
Tool-support for the analysis of hybrid systems and models

Andreas Bauer Markus Pister Michael Tautschnig

Institut für Informatik, Technische Universität München
{baueran, pister, tautschn}@informatik.tu-muenchen.de

Abstract

This paper introduces a method and tool-support for the
automatic analysis and verification of hybrid and embed-
ded control systems, whose continuous dynamics are often
modelled using MATLAB/Simulink. The method is based
upon converting system models into the uniform input lan-
guage of our efficient multi-domain constraint solving li-
brary, ABSOLVER, which is then used for subsequent anal-
ysis. Basically, ABSOLVER is an extensible SMT-solver
which addresses mixed Boolean and (nonlinear) arithmetic
constraint problems as they appear in the design of hy-
brid control systems. It allows the integration and semantic
connection of various domain specific solvers via a logical
circuit, such that almost arbitrary multi-domain constraint
problems can be formulated and solved. Its design has been
tailored for extensibility, and thus facilitates the reuse of
expert knowledge, in that the most appropriate solver for
a given task can be integrated and used. As such the only
constraint over the problem domain is the capability of the
employed solvers. Our approach to systems verification has
been validated in an industrial case study using the model of
a car’s steering control system. However, additional bench-
marks show that other hard instances of problems could
also be solved by ABSOLVER in respectable time, and that
for some instances, ABSOLVER’s approach was the only
means of solving a problem at all.

1 Introduction

Hybrid and embedded control systems in general impose
a challenge for automatic verification and validation due to
the complex interplay with and often at the pace of their
environment, and the continuous, nonlinear system artifacts
to be considered. However, verification and validation tasks
of such systems are often translatable into a multi-domain
satisfiability problem, and can then be tackled using dedi-
cated solvers. In a nutshell, this particular class of problems
constitutes a Boolean combination of arithmetic formulae
building up constraints over the logical model of the mixed-

domain problem. Checking as to whether a Boolean com-
bination of linear equations is satisfiable or not has gotten
a lot of attention in recent years due to the availability of
highly efficient SAT-solvers that are able to process hun-
dreds of thousands of Boolean variables and clauses within
an instant, but especially the emerging field of satisfiability
modulo theories (SMT) delivered promising results in this
area [1, 3, 8].

A possible representation of Boolean-linear satisfiabil-
ity problems is as follows. Let V = {v0, . . . , vm}, with
m ∈ N0, be a set of variables that are instantiated by α :
V → B in the usual way. Further, let A = {

∑n
i=0 aixi ≷

c | ai, xi, c ∈ R, 0 ≤ i ≤ n}, with n ∈ N0, be the set of
linear arithmetic expressions, where ≷∈ {<,>,≤,≥,=}.
A valuation function δ : A → B assigns a Boolean value
to each linear arithmetic expression from A, depending on
whether or not the comparison is satisfiable. A formula F
with the usual Boolean connectives over V , constitutes a
mixed Boolean-linear system, if each of its occurring vari-
ables v ∈ V is substitutable by an expression from A.

An algorithmic approach to solve an instance of F is to
first split the mixed problems into individual constituents.
Next, a SAT-solver is queried for the solution of the Boolean
constituent, returning a valid (or possibly empty) assign-
ment α to all the variables v ∈ V occurring in F . As each
linear expression a ∈ A occurring in F is associated with a
variable va ∈ V the valuations of δ are implied:

∀a ∈ A : δ(a) ⇔ α(va).

This makes up the linear constraint system, where each ele-
ment a ∈ A or the complement¬a must be satisfied. In case
a ≡

∑n
i=0 aixi = c is an equation and ¬a is implied by α,

either
∑n

i=0 aixi < c, or
∑n

i=0 aixi > c must be satisfi-
able. The resulting system of linear (in)equalities is tested
by a linear solver, and satisfiability of the overall system is
shown by iterating this process until a solution is found, or
all possible assignments have been shown infeasible.

1.1 Contribution

Despite the impressive results on tackling this particular
class of multi-domain satisfiability problems [3, 9], there

exist many verification problems which cannot be expressed
using this kind of formalism due to the natural limitations
of linear arithmetic. ABSOLVER addresses these problems

1

Out1

AND

OR

NOT

AND

2

3.5

4

2

< 5

< 10

>= 0

>= 0

>= 7.1

5

j

4

i

3

y

2

x

1

a

Figure 1. A MATLAB/Simulink example model.

by providing means for solving both linear as well as a
set of nonlinear problems, referred to as AB-problems (see
Sec. 2), with a single engine. Moreover, due to its extensi-
bility, it benefits from individual state-of-the-art solvers that
can be integrated at ease. As such, it does not rely on a fixed
algorithm for a fixed class of problems, as is the case with
most other mixed-domain solvers (see Sec. 1.2).

