
Lehrstuhl für Informatik VII

der Technischen Universität München

Reachability in Pushdown Systems:

Algorithms and Applications

Dejvuth Suwimonteerabuth

Vollständiger Abdruck der von der Fakultät für Informatik der Techni-
schen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Javier Esparza
2. Prof. Dr. Ahmed Bouajjani,

Universität Paris Diderot/Frankreich

Die Dissertation wurde am 27.01.2009 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am 08.05.2009
angenommen.

Kurzfassung

Diese Arbeit präsentiert Erreichbarkeitsanalysen für Pushdown-Systeme und
ihre Anwendungen auf unterschiedliche Bereiche. Ein Pushdown-System ist
eine stack-basierte Maschine, deren Stack unbegrenzt ist. Pushdown-Systeme
sind ein natürliches Modell für sequenzielle Programme. Angeregt durch
einige Anwendungen analysiert diese Arbeit das Erreichbarkeitsproblem in
verallgemeinerten Pushdown-Modellen—alternierenden PushdownSystemen
und Pushdown-Netzwerken—und diskutiert sie im Detail.

Ein Pushdown-Netzwerk kann zur Modellierung nebenläufiger Programme
verwendet werden. Die Erreichbarkeitsalgorithmen hierfür, zusammen mit
einem Übersetzer von Java-Bytecode in Pushdown-Netzwerke, wurden op-
timiert und in einem Tool namens jMoped implementiert. jMoped ist ein
Eclipse-Plugin, das Benutzern das einfache Testen von Java-Programmen
ermöglicht, ohne dass sie die dazu verwendeten Techniken verstehen müssen.
jMoped gibt fortlaufend den bislang erreichten Grad der Abdeckung aus und
entdeckt Fehler wie z.B. Verletzungen von Assertions. Die Arbeit berichtet
über praktische Experimente mit jMoped.

Alternierende Pushdown-Systeme werden als nützliches Modell für Auto-
risierungs- und Reputations-Systeme vorgestellt, deren Fragestellungen sich
auf Erreichbarkeitsprobleme in den Modellen reduzieren lassen.

Abstract

This thesis presents reachability algorithms for pushdown systems and their
applications to different areas. Roughly speaking, a pushdown system is a
stack-based machine whose stack can be unbounded, making it a natural
model for sequential programs. Inspired by applications, the thesis analyzes
reachability in more generalized pushdown models—alternating pushdown
systems and pushdown networks—and discusses their complexities in detail.

A pushdown network can be used for modeling multithreaded programs.
The reachability algorithms, together with a translator from Java bytecodes
into pushdown networks, have been optimized and implemented in a tool
called jMoped. jMoped is an Eclipse plug-in which allows users to easily test
Java programs without any knowledge of the techniques behind it. jMoped
progressively outputs coverability information and uncovers errors such as
assertion violations. Several practical experiments with jMoped are reported.

Alternating pushdown systems are shown to be suitable models for au-
thorization systems and reputation systems, where reasoning in the systems
boils down to solving reachability in the models.

Acknowledgments

This thesis would not have been possible without the support of many people.
I would like to express my deepest gratitude to my supervisor Prof. Javier
Esparza for his invaluable assistance, guidance, patience, and for giving me
the opportunity to conduct research in his group. Special thanks go to Ste-
fan Schwoon. Without his knowledge and assistance this research would not
have been successful. I am very grateful to Prof. Ahmed Bouajjani, Tayssir
Touili, and Mihaela Sighireanu for their abundant help with the research. I
would also like to convey thanks to SFB 627 Nexus, Universität Stuttgart,
and Technische Universität München for providing the financial and organi-
zational support. Many thanks to my colleagues, especially to Stefan Kiefer
and Michael Luttenberger, for their endless help and the great working at-
mosphere.

I would like to acknowledge Prof. Prabhas Chongstitvatana, the super-
visor during my undergraduate study, for his inspiring advice. My parents
and my brother, their love, understanding, and encouragement have never
been absent, no matter when. Yupadara Netprapa, her love and understand-
ing complete my life. I feel indebted to many people, in particular friends,
for their bottomless help. They all play a role in this thesis, although not
mentioned here. I thank you all.

Contents

1 Introduction 1
1.1 Contribution of the thesis . 4
1.2 Related works . 7

2 Preliminaries 10
2.1 Basic definitions . 10

2.1.1 Semirings . 10
2.1.2 Finite automata . 12

2.2 Pushdown models . 13
2.2.1 Pushdown systems . 14
2.2.2 Alternating pushdown systems 15
2.2.3 Pushdown networks . 17

2.3 Binary decision diagrams . 18

3 Reachability analyses 23
3.1 Bounded idempotent semirings 23

3.1.1 Pushdown systems . 23
3.1.2 Alternating pushdown systems 28
3.1.3 Pushdown networks . 43

3.2 General semirings . 51
3.2.1 Pushdown systems . 51
3.2.2 Alternating pushdown systems 54

4 Application to Java testing 61
4.1 Java virtual machine . 62

4.1.1 Java bytecode basics 63
4.1.2 Instruction set . 71

4.2 Translator . 76

i

4.2.1 Control flow modeling 77
4.2.2 Variable modeling . 78
4.2.3 Java virtual machine modeling: Basics 79
4.2.4 Java virtual machine modeling: Extensions 89

4.3 Applying the reachability analyses 96
4.3.1 Representing variable relations as semirings 96
4.3.2 Specialized reachability algorithms 100
4.3.3 Counterexample extraction 104

5 Experiments with jMoped 111
5.1 BDDs vs. bit vectors . 114
5.2 Quicksort . 116

5.2.1 Version 1 . 117
5.2.2 Version 2 . 120

5.3 jMoped BDD library . 122
5.4 java.util.Vector class . 125
5.5 Windows NT Bluetooth driver 129
5.6 Binary search tree . 131

6 Applications to SPKI/SDSI 136
6.1 Authorization systems . 136

6.1.1 SPKI/SDSI . 137
6.1.2 Intersection certificates 140
6.1.3 Example and experiments 141

6.2 Reputation system . 144
6.2.1 SDSIrep . 145
6.2.2 Intersection certificates 150
6.2.3 Example and experiments 152

6.3 Pushdown games . 157

7 Conclusions 160

Bibliography 163

ii

Chapter 1

Introduction

Pioneered by Clarke and Emerson [16] and Quielle and Sifakis [49] in the early
1980s, model checking has emerged as an automatic technique for verifying
computer systems based on exhaustive exploration of the space of reach-
able states. Model checking consists of three main tasks: Modeling, speci-
fication, and verification [17]. Given a specification—usually in a temporal
logic formula—and a mathematical model of the system under consideration,
model checking verifies the validity of the formula for the model. When the
formula does not hold, users are often provided with an error trace. The
trace can be used as an counterexample to track down the root of the error.
The system can then be repaired and model-checked again.

