One of most important tasks is the implementation of a parser for the
SMT format [Ranise and Tinelli, 2005], whereby we will be able to do a lot
more testing without the need to convert each of the benchmarks to our input
format. This will gain even more importance when it comes to testing new
conflict strategies. To this end, the ideas of [de Moura and Ruess, 2002] are
to be studied and implemented. Furthermore, there is basically no need to
have a complete assignment of the Boolean problem, if some subset already
guarantees that the result will be “true”, which is perfectly supported by
GRASP. This would lower the number of Boolean solutions and reduce the
number of arithmetic constraints that need to be satisfied.

In the area of arithmetic solvers a lot more research and testing of ex-
ternal solvers is required, especially the non-linear part would benefit from
that. Even more so, an approach of using equation solvers instead of opti-
misation software by an introduction of slack variables might provide a lot
more efficiency.



Appendix A

EBNF description of the input
format

The following grammar is a complete EBNF description of our input format.
For a short introduction to EBNF see, e. g. [Marcotty and Ledgard, 1986].

unsigned ::= [0-9][0-9]*

integer ::= <unsigned>

| -<unsigned>

real ::= <integer>

| <integer>.<unsigned>

edimacs ::= <lines> EOF

lines ::= EOL

| <lines> <dimacs> EOL

| <lines> <extension> EOL

dimacs ::= <problem_description>

| <comment>

| <clause> 0

problem_description ::= p cnf <unsigned> <unsigned>

comment ::= c <printable characters>

clause ::= <integer>

| <clause> <integer>

extension ::= c def <integer_decl> <unsigned> <int_eq>

| c def <real_decl> <unsigned> <real_eq>

integer_decl ::= int

| i

real_decl ::= real

| r

int_eq ::= <int_expr> <comparison> <integer>

real_eq ::= <real_expr> <comparison> <real>

comparison ::= <
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| >

| =

| <=

| >=

int_expr ::= <integer>

| <variable>

| <int_expr> + <int_expr>

| <int_expr> - <int_expr>

| <int_expr> * <int_expr>

| <int_expr> / <int_expr>

| ( <int_expr> )

| -<int_expr>

real_expr ::= <real>

| <variable>

| <real_expr> + <real_expr>

| <real_expr> - <real_expr>

| <real_expr> * <real_expr>

| <real_expr> / <real_expr>

| ( <real_expr> )

| -<real_expr>

variable ::= [a-zA-Z][a-zA-Z0-9_]*



Appendix B

Example session

The following listing is the output provided by our solver for the problem
described in Section 2.4 on page 16. To gain some more information, the
parameter for increasing verbosity (-V) has been added twice.

$ src/ABsolver -f examples/presentation -VV -ssat:zchafflib \

-Sall_solutions=false -sl:coin -Sverbosity=0 -snl:ipopt

Trying SAT solver...

done.

Applying 1_bool=1 2_bool=0 3_bool=1 4_bool=1

Value is now DONT_KNOW

At that stage the first Boolean assignment has been computed, which is

b1 = true, b2 = false, b3 = true, b4 = true.

Yet, the overall truth value is unknown.

Trying linear solver... Coin0510I Presolve is modifying 2 integer

bounds and re-presolving

Coin0506I Presolve 2 (-2) rows, 2 (0) columns and 4 (-2) elements

Cgl0000I Cut generators found to be infeasible!

done.

Linear system is infeasible.

Trying SAT solver... Adding conflict 1_bool=1 2_bool=0 3_bool=1

The linear solver was able to prove that the resulting system is infeasible.
Thus a conflict is computed and used by the SAT solver.

done.

Applying 1_bool=1 2_bool=0 3_bool=0 4_bool=1

33
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Value is now DONT_KNOW

Trying linear solver... Coin0506I Presolve 0 (-4) rows, 0 (-2)

columns and 0 (-6) elements

Cgl0004I processed model has 4 rows, 2 columns (2 integer) and

6 elements

done.

Applying i=5 j=0

Value is now DONT_KNOW

A feasible solution of i = 5, j = 0 has been found for the linear system,
however, the feasibility of the non-linear system is unknown.

Trying nonlinear solver... Problem solved

done.

Applying a=0 x=0 y=2.52904

Value is now 1

Satisfying assignment: 1_bool=1 2_bool=0 3_bool=0 4_bool=1 /

i=5 j=0 / a=0 x=0 y=2.52904

The non-linear system was found to be feasible and a valid solution of
a = 0, x = 0, y = 2.52904 has been returned. As the overall value is now 1,
which is equal to “true”, the solver finishes and prints the complete solution.
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[Wächter and Biegler, 2006] Wächter, A. and Biegler, L. T. (2006). On the
implementation of an interior-point filter line-search algorithm for large-
scale nonlinear programming. Mathematical Programming, 106(1):25–57.

[Wolfman and Weld, 1999] Wolfman, S. A. and Weld, D. S. (1999). The
LPSAT Engine and its Application to Resource Planning. In Proceedings
of the Sixteenth International Joint Conference on Artificial Intelligence
(IJCAI’99), pages 310–316.