Consequently, we formally introduce the class of AB-
problems that can be tackled by ABSOLVER, and show how
various reasoning tasks can be expressed in terms of anAB-
problem. The class AB comprises, in addition to Boolean
and linear constraints, continuous and nonlinear constraints.

To combine the different domains, we have developed
a straightforward input syntax which integrates seamlessly
into standard DIMACS format used by most modern SAT-
solvers, i. e., apart from the Boolean clauses, we parse cus-
tom extensions to a comment line. Thus, our format is
still understood by any Boolean solver not aware of the
extensions. As a result, we provide a highly customis-
able solution for solving multi-domain satisfiability prob-
lems without having to study the internals of various third-
party solvers.

The capabilities of our input language are best de-
scribed by a straightforward example, using the MAT-
LAB/Simulink model depicted in Fig. 1 as an input model.
Such models are a common representation of complex be-
haviour of reactive and embedded systems with respect to
their environment or the physical processes they control.
Fig. 2 then shows how such a model can be expressed in
terms of our input language (for an automatic conversion,
see Sec. 3), where frames are used for emphasising the cor-
respondence between Boolean variables and arithmetic con-

straints as induced by the model. The arithmetic constraints
are encoded in the comment-lines starting with c, whereas
the Boolean system consisting of four Boolean variables
(1 . . . 4) is encoded on top. For example, the Boolean vari-
able 3 is associated with the constraint i + j < 5, and so
forth. Note that the mathematical representation on the top
right is not part of the input language and appears here only
for explanation.

p cnf 4 3
1 0 ((i ≥ 0) ∧ (j ≥ 0))
-2 3 0 ∧

(
¬(2i + j < 10) ∨ (i + j < 5)

)
4 0 ∧

(
a · x + 3.5

4−y + 2y ≥ 7.1
)

c def int 1 i >= 0
c def int 1 j >= 0
c def int 2 2*i + j < 10
c def int 3 i + j < 5
c def real 4 a * x + 3.5 / (4 - y) +
2 * y >= 7.1

Figure 2. The AB-problem given by Fig. 1 and
ABSOLVER’s representation.

ABSOLVER can use standard components like zChaff [7]
or COIN [5] for solving their part of the problem, as well
as any other solver. Due to its internal bookkeeping it is
able to compute all models for a given satisfiability prob-
lem, should it be required either to help resolve conflicts or
if more than one solution is requested by the user, should it
be required to decide some real-world problem. The various
constituents of our solver are customisable via command
line parameters, say, to allow the use of specific heuristics.

In the following we give first results from having used
ABSOLVER as an efficient validation vehicle for reactive
systems designed using MATLAB/Simulink. Moreover, we
discuss the internals of ABSOLVER and describe how it
can be integrated in already existing modelling tools, e. g.,
as a means for a validation or verification engine. AB-
SOLVER is available as an open source tool from http://
absolver.sf.net/, along with benchmarks and docu-
mentation.

1.2 Related work

There exist various multi-domain solvers, in particular,
for the above described class of Boolean-linear problems;
one of the most well-known being MathSAT [3]. MathSAT
integrates both a Boolean as well as a linear solver and ben-
efits from a tight integration of its constituents. However,
it does not cater for integration of third-party solvers and is

2

not suited for other problem classes, such as imposed by
nonlinear equation systems. Nonlinear equation systems
play a crucial role in the verification of systems this pa-
per is concerned with. For instance, the physical environ-
ment of embedded control systems is often approximated
by complex, continuous differential equations whose (au-
tomatic) solution imposes nonlinear constraint problems.
Other multi-domain solvers, such as CVC lite [1] target
such nonlinear problems, and work similar to MathSAT, in
that they offer integrated specialised solvers, but in prac-
tice their limitations are not always obvious to the users of
such systems (see Sec. 5). Moreover, we found in our in-
dustrial research projects that commonly used verification
suites, such as SCADE which can also be used in combina-
tion with MATLAB/Simulink designs of reactive systems
[4], do not address AB-problems. As such, only a specific
subset of a model may be validated using these tools, or ad-
ditional linearisation must be performed before validation.