When systems are finite, it is possible to use finite state machines as
models. A finite state machine is a directed graph, in which nodes represent
states of the system, and edges represent transitions between states. Nodes
are labeled with sets of atomic propositions with the convention that their
values are true in the nodes they label. Specification logics are built upon
the atomic propositions together with logical and temporal operators. In the
last three decades, a number of researches has been focused on different types
of logics, and verification algorithms have been developed.

Even when systems under consideration are finite, every model checking
algorithm usually faces a combinatorial blow up of the state space, which can
be a result of e.g. an asynchronous system where processes are performed
independently. This fundamental problem is known as the state explosion
problem. The problem limited the usage of model checking in its early days.

A well-known approach that attempts to overcome the problem is to rep-
resent finite state machines symbolically. The idea, made popular by McMil-

1

lan in 1992 [42], made use of Bryant’s binary decision diagrams (BDDs) [8].
States can be compactly represented when using BDDs, and together with
symbolic model checking algorithms where states can be efficiently manipu-
lated, it was possible to verify a larger number of states than what explicit-
state algorithms were able to handle.

Finite state machines are suitable for modeling hardware systems and
communication protocols because they naturally involve only finite numbers
of states. Many techniques have been extensively and successfully applied to
these areas since the history of model checking. Model checking for software,
however, has bee less adopted. The reason is because of its expressiveness by
nature, making even very simple problems undecidable. In fact, the problem
of deciding whether two threads with recursive calls can reach given points
are already undecidable. Many recent researches in the software community
have been focusing on finding reasonable solutions to overcome this problem.

This thesis focuses on a type of infinite-state systems which are based
on stacks. In automata theory, a pushdown automaton is a well-studied
language acceptor that makes use of a stack. Given an input, pushdown
automata choose a transition based on the current control state and the
symbol on top of the stack. The transition can optionally manipulate the
stack by popping off the top of the stack and/or pushing new symbols onto
the stack. A word is accepted by a pushdown automaton if starting from its
initial state and stack symbol as the only element on the stack, one of its
final states are reachable.

A pushdown system is a pushdown automaton but taking into considera-
tion only the transition system it can generate, not the language it recognizes.
The resulting transition system has infinite number of configurations of the
form (control state, stack content) as states. Transitions between configura-
tions are defined by moves of the pushdown automaton, without taking the
input alphabet into account. Pushdown systems have been considered as a
natural model for sequential programs. Procedure calls, including recursive
calls, are easily handled by using stacks. As a consequence, there is no need
to impose a bound on procedure calls as in approaches that employ finite-
state models. One of the main restriction is, however, that it can only model
data of finite domains.

Model checking pushdown systems was first introduced by Burkart and
Steffen in 1992 [9], where alternation-free µ-calculus was considered. In 1996,
Walukiewicz presented a procedure for finding winners in pushdown games,
and pointed out that the procedure can be used to solve the model checking

2

problem for the whole µ-calculus. One year later, Bouajjani, Esparza, and
Maler proposed a simple automata-theoretic approach for the alternation-free
fragment of µ-calculus [6]. Notably, they also pointed out that the reachabil-
ity problem as well as the model checking problem for linear temporal logic
(LTL) is polynomial in the size of the pushdown system. The solution makes
use of finite automata as a data structure for representing infinite configura-
tions. Given a finite automaton representing a set of initial configurations,
the algorithms find all reachable states by adding transitions into the automa-
ton until it is saturated, i.e. no more transitions can be added. The saturated
automaton represents all configurations that are reachable from any initial
configuration in the set. Concrete algorithms and exact complexity analyses
were given later in [21].

In 2001, Alur, Etessami, Yannakakis [1] and Benedikt, Godefroid, Reps [4]
independently investigated a model of computation closely related to push-
down systems called recursive (resp. hierarchical) state machines (RSMs).
In fact, RSMs and pushdown systems possess the same expressiveness and
succinctness but with a slightly different representation: an RSM explic-
itly models procedures as “boxes” of nodes (program states), where an edge
entering (resp. leaving) a box models a procedure call (resp. return). Recur-
sions are allowed. Efficient reachability algorithms and algorithms for model
checking linear-time logic on RSMs have been proposed in both papers. The
algorithms have a slightly better complexity compared to translating an RSM
into a pushdown system and applying the algorithms from [21]. For a more
thorough comparison, see e.g. [53].

In principle, when modeling programs with pushdown systems program
variables (of finite domains) can be directly encoded into control states and
stack symbols, introducing transition rules where variable relations are taken
into account. However, doing so would lead to an unavoidable blow-up in
the number of variables. To alleviate the problem, a BDD-based approach
was presented in [24], where variables were treated symbolically with BDDs
instead of direct encoding in control states and stack symbols. The model
was called symbolic pushdown system. Symbolic algorithms, which generalize
the previous algorithms, were implemented in the tool Moped as a part of
Schwoon’s thesis [53]. Moped supports reachability analyses and LTL model
checking on both symbolic pushdown systems and Boolean programs. It has
been successfully applied to a system equivalent to 10,000 lines of code of
device drivers written in C.

A generalization of symbolic pushdown systems, called weighted push-

3

down systems, was introduced in [54]. In weighted pushdown systems, each
transition is equipped with a value from a bounded idempotent semiring. A
reachability problem of given two configurations is essentially the problem
of determining their meet-over-all-paths value. [51] discusses the generalized
reachability algorithms and their applications to interprocedural dataflow
analyses in great detail.

Model checking for probabilistic pushdown systems was presented in [23].
A probabilistic pushdown system is a pushdown system whose transitions are
associated with probabilities. The random walk problem, i.e. the problem of
determining the probability of reaching a given configuration from another
given configuration, was shown to be decidable. In this thesis, we generalize
the idea to the semiring domain.