The arbitrary combination of discretionary solvers de-
scribed in this paper, combined with a uniform interface in a
single library is, to the best of our knowledge, not provided
by any other solving framework at the moment. However,
we are aware of at least one ongoing research project whose
technical infrastructure appears somewhat similar to our ap-
proach, but whose focus rests on the tight integration and
optimal distribution of domain-specific problems and cor-
responding solvers [10]. At the time of writing, the techni-
cal infrastructure of this project was in its early stages and,
therefore, not reflected in our comparative benchmarks.

1.3 Outline

The rest of the paper is structured as follows. The
next section gives a brief introduction to the class of AB-
problems, which can be tackled by our solver. In Sec. 3, we
discuss the feasibility of AB-problems in the real world by
presenting first results from an industrial case study, vali-
dating a car’s steering control system modelled with MAT-
LAB/Simulink. Sec. 4 then describes ABSOLVER’s inter-
nals as well as the interface provided to the user of the
system. Sec. 5 contains comparative benchmarks for AB-
SOLVER with respect to a number of standard test suites
(SMT-LIB) as well as a number of artificial multi-domain
problems, imposing linear as well as nonlinear constraints.
Finally, conclusions of our work are summarised in Sec. 6.

2 The AB-satisfiability problem

The class of problems tackled by our solver is referred to
as AB (short for arithmetic-Boolean) and characterised as
follows. We first fix a set of variables V . Let B = B ∪ {?},
and A = {a0x0 op1 . . . opn anxn ≷ c | ai, xi, c ∈ R, 0 ≤
i ≤ n}, with n ∈ N0 and opi ∈ {+,−, ∗, /}, defining the

set of (possibly) nonlinear arithmetic expressions. The two
functions α and δ extend canonically as in α′ : V → B and
δ′ : A → B. Notice, B resembles a 3-valued semantics for
our substitution, which is necessary as long as ABSOLVER
has not determined a solution to one of its subproblems (see
Sec. 4). Although, the current implementation is restricted
to the well-known arithmetic expressions, extension to other
operators, such as sin, cos or exp is straightforward and not
limited by a design decision. For instance, adding the di-
vision operator involved less than an hour of programming
effort.

3 Applicability and case study

We found in our industrial cooperations that the ex-
tension of the mixed Boolean-linear problems to AB-
satisfiability-problems meets the need for finding intuitive
descriptions for the behaviour of hybrid and embedded con-
trol systems along with their environment. The relevance
of solving such problems can be emphasised by an exam-
ple taken from a safety analysis of a car’s steering con-
trol system. Amongst others, such a system obtains data
from a yaw sensor (−7.0 ≤ x ≤ 7.0), a lateral acceler-
ation sensor (−20.0 ≤ x ≤ 20.0), speed sensors at each
wheel (−400.0 ≤ x ≤ 400.0), and the steering angle
(−1.0 ≤ x ≤ 1.0). It is due to the controller to check
whether the car is currently in a stable driving situation, or
not. If the car shows a tendency towards over-steering or
under-steering, the controller calculates the correct steering
angle for keeping the car stabilised. The difference between
the correct angle for stable driving and the current steering
angle is added or subtracted by a step motor. This enables
the controller to prevent some critical driving situations.

The continuous dynamics of the controller and its envi-
ronment are modelled using MATLAB/Simulink, where the
environment consists of nonlinear functions modelling the
physical behaviour of the car. In industry, the analysis of
the model focuses on testing the complete system in several
test cases and in simulations. However, verification tools
used in industry, such as SCADE, are not laid out for solv-
ing AB-problems directly. Thus, the proof of properties in
such a setup is commonly restricted to the linear designed
controller, without looking at the whole nonlinear control-
circuit which commonly includes the environment as well.