Pushdown systems have been applied to authorization problems in [31, 54,
32]. Given a system containing principals, resources, and rules, an authoriza-
tion problem is a problem of determining whether a principal is authorized
to access a given resource. SPKI/SDSI framework [20] provides a public-key
infrastructure that emphasizes naming and authorization in a distributed en-
vironment. Its concept is simple and intuitive, however its expressiveness is
enough to represent a wide range of applications. In SPKI/SDSI, principals
are represented by their public keys. There are two types are certificates:
name certificates and authorization certificates. A name certificate provides
a definition of a local name in the issuer’s local name space. An authorization
certificate grants or delegates an authorization. The authorization problem
can be defined as follows: given name and authorization certificates, can
a principal access a resource? The problem boils down to certificate chain
discovery, which involves finding of relevant certificates in order to prove
the access [15]. Jha and Reps first observed that name and authorization
certificates can be interpreted as a pushdown system [31], therefore the au-
thorization problem reduces to the problem of pushdown reachability and
can be solved by using e.g. the algorithms from [6, 21].

1.1 Contribution of the thesis

The thesis can be seen as a continuation of the work of Schwoon [53]. His
model checker Moped has been proved to be efficient for analyzing reacha-
bility on symbolic pushdown systems. However, its applications to program
testing in real-life programming languages had not been realized due to lacks

4

of a front-end and a support to multithreading programs. An attempt that
applies Moped to test sequential Java programs was made with an implemen-
tation of a translator from Java bytecode to pushdown systems in the author’s
Master thesis [56]. The translator, nevertheless, had several deficiencies as
it supported only basic features of Java without for instance dynamic object
creations and virtual method calls. The translator was also text-based, and
therefore was only suitable for users who are familiar with pushdown sys-
tems. For this reason, we aimed not only to improve the translator or to
develop new algorithms that would allow testing possible for a large set of
Java programs, but also to develop a user-friendly tool that everybody can
easily use without requiring expertise in the area of model checking.

In short, the thesis investigates algorithms and applications of pushdown
systems and their variants. Three different pushdown models are introduced
in Chapter 2: pushdown systems, alternating pushdown systems, and push-
down networks. Alternating pushdown systems generalize pushdown systems
such that each transition can change the systems not only from a configu-
ration to another, but to a set of configurations. A run can be seen as a
tree of computations. Reachability analyses are more complex as a result.
Pushdown networks are sets of pushdown systems. A pushdown network
can be used as a model for a multithreaded program, in which a thread is
represented by a pushdown system. Communications between threads are
achieved via global variables. Also introduced in Chapter 2 are semirings
as well as weighted versions of all three pushdown models. To be used as
weights, binary decision diagrams are introduced at the end of the chapter.

Reachability analyses for weighted pushdown models are discussed in
Chapter 3. The analyses are divided into two parts based on semirings. The
first part considers the case when the semirings are bounded and idempotent
for all three weighted pushdown models. We start by presenting the forward
reachability algorithm for weighted pushdown systems from [51]. Then, we
give an exponential-time backward reachability algorithm for weighted al-
ternating pushdown systems including a detailed complexity analysis. We
also prove that the reachability problem for alternating pushdown systems
is EXPTIME-complete. We observe that if alternating pushdown systems
satisfy certain constraints, then the exponential complexity can be avoided.
A slightly modified algorithm, which runs in polynomial time, is given. For
weighted pushdown networks, it is well known that the problem of deciding
reachability is undecidable. As a result, we only compute approximations
by applying context-bounded analyses. The idea is that we impose a bound

5

on communications between threads, and only consider reachable configura-
tions within the bound. The reachability algorithm for pushdown systems is
applied each time a thread is active. Then, all possible values of global vari-
ables must be passed to other threads. This obviously leads to exponential
blowups in the number of possible values of global variables. We propose
a new approach which tries to avoid the blowups. It is still exponential in
the worse case, but tends to perform well in practice (see Chapter 5). The
second part of Chapter 3 deals with the semirings that are not bounded and
idempotent. Reachability analyses in this case boil down to solving systems
of polynomial equations.

Chapter 4 discusses an application of pushdown systems and pushdown
networks to the area of Java program testing. Given a Java program to be
tested, the program is first compiled into a class file containing Java byte-
code—the machine language of the Java virtual machine. Then, a pushdown
model is constructed from the class file such that a reachability analysis of
the model can be seen as a simulation as if it were executed by the Java
virtual machine. Given an input range, one can think of the reachability
analysis as an execution of all possible inputs in a single run, instead of ex-
ecuting each input one by one as in the virtual machine. This enables us to
find out not only coverage areas but also all errors of the program inside in
the range within a single execution. Coverage information is usually useful
to get more insight into the program under test, because we would normally
like to cover every part of the code. The chapter first introduces basics of
Java virtual machine, Java bytecode, and later its translation to pushdown
models. Several issues that arise when applying the algorithms are resolved
at the end of the chapter.

The translator and the reachability algorithms are implemented in the
tool jMoped. jMoped is an Eclipse plug-in which allows users to easily test
Java programs. Users simply select a Java method where the reachability
analysis should start. jMoped then searches for all reachable statements
assuming that the method parameters can take any possible values (within
given bounds). During the analysis, markers of different types and colors are
shown in front of Java statements. Black and green markers indicate that
the corresponding statements are not reachable and reachable, respectively.
Other types of markers reveal errors in the program, e.g. assertion violations
are pointed out by red markers. Chapter 5 reports on experimental results
with jMoped. The first experiment compares two different implementations
of semirings: BDDs and bit vectors. The scalability of jMoped is measured in

6

the second experiment where two quicksort implementations are considered.
jMoped is able to find a bug in an implementation, and verify the correctness
of another version in the case of 1-bit arrays of length 24 within 2.5 hours.
In the next experiment, a part of jMoped, which is a recursive sequential
program, has been successfully tested by jMoped itself. On the multithreaded
side, jMoped is able to automatically find bugs in a Windows NT Bluetooth
driver and java.util.Vector class from the Java library.

Chapter 6 lists three other applications of pushdown models: authoriza-
tion systems, reputation systems, and pushdown games. The authorization
systems and reputation systems are based on the SPKI/SDSI framework.
Also considered in both systems are the presence of so-called intersection
certificates, which results in the systems that correspond to weighted alter-
nating pushdown systems. The two systems differ in that in authorization
systems, an access is granted when at least one certificate chain with enough
rights is discovered. On the contrary, in reputation systems, trusts from
different chains can add up to increase the level of trust of an principal.
We employ two different reachability algorithms depending on the types of
weights. Pushdown games are introduced at the end of the chapter. We
propose a solution which solves the games by translating them to alternating
pushdown systems, and then applying the reachability analysis.

Chapter 7 concludes the thesis and discusses some possible future works.

1.2 Related works

Software verifications have been an active research area in the past decades.
Spin [29] is probably the most popular tool for the formal verification of
distributed software systems. It supports on-the-fly LTL model checking
with partial order reductions, making it scales well even on very large problem
sizes. Spin has been successfully applied to many real-life applications such
as control algorithms, data communication protocols, and operating systems.
Although Promela—the input language of Spin—supports dynamic process
creation, it is difficult to encode programs in Promela due to its lack of
procedure calls and objects. Some contributions in this direction include
dSpin [19]—an extension of Spin with dynamic structures, a translator from
ANSI-C to Promela [28], and the first generation of Java PathFinder which
translate Java to Promela [25].

To overcome the limitations of Promela, a custom-made model checker

7

has been developed in later versions of Java PathFinder [58]. It follows
Spin as an explicit-state software model checker, but works directly on Java
bytecode level. Java PathFinder is able to handle all bytecode instructions,
and hence allows the whole of Java to be model checked. It can search
for deadlocks and unhandled exceptions such as NullPointerException and
AssertionError as well as violations of user-provided properties. Recently,
it was able to uncover injected bugs in a very large application involving
18 threads, approximately 125,000 states and millions of paths. Previously
hosted by NASA, Java PathFinder has been open-sourced since 2005 [30].
jMoped has similar features to Java PathFinder in that it works on the Java
bytecode level, and can be seen as a virtual machine that can symbolically
execute bytecode instructions for a given inputs in a single run. The models
behind them, however, are different. Using a stack-based model, jMoped is
able to naturally handle method calls as well as recursions which can result
in infinite number of states. On the other hand, communications between
threads are more expensive in jMoped, and as a result makes it unsuitable
for testing programs in the presence of a large number of threads

Bandera [18] is a tool set for model checking concurrent Java software.
Given Java source code, it uses slicing to eliminate irrelevant components,
abstract interpretation to support data abstraction, and a model-generator
to construct finite-state models. Bandera has its own specification language
based on temporal specification patterns, which attempts to help users speci-
fying properties to be checked. The models are represented in an intermediate
language, which is the input language of Bogor [52]—an extensible framework
on which custom-made model checkers can be built. Bogor tries to fill the gap
between software semantics and input languages of existing model checkers
by supporting modern language features such as polymorphism and virtual
methods. Translators from the intermediate language to several model check-
ers, including Spin, are also available. In contrast to Bandera, jMoped does
not check a program against a temporal property, but only performs reach-
ability analyses. jMoped enables users to find out coverability and errors
such as assertion violations of programs without an extra effort. LTL model
checking, which is supported by Moped, is not built into jMoped.

Unlike the previous model checkers where only finite numbers of states
are involved, Microsoft’s Slam [3] deals with infinite-state space. The Slam
project has been successful in finding bugs in device drivers, written in C lan-
guage. It implements a technique called counterexample-guided abstraction
refinement (CEGAR). In this paradigm, a program is first abstracted into

8

a coarse abstraction, which tracks only a few predicates—relations between
program variables. Then, the model checker Bebop is used to verify safety
properties. Because of the nature of the overapproximation, if the verifica-
tion succeeds, it is guaranteed that the concrete program does not violate the
properties. On the other hand, if the verification fails, the error trace can be
checked for its feasibility, i.e. whether it corresponds to a concrete program
execution or merely introduced by the abstraction. If the trace corresponds
to a concrete execution, then a bug has been uncovered. Otherwise, the in-
feasibility of the error trace is used to refine the abstraction by adding more
relevant predicates. The entire process repeats until a bug is found or no
new error trace can be found. The process is not guaranteed to terminate,
but has been proven to be useful in practice.

The basic CEGAR described above was improved by the model checker
Blast [5]. Basically, when an infeasible trace is found, Blast refines the current
abstraction by using an interpolation-based algorithm, in which predicates
are discovered locally and independently at each program point as inter-
polants between the past and the future fragments of the trace. Moreover,
it implements a so-called lazy abstraction, where the refinement procedure
takes place locally, i.e. only in the parts where infeasible trace occurred. CE-
GAR was also implemented in Moped [22], but is currently not incorporated
into jMoped.

9

Chapter 2

Preliminaries

This chapter contains definitions used throughout the thesis. We introduce
three different computational models that operate on stacks: pushdown sys-
tems, alternating pushdown systems, and pushdown networks. We also in-
troduce semirings which are used as weights in all three pushdown models.
At the end of the chapter, we briefly discuss binary decision diagrams, an
important data structure that is used for representing weights.

2.1 Basic definitions

Throughout the thesis we denote by N the set of nonnegative integers and
by R the set of real numbers. Also, N

∞ = N ∪ {∞}, R+ = {a ∈ R | a ≥ 0},
and R

∞
+ = R+ ∪ {∞}. If n is a positive integer, [n] = {a ∈ N | 1 ≤ a ≤ n}.

Let Σ be an alphabet. A word over Σ is a finite sequence of elements
of Σ. The length of a word w is the number of elements in w, denoted by
|w|. The empty word is denoted by ε. Σ∗ is the set of all words over Σ, and
Σ+ = Σ∗ \ {ε} is the set of non-empty words.

Moreover, we sometimes abuse notation by writing singletons without
enclosing braces, e.g. p instead of {p}.

2.1.1 Semirings

A semiring is a quintuple S = (D,⊕,⊗, 0, 1), where D is a set, 0, 1 ∈ D,
and ⊕ (the combine operation) and ⊗ (the extend operation) are binary
operators on D such that

10

1. (D,⊕, 0) is a commutative monoid with identity element 0.

2. (D,⊗, 1) is a monoid with identity element 1.

3. 0 is an annihilator with respect to ⊗, i.e. for all a ∈ D,

a ⊗ 0 = 0 ⊗ a = 0 .

4. ⊗ distributes over ⊕, i.e. for all a, b, c ∈ D,

a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) .