To be able to check correctness regarding a set of defined
mathematical predicates, we implemented a protoype tool-
chain to facilitate the automated conversion (see Fig. 3) of
the steering control model from MATLAB/Simulink to AB-
SOLVER’s input format. Note that conversion takes advan-
tage of the SCADE modelling and verification suite which
can import MATLAB/Simulink models. However, using
SCADE in the conversion was merely a matter of conve-
nience, because internally, SCADE uses a textual repre-

3

Figure 3. Automated conversion work-flow.

sentation of the model in terms of the programming lan-
guage LUSTRE, from which we could then extract the multi-
domain constraint satisfaction problems. This particular
conversion resulted in 976 CNF-clauses, and 24 (non-) lin-
ear expressions representing the constraints. Computing a
solution required less than a minute on a standard notebook
using COIN (for the linear part), zChaff (for the Boolean
part), and IPOPT [11] (for the nonlinear part).

4 Design and implementation of ABSOLVER

To be able to tackle such problems we aimed for an ex-
tensible design that neither limits the possible ways of prob-
lem input, nor the set of external solvers used in the various
domains. The result is a layered approach which should also
provide an easy starting point for programmers joining the
project.

In case of the stand-alone executable, the input layer (see
Fig. 4) is instantiated by a parser accepting an extended ver-
sion of the DIMACS format. However, ABSOLVER may as
well be used as a native C++ library, e. g., for building or ex-
tending existing verification tools, in which case the input
must be provided directly via the ABSOLVER API.

Figure 4. Architecture.

ABSOLVER’s core comprises a data structure for mod-
elling an integrated circuit where arithmetic and Boolean

operations are represented as gates taking either a single
(e. g., negation), a pair (e. g., arithmetic comparison), or an
arbitrary number of inputs. The variables are then seen as
the input pins of a circuit, and the single output pin provides
the formula’s truth value, which is either tt, ff , or ? indi-
cating that further treatment is necessary, internally. Fig. 4
illustrates this on a subset of the example given in Sec. 1.

Figure 5. Internal representation.

While the input layer builds up such a circuit-object, the
solver interface layer (see Fig. 4) uses this object for com-
puting variable assignments. The main task of the solver in-
terface is, thus, adapting the circuit to the external solver’s
input format, as well as extraction of domain specific com-
ponents of the AB-problem, e. g., extraction of linear and
nonlinear equations.

To ensure extensibility to new solvers the communica-
tion between the tools is restricted to the well-defined in-
terface that provides the circuit, a data structure for return-
ing solutions, and a structure to support refinement of con-
flicts detected by a solver in response to a possible assign-
ment computed by the Boolean solver. Although standard
solvers, such as zChaff can be used with ABSOLVER, it can
also make use of specialised solvers like LSAT as described
in [2], which not only determines satisfiability, but is also
able to provide all satisfying assignments. Hence, the use
of LSAT is desirable for applications such as consistency-
based diagnosis, where more than one Boolean solution
may be required to reason about the failure state of systems.
Most importantly, even if a SAT-solver other than LSAT is
used, which is not able to determine all truth assignments,
ABSOLVER’s internal bookkeeping makes it possible to it-
eratively call the solver, such that, effectively, all solutions
can be computed. This, however, happens at the expense
of the time required for restarting the entire solving process
externally. On the other hand, we currently do not provide

4

our own linear and nonlinear solvers.
The control loop follows the algorithm sketched in Sec. 1

and works as follows. ABSOLVER queries a SAT-solver for
a single solution—or all solutions at once—for the Boolean
part of the AB-problem. The results are considered by the
interface to the linear solver, and the resulting constraint
system is built up, and solutions are computed by the linear
solver. If infeasibility is detected, the smallest conflicting
subset is computed and returned as a hint for further queries
to the SAT-solver. In case the output pin’s value of the cir-
cuit is not yet known (i. e., α′(·) = ?), the nonlinear solver
is called. Note that at each of those steps a list of solvers
is used, if more than one solver is enabled for some domain
and the preceeding solvers thereof failed to provide a decent
result.

5 Detailed benchmarks

Besides the industrial case study sketched in Sec. 3, we
have performed a number of standard SMT benchmarks as
well as combinatorial puzzles, e. g., Sudoku, imposing lin-
ear and nonlinear problems.

The presented results and the underlying test suites are
also available from ABSOLVER’s web site (see http://
absolver.sf.net/), such that these can be repeated or
compared with further third-party solvers.

5.1 Nonlinear problems

The following benchmarks are available for download
from the ABSOLVER web site, however, excluding the orig-
inal car steering model due to obvious issues with the pro-
tection of intellectual property. The additional entries in
the table display the number of Boolean clauses, variables,
and linear, respectively, nonlinear sub-problems. The em-
ployed solvers for ABSOLVER were IPOPT for the nonlin-
ear, COIN for the linear, and zChaff for the Boolean part.
The time required for a run is then denoted in minutes and
seconds and summarised in Table 1.