A semiring is idempotent if ⊕ is idempotent, i.e. for all a ∈ D, a⊕ a = a.
We define a binary relation ⊑ on a semiring: for all a, b ∈ D, a ⊑ b iff
∃c ∈ D : a ⊕ c = b. A semiring is bounded if there are no infinite ascending
chains in the relation ⊑.

Moreover, a semiring is called naturally ordered if ⊑ is a partial order. A
semiring is complete if it is possible to define infinite sums as an extension of
finite sums that are associative, commutative, and distributive with respect
to ⊗. A semiring is ω-continuous if it is naturally ordered, complete, and for
all sequences (ai)i∈N with ai ∈ D, sup{

⊕n
i=0 ai | n ∈ N} =

⊕

i∈N
ai.

Let us consider some examples of semirings. The typical ones are the
integer semiring (N∞, +,×, 0, 1) and the real semiring (R∞

+ , +,×, 0, 1). Both
are neither bounded nor idempotent. They are ω-continuous with ⊑ as their
natural orders in N

∞ and R
∞
+ , respectively. On the other hand, the tropical

semiring (N∞, min, +,∞, 0) is bounded, idempotent, and ω-continuous.
Given an alphabet Σ, the language semiring over Σ is (2Σ∗

,∪, ·, ∅, {ε}),
where the operation · is the language concatenation. Given a set S, the
binary relation semiring over S is (2S×S,∪, ◦, ∅, {(s, s) | s ∈ S}), where the
operation ◦ is the relation composition. Both semirings are bounded and
idempotent. With set inclusion as ⊑, they are also ω-continuous.

We extend the notion of semiring to structures with two extend operators.
An extended semiring is a tuple (D,⊕,⊗,⊙, 0, 1, 1′), where

1. (D,⊕, 0) is a commutative monoid with identity element 0.

2. (D,⊗, 1) is a monoid with identity element 1.

3. (D,⊙, 1′) is a commutative monoid with identity element 1′.

11

4. 0 is an annihilator with respect to ⊗ and ⊙.

5. ⊗ distributes over ⊕ and ⊙.

The notions of idempotence, boundedness, completeness, natural ordering,
and ω-continuity are straightforwardly generalized to extended semirings.
Note that the notion of completeness is generalized by considering distribu-
tivity of infinite sums with respect to both ⊗ and ⊙.

As an example of (bounded idempotent) extended semiring, consider the
extended language semiring (2Σ∗

,∪, ·,∩, ∅, {ε}, Σ∗). This structure defines
the language accepted by an alternating automaton (see later), where alter-
nation corresponds to the operation of language intersection.

2.1.2 Finite automata

An alternating automaton is a quintuple A = (Q, Σ, δ, I, F), where

• Q is a finite set of states,

• Σ is a finite input alphabet,

• δ ⊆ Q × Σ × 2Q is a set of transitions,

• I ⊆ Q is a set of initial states, and

• F ⊆ Q is a set of final states.

An automaton is an alternating automaton where all right-hand sides of
transitions are singletons. In that case, we write a transition (q, a, q′) instead
of (q, a, {q′}), i.e. braces are dropped.

A weighted alternating automaton is an alternating automaton, in which
each transition is equipped with an extended semiring value; formally it is a
triple WA = (A,S, l), where A = (Q, Σ, δ, I, F) is an alternating automaton,
S = (D,⊕,⊗,⊙, 0, 1, 1′) is an extended semiring, and l : δ → D is a function
that assigns a value from D to each transition in δ. If l(t) = a, we say that
the transition t has weight a.

Intuitively, a transition (q, γ, {q′1, . . . , q
′
n}) with weight a of an alternating

automaton says that, if the system is at state q receiving the input γ, then the
computation of the system forks into n parallel computations, each at state
q′i, for all i ∈ [n]. Therefore, a run can be seen as a tree of computations. The

12

trace of a run is computed from the weights corresponding to the transitions
by applying ⊗ between successive weights and ⊙ on the parallel ones.

Depending on directions when computing successive weights, we consider
two transition relations →f ,→b ⊆ Q×Σ∗ ×D × 2Q, defined as the smallest
relations satisfying

• q
ε(1)
−−→f {q} and q

ε(1)
−−→b {q} for all q ∈ Q, and

• if t = (q, γ, {q1, . . . , qn}) ∈ δ, l(t) = a, and

qi

w(bi)
−−−→f Qi resp. qi

w(bi)
−−−→b Qi

for each i ∈ [n], then

q
γw(a⊗

Jn
i=1

bi)
−−−−−−−−−→f

⋃n

i=1 Qi resp. q
γw(

Jn
i=1

bi⊗a)
−−−−−−−−−→b

⋃n

i=1 Qi.

Notice that in the case of a (non-alternating) automaton, a non-extended
semiring is sufficient, and →f and →b always relate states to singletons of
states. The second point of the definition above becomes in this case (braces

omitted): for a given transition t = (q, γ, q′) where l(t) = a, if q′
w(b)
−−→f q′′

(resp. q′
w(b)
−−→b q′′) then q

γw(a⊗b)
−−−−−→f q′′ (resp. q

γw(b⊗a)
−−−−−→b q′′).

Given an initial state q and a word w, we define

FWA(q, w) =
⊕

{a ∈ D | ∃Q′ ⊆ F : q
w(a)
−−→f Q′}

BWA(q, w) =
⊕

{a ∈ D | ∃Q′ ⊆ F : q
w(a)
−−→b Q′}

to be the forward and backward weight, respectively, of the word w when
starting from the state q.

2.2 Pushdown models

We introduce in this section three different computational models that oper-
ate on stacks. A stack is a word over some finite stack alphabet, which can
have unbounded length. We use the term pushdown model as a general term
to refer to any of the following three models: pushdown systems, alternating
pushdown systems, and pushdown networks.

13

2.2.1 Pushdown systems

A pushdown system is a triple P = (P, Γ, ∆), where

• P is a finite set of control locations,

• Γ is a finite stack alphabet, and

• ∆ ⊆ (P × Γ) × (P × Γ∗) is a set of transition rules.

If ((p, γ), (p′, w)) ∈ ∆, we write 〈p, γ〉 →֒ 〈p′, w〉 instead, and when |w| is
0, 1, and 2, we call the rule pop, normal, and push rule, respectively. A
configuration of P is a pair 〈p, w〉, where p ∈ P is a control location and
w ∈ Γ∗ is a stack content.