Table 1. Results: nonlinear problems.

Benchmark #Cl. #Var. #linear #nonlin. ABSOLVER

Car steering 976 24 4 20 0m58.344s
esat n11 -
m8 nonlinear 11 8 9 2 0m0.469s
nonlinear unsat 1 1 0 2 0m0.260s
div operator 1 1 4 1 0m0.233s

Comparative results are not available in this case, since
both CVC Lite and MathSAT rejected the problems due to

the nonlinear arithmetic inequalities contained, e. g., in the
environment model of the car steering controller.

5.2 SMT-LIB

The benchmarks presented in this section were
converted automatically to ABSOLVER’s input format
from the satisfiability-modulo-theories benchmark library.
Their original source is http://combination.cs.
uiowa.edu/smtlib/. The problems impose a combi-
nation of Boolean and linear problems, such as can also be
tackled by solvers like MathSAT or CVC Lite. The results
for ABSOLVER were created using COIN for the linear con-
straints and zChaff for the Boolean part. Each row in Ta-
ble 2 represents one run of the benchmark performed with
three different solvers.

Table 2. Results: SMT-LIB benchmarks.

Benchmark ABSOLVER CVC Lite MathSAT
FISCHER1-1-fair.smt 0m0.556s 0m0.020s 0m0.045s
FISCHER2-1-fair.smt 0m0.907s 0m0.023s 0m0.095s
FISCHER3-1-fair.smt 0m2.243s 0m0.027s 0m0.177s
FISCHER4-1-fair.smt 0m3.003s 0m0.031s 0m0.281s
FISCHER5-1-fair.smt 0m2.789s 0m0.036s 0m0.422s
FISCHER6-1-fair.smt 0m5.770s 0m0.040s 0m0.604s
FISCHER7-1-fair.smt 0m10.597s 0m0.043s 0m0.791s
FISCHER8-1-fair.smt 0m14.521s 0m0.052s 0m1.031s
FISCHER9-1-fair.smt 0m18.748s 0m0.057s 0m1.343s
FISCHER10-1-fair.smt 0m22.925s 0m0.067s 0m2.913s
FISCHER11-1-fair.smt 0m28.179s 0m0.073s 0m2.129s

The results show that ABSOLVER is competetive in
terms of the SMT problems with the established Boolean-
linear solvers, although it does not come out as being the
fastest solver. The reason for this lies in that the SMT
benchmarks impose only very simple Boolean and linear
problems, and in order to determine a valid linear solution,
many Boolean solutions need to be examined first. The
internals of MathSAT as well as CVC Lite allow a more
efficient communication between the respective solvers,
whereas ABSOLVER basically uses two separate entities for
solving.

5.3 Sudoku

The following benchmarks were converted from daily
Sudoku puzzles taken from http://sudoku.zeit.
de/; dates indicate the magazine’s respective issue and
puzzle. Sudoku is a logic problem, where the human player
has to arrange numbers from 1 to 9 horizontally as well as
vertically in 9 × 9 squares, such that no numbers appear
twice in a row. There are various works that describe how to

5

translate a Sudoku problem to a SAT-instance, e. g., [6, 12].
However, having a solver at hand which solves Boolean as
well as linear problems, the Sudoku puzzle can be tackled
more efficiently as a mixed problem and the encoding is
more natural as it can make use of integers.

The results as shown in Table 3 using ABSOLVER were
achieved with COIN for the linear part and LSAT for the
Boolean part. Notice, that results marked as ∗ indicate out-
of-memory aborts.

Table 3. Results: Sudoku puzzles.

Benchmark ABSOLVER CVC Lite MathSAT
2006 05 23 hard 0m0.283s –∗ 84m7.385s
2006 05 24 hard 0m0.283s –∗ 99m48.447s
2006 05 25 hard 0m0.282s –∗ 107m0.860s
2006 05 26 hard 0m0.289s –∗ 112m30.929s
2006 05 27 hard 0m0.289s –∗ 89m48.470s
2006 05 28 hard 0m0.282s –∗ 117m29.500s
2006 05 29 easy 0m0.279s –∗ 81m27.008s
2006 05 29 hard 0m0.283s –∗ 137m31.245s
2006 05 30 easy 0m0.287s –∗ 75m17.435s
2006 05 30 hard 0m0.283s –∗ 94m35.672s

Here, ABSOLVER clearly outperforms existing solvers
due to ABSOLVER’s ability to use a combination of the
most suitable solvers for difficult instances. Basically, Su-
doku problems reflect more involved integer programming
sub-problems than are present in the SMT benchmarks
above. The specialised selection of solvers then results in a
better performance than is achieved in other all-in-one tools.

6 Conclusions

The presented approach to tackling both mixed Boolean-
linear as well as nonlinear satisfiability problems has, in
terms of the subclass of AB-problems, delivered promising
results. More so, for a number of problems, ABSOLVER
was able to outperform existing solutions, and was used
in its present form to analyse parts of an industrial case-
study, i. e., that of a steering control system used in present-
day cars. As such, ABSOLVER can complement modelling
tools such as MATLAB/Simulink or SCADE, in that it pro-
vides means for reasoning about even complex continuous
and nonlinear designs. It allows the reuse of expert knowl-
edge by enabling users to specify the most suitable domain-
specific constraint solver for a specific problem.

The benchmarks show that the use of ABSOLVER is ad-
visable in a setting where some or all of the sub-problems
are very involved. Simple instances of, e. g., Boolean-
linear constraint problems are handled faster by specialists
like MathSAT or CVC lite due to a tighter integration of
Boolean and linear solvers.

Besides the examples presented in this paper, AB-
SOLVER can be used as a stand-alone tool with its intuitive-
to-use input language for specifying multi-domain con-
straint problems, or via its C++ API for tight integra-
tion with existing code bases. Further possible use-cases
of ABSOLVER include the automatic generation of test
cases. Since ABSOLVER, internally, determines the solu-
tions by computing all possible assignments, common cov-
erage metrics like path coverage can be obtained for free
in this setting. However, a more thorough examination of
the types and properties of input models is then required, in
order to determine sensible test criteria/cases.

References

[1] C. Barrett and S. Berezin. CVC Lite: A new implementation
of the cooperating validity checker. In CAV’04, volume 3114
of LNCS. Springer, 2004.

[2] A. Bauer. Simplifying diagnosis using LSAT: a propo-
sitional approach to reasoning from first principles. In
CPAIOR’05, volume 3524 of LNCS. Springer, 2005.

[3] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van
Rossum, S. Schulz, and R. Sebastiani. An incremental and
layered procedure for the satisfiability of linear arithmetic
logic. In TACAS’05, volume 3440 of LNCS. Springer, 2005.

[4] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis,
and P. Niebert. From Simulink to SCADE/Lustre to TTA: a
layered approach for distributed embedded applications. In
Proc. of the 2003 ACM SIGPLAN conference on Language,
compiler, and tool for embedded systems. ACM, 2003.

[5] R. Lougee-Heimer. The common optimization interface for
operations research: Promoting open-source software in the
operations research community. IBM J. Res. Dev., 47(1):57–
66, 2003.

[6] I. Lynce and J. Ouaknine. Sudoku as a SAT problem. In
Proc. of the Ninth International Symposium on Artificial In-
telligence and Mathematics. Springer, 2006.

[7] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an efficient SAT solver. In
Proc. of the 38th Design Automation Conference. ACM,
2001.

[8] S. Ranise and C. Tinelli. The SMT-LIB Standard: Version
1.2. Technical report, Dep. of Computer Science, University
of Iowa, 2006. Available at www.SMT-LIB.org.

[9] H. M. Sheini and K. A. Sakallah. A SAT-based decision
procedure for mixed logical/integer linear problems. In
CPAIOR’05, volume 3524 of LNCS. Springer, 2005.

[10] P. J. Stuckey, M. J. G. de la Banda, M. J. Maher, K. Mar-
riott, J. K. Slaney, Z. Somogyi, M. Wallace, and T. Walsh.
The G12 project: Mapping solver independent models to ef-
ficient solutions. In ICLP, volume 3668 of LNCS. Springer,
2005.

[11] A. Wächter and L. T. Biegler. Line search filter methods
for nonlinear programming: Motivation and global conver-
gence. SIAM Journal on Optimization, 16(1):1–31, 2005.

[12] T. Weber. A SAT-based Sudoku solver. In LPAR-12, Short
paper proc., 2005.

6