A weighted pushdown system is a pushdown system, in which each rule
is equipped with a semiring value; formally WP = (P,S, f), where P =
(P, Γ, ∆) is a pushdown system, S = (D,⊕,⊗, 0, 1) is a semiring, and f :
∆ → D is a function that assigns a value from D to each rule in ∆. If

f(〈p, γ〉 →֒ 〈p′, w〉) = a, we often write 〈p, γ〉
a
−֒→ 〈p′, w〉, or simply append

a in parentheses to the rule, i.e. 〈p, γ〉 →֒ 〈p′, w〉 (a), and say that the rule
〈p, γ〉 →֒ 〈p′, w〉 has weight a. We sometimes use the term pushdown system
to refer to its weighted version when it is clear from the context.

Intuitively, a transition rule 〈p, γ〉
a
−֒→ 〈p′, w〉 of a weighted pushdown

system says that, if the system is at control location p, in which the top
element of the stack is γ, then the system can move to the control state p′ and
replaces the top symbol γ by the sequence of symbols w (i.e., the operation
pops γ and pushes w). A run of a pushdown system is a sequence of successive
configurations leading from a configuration to another one. The trace of a
run is computed by applying the operation ⊗ on all weights corresponding
to the transition rules used along the run.

Formally, we define the reachability relation ⇒ ⊆ (P ×Γ∗)×D×(P ×Γ∗)
to be the smallest relation such that

• c
1
=⇒ c, for all c ∈ P × Γ∗,

• if 〈p, γ〉
a
−֒→ 〈p′, w〉 and 〈p′, ww′〉

b
=⇒ c for some w′ ∈ Γ∗, b ∈ D, and

c ∈ P × Γ∗, then 〈p, γw′〉
a⊗b
==⇒ c.

Given two configurations c and c′, we define:

T (c, c′) =
⊕

{a ∈ D | c
a
=⇒ c′}

14

to be the traces of all runs starting from c and reaching c′. If T (c, c′) 6= 0,
we say that c′ is reachable from c.

Consider as an example the weighted pushdown system WP = (P,SD, f),
where P = ({p0, p1}, {a, b}, ∆) and SD = (N∞, min, +,∞, 0)—the tropical
semiring. The set of transition rules ∆ and the function f are defined as
follows:

∆ = {〈p0, a〉
1
−֒→ 〈p0, ε〉, 〈p0, a〉

2
−֒→ 〈p1, a〉, 〈p1, a〉

3
−֒→ 〈p0, ab〉} .

Given two configurations 〈p0, a〉 and 〈p0, b〉, the configuration 〈p0, b〉 is reach-
able from 〈p0, a〉 because

〈p0, a〉
2
=⇒ 〈p1, a〉

3
=⇒ 〈p0, ab〉

1
=⇒ 〈p0, b〉 ,

therefore 〈p0, a〉
2+3+1
===⇒ 〈p0, b〉. Since it is the only possible run from 〈p0, a〉

to 〈p0, b〉, we have T (〈p0, a〉, 〈p0, b〉) = 6.

2.2.2 Alternating pushdown systems

An alternating pushdown system is a generalization of a pushdown system,
where right-hand sides of rules are sets of configurations. Formally, an alter-
nating pushdown system is a triple P = (P, Γ, ∆), where

• P is a finite set of control locations,

• Γ is a finite stack alphabet, and

• ∆ ⊆ (P × Γ) × 2P×Γ∗

is a set of transition rules.

If ((p, γ), {(p1, w1), . . . , (pn, wn)}) ∈ ∆, we write

〈p, γ〉 →֒ {〈p1, wn〉, . . . , 〈pn, wn〉}

instead. We call a rule alternating if n > 1, and non-alternating otherwise.
We also write 〈p, γ〉 →֒ 〈p1, w1〉 (braces omitted) for a non-alternating rule.
Notice that an alternating pushdown system is a pushdown system if all rules
are non-alternating. For a better distinction, we will denote a configuration
by a lowercase letter (e.g. c) and a set of configurations by an uppercase
letter (e.g. C).

The notion of weight is also generalized. A weighted alternating pushdown
system is an alternating pushdown system, in which each rule is equipped

15

with an extended semiring value; formally, WP = (P,S, f), where P =
(P, Γ, ∆) is an alternating pushdown system, S = (D,⊕,⊗,⊙, 0, 1, 1′) is an
extended semiring, and f : ∆ → D is a function that assigns a value from D
to each rule in ∆. We sometimes use the term alternating pushdown system
to refer to its weighted version when it is clear from the context.

Intuitively, a rule 〈p, γ〉
a
−֒→ {〈p1, w1〉, . . . , 〈pn, wn〉} says that, from a con-

figuration c where p is the control location and γ is the top of stack symbol,
the computation of the system forks into n parallel computations, each of
them starting from the configuration obtained from c by replacing p by pi

and γ by wi, for all i ∈ [n]. Therefore, a run can be seen as a tree of compu-
tations. The trace of a run is computed from the weights corresponding to
the transition rules by applying ⊗ between successive weights and ⊙ on the
parallel ones.

Formally, we define the reachability relation ⇒ ⊆ (P × Γ∗) × D × 2P×Γ∗

to be the smallest relation such that

• c
1
=⇒ {c}, for all c ∈ P × Γ∗,

• if 〈p, γ〉
a
−֒→ {〈p1, w1〉, . . . , 〈pn, wn〉} and 〈pi, wiw〉

bi=⇒ Ci for some w ∈ Γ∗,
bi ∈ D, and Ci ⊆ P × Γ∗, for each i ∈ [n], then

〈p, γw〉
a⊗

Jn
i=1

bi

======⇒
n⋃

i=1

Ci .

Given a configuration c and a set of configurations C, we define

T (c, C) =
⊕

{a ∈ D | c
a
=⇒ C}

to be the traces of all runs starting from c and reaching (precisely) the set
C. If T (c, C) 6= 0, we say that c is backwards reachable from C.

Consider as an example the weighted alternating pushdown system WP =
(P,SD, f), where P = ({p0, p1}, {a, b}, ∆) and SD = (N∞, min, +, +,∞, 0, 0).
The set of transition rules ∆ and the function f are defined as follows:

∆ = {〈p0, a〉
1
−֒→ 〈p1, bb〉, 〈p1, b〉

2
−֒→ {〈p1, a〉, 〈p0, b〉},

〈p1, a〉
3
−֒→ 〈p0, ε〉, 〈p0, b〉

4
−֒→ 〈p0, ε〉} .

16

Given a configuration 〈p0, a〉 and a set of configurations {〈p0, b〉}, the config-
uration 〈p0, a〉 is backwards reachable from {〈p0, b〉} because

〈p0, a〉
1
=⇒ {〈p1, bb〉} ,

〈p1, bb〉
2
=⇒ {〈p1, ab〉, 〈p0, bb〉} ,

〈p1, ab〉
3
=⇒ {〈p0, b〉} ,

〈p0, bb〉
4
=⇒ {〈p0, b〉} ,

so 〈p0, a〉
1+2+(3+4)
======⇒ {〈p0, b〉}. Since it is the only possible run from 〈p0, a〉 to

{〈p0, b〉}, we have T (〈p0, a〉, {〈p0, b〉}) = 10.

2.2.3 Pushdown networks

A pushdown network is a set of pushdown systems, each of them represents
a process. Control locations and stack symbols are shared among processes.
However, for a reason that will become clear later, control locations will be
called globals in the context of pushdown networks. Formally, a pushdown
network of n process is a triple N = (G, Γ, (∆i)i∈[n]), where

• G is a finite set of globals,

• Γ is a finite stack alphabet, and

• ∆i ⊆ (G × Γ) × (G × Γ∗), for each i ∈ [n], is a set of transition rules
for the i-th process.

In contrast to a global, a local is a word over the stack alphabet. A local
configuration of N is a configuration of a pushdown system, i.e. a pair of
a global and a local 〈g, w〉 ∈ G × Γ∗. A global configuration of N is a
tuple of a global and n locals 〈g, w1, . . . , wn〉 ∈ G × (Γ∗)n . We will denote
local configurations by lowercase letters (e.g. c) and global configurations by
uppercase letters (e.g. C). Intuitively, the network consists of n processes,
each of which have some local storage (i.e., the local storage of the i-th
process is the word wi), and the processes can communicate by reading and
manipulating the global storage represented by g. Notice that a pushdown
network is a pushdown system when n = 1.

Similarly, a weighted pushdown network is a triple WN = (N ,S, (fi)i∈[n]),
where N = (G, Γ, (∆i)i∈[n]) is a pushdown network, S = (D,⊕,⊗, 0, 1) is a

17

semiring, and for i ∈ [n], fi : ∆i → D is a function that assigns a value from
Di to each rule in ∆i. We sometimes use the term pushdown network to refer
to its weighted version when it is clear from the context.

For each i ∈ [n], the local reachability relation ⇒i is defined as for a
pushdown system. The global reachability relation ⇒ ⊆ G × (Γ∗)n × D ×
G × (Γ∗)n is defined as follows:

〈g, w1, . . . , wi, . . . , wn〉
a
=⇒ 〈g′, w1, . . . , w

′
i, . . . , wn〉

iff ∃i ∈ [n] : 〈g, wi〉
a
=⇒i 〈g′, w′

i〉 .

Given two global configurations C and C ′, we define

T (C, C ′) =
⊕

{a ∈ D | C
a
=⇒ C ′}

to be the traces of all runs starting from C and reaching C ′. If T (C, C ′) 6= 0,
we say that C ′ is reachable from C.

Consider as an example the weighted pushdown network (N ,SD, (f1, f2)),
where N = ({g0, g1}, {a, b}, (∆1, ∆2)) and SD = (N∞, min, +,∞, 0). The sets
of transition rules ∆1, ∆2 and the functions f1, f2 are defined as follows:

∆1 = {〈g0, a〉
1
−֒→ 〈g1, aa〉} ,

∆2 = {〈g1, b〉
2
−֒→ 〈g0, bb〉} .

Given two global configurations 〈g0, a, b〉 and 〈g1, aaa, bb〉, the configuration
〈g1, aaa, bb〉 is reachable from 〈g0, a, b〉 because

〈g0, a, b〉
1
=⇒ 〈g1, aa, b〉

2
=⇒ 〈g0, aa, bb〉

1
=⇒ 〈g1, aaa, bb〉 ,

therefore 〈g0, a, b〉
1+2+1
===⇒ 〈g1, aaa, bb〉. Since it is the only possible run from

〈g0, a, a〉 to 〈g1, aaa, bb〉, we have T (〈g0, a, a〉, 〈g1, aaa, bb〉) = 4.

2.3 Binary decision diagrams

We briefly discuss in this section an important data structure that is used
later in the thesis for representing weights in pushdown models as relations
over a finite domain. We proceed by following the style of [53]. Let n be a
positive integer. The aim is to find a data structure that is able to compactly

18

represent subsets of {0, 1}n in hopes that the representations are smaller than
explicit enumerations of the subsets.

One possibility is to represent the subsets as Boolean formulas. Given a
set of Boolean variables V = {v1, . . . , vn}, Boolean formulas t are defined by
the following grammar:

t ::= 0 | 1 | vi | ¬t | t ∨ t ,

where vi ∈ V , and 0 and 1 denote the constants false and true, respectively.
With negation (¬) and disjunction (∨) having their usual meanings, given a
valuation V : V → {0, 1} and a Boolean formula t, it is possible to evaluate
whether V satisfies t, written V |= t. Therefore, we can always associate the
formula t with the set {V | V |= t}, i.e. the set of valuations that satisfy t.
This means also that we can represent a set by its corresponding Boolean
formula. Standard set operations, e.g. union, become Boolean operations,
e.g. disjunction. Indeed, in later chapters we freely interchange sets and
Boolean formulas as well as their operations.

A binary decision diagram (BDD) is a data structure that is used to
represent a Boolean formula. A BDD with domain V is a rooted, directed,
acyclic graph, which consists of nodes labeled by elements of V and two
terminal nodes labeled by 0 and 1. The terminal nodes have no outgoing
edges. Each non-terminal node has two child nodes, with outgoing edges
labeled by 0 and 1.

A path from the root node to the terminal node 1 represents a variable
valuation V that satisfies the represented Boolean formula. The valuation
of a variable v is 0 (resp. 1) if the path traverses the node labeled by v
with the edge labeled by 0 (resp. 1). So, a BDD represents a Boolean
formula t in the following manner: V |= t if and only if there is a path in the
BDD that represents V. Figure 2.1 gives an example of a BDD with domain
{x, y, x′, y′}. The BDD represents the formula x′ ∧ (y′ ↔ x∨ y). Clearly, the
BDD represents the set {(0, 0, 1, 0), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 1, 1)}, where
quadruples represent valuations of x, y, x′, and y′, respectively,

A BDD is ordered if there exists a total order < on V such that different
variables appear in the same order on every path from the root. We write
v < v′ if there is an edge from a node labeled by v to a node labeled by
v′. The BDD in the example has the ordering x < y < x′ < y′. A BDD is
reduced if it does not contain (i) isomorphic subgraphs, and (ii) nodes whose
children are the same. Figure 2.2 shows the BDD reduced from the one in

19

0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1

y′
‡

y′ y′
‡

y′ y′
‡

y′ y′
‡

y′

x′ x′
†

x′
†

x′
†

y y
‡

x

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1

0 1

Figure 2.1: A BDD for the formula x′ ∧ (y′ ↔ x ∨ y).

20

Figure 2.1. All terminal nodes are merged into only two leaves. Subgraphs
marked with † in Figure 2.1 are reduced due to isomorphism. The nodes
labeled with ‡ are eliminated as both children are the same.

In a reduced ordered BDD, a path from the root node to the terminal node
1 can represent more than one valuation when the number of nodes on the
path is less than the number of variables. The idea is that the valuations of
variables specified by the path always satisfy the underlying Boolean formula,
independent of the valuations of variables of the missing nodes. For instance,
the rightmost path in Figure 2.2 skips the node for y, thus representing two
valuations, namely (1, 0, 1, 1) and (1, 1, 1, 1).

An important property of reduced ordered BDDs is their canonicity, i.e.
the BDD for a given Boolean formula (and a given order <) is always unique.
This property makes it possible to check whether two BDDs are equivalent
in constant time. Further treatments on BDDs are beyond the scope of the
thesis. The reader is referred to [2] for detailed discussions on the topic.
Nevertheless, since we only deal with reduced ordered BDDs throughout the
thesis, we drop the prefix from now on, and merely use the term BDD to
refer to its reduced ordered version.

21

0 1

y′ y′

x′ x′

y

x

0

1

0 1

0

1 0 1

0
1

0

1

Figure 2.2: The BDD for x′ ∧ (y′ ↔ x ∨ y), reduced from Figure 2.1.

22

Chapter 3

Reachability analyses

In this chapter we study reachability analyses for the pushdown models intro-
duced in Chapter 2. We divide the study into two sections based on the types
of weights, namely bounded idempotent semirings and the general ones.

3.1 Bounded idempotent semirings

We propose in this section reachability algorithms for each of our three push-
down models when weights are taken from bounded idempotent semirings.
The algorithms have the same flavor, in the sense that they all use similar
data structures for representing possibly infinite sets of configurations.

3.1.1 Pushdown systems

Throughout this section, let WP = (P,S, f) denote a fixed weighted push-
down system, where P = (P, Γ, ∆) and S = (D,⊕,⊗, 0, 1). Since WP can
have infinitely many configurations, we need an appropriate data structure
to represent sets of configurations. We use finite automata for this purpose.

A weighted WP-automaton is a weighted automaton which takes Γ as the
input alphabet and P as the initial states; formally WA = (A,S, l), where
A = (Q, Γ, δ, P, F). The weight of the configuration 〈p, w〉 is BWA(p, w)—the
backward weight of w when starting from the state p (see Section 2.1.2). We
say that 〈p, w〉 is accepted by WA if its weight is non-zero, i.e. BWA(p, w) 6= 0.
The set of configurations accepted by WA is denoted by L(WA). A set of
configurations is regular if it is accepted by some weighted WP-automaton.

23

We often drop WP and say only weighted automaton when WP is under-
stood.

The left part of Figure 3.1 illustrates a weighted WP-automaton, where
WP is taken from the example in Section 2.2.1. Its rules are listed again on
the lower left part of the figure. The figure defines the automaton WA =
(A,SD, l0), where A = ({p0, p1, q0, q1}, {a, b}, δ0, {p0, p1}, {q1}). Each transi-
tion in the figure is labeled with an input symbol followed by a weight in

parentheses, e.g. p0
a(2)
−−→ q0 means (p0, a, q0) ∈ δ0 and l0(p0, a, q0) = 2. One

can see that WA accepts the configuration 〈p0, ab(bb)n〉, for all n ≥ 0, with
weight BWA(p0, ab(bb)n) = 3 + 2n.

Besides WP, let us fix a weighted automaton WA = (A,S, l0), where A =
(Q0, Γ, δ0, P, F), such that L(WA) = C for some C ⊆ P × Γ∗. Without loss
of generality, we assume that A has no transition leading to an initial state.
We propose in this section an algorithm that constructs WApost∗ accepting
the set of configurations that are reachable from any configuration c ∈ C
with weights computed by applying the operation ⊗ on the weight of c and
the traces starting from c. Formally, WApost∗ accepts

post∗(C) = {c′ ∈ P × Γ∗ | ∃c ∈ C : T (c, c′) 6= 0}

such that the weight of a configuration c′ ∈ post∗(C) is defined as

BWApost∗
(c′) =

⊕

c∈C

BWA(c) ⊗ T (c, c′) .

Without loss of generality we assume from now on that for every rule
〈p, γ〉 →֒ 〈p′, w〉 ∈ ∆, we have |w| ≤ 2. Note that this does not restrict the
expressiveness, since every pushdown system can be simulated by one that
satisfies this restriction with only a linear increase in size. For instance, the

rule 〈p, a〉
x
−֒→ 〈p′, bcde〉 can be simulated by introducing fresh stack symbols

f, g and the rules

〈p, a〉
x
−֒→ 〈p′, fe〉, 〈p′, f〉

1
−֒→ 〈p′, gd〉, 〈p′, g〉

1
−֒→ 〈p′, bc〉 .

Saturation procedure

A saturation procedure for constructing non-weighted WApost∗ was first pro-
posed in [21]. The following generalizes it to the the weighted case.

24

p0 q0 q1
a(2)

b(1)

b(1)

p0 q0 q1

p1

qp0,a

a(2)

ε(3)

a(0)

ε(1)

a(4)

a(2)

b(7)

b(5)

b(1)

b(1)

Rules:

〈p0, a〉
1
−֒→ 〈p0, ε〉

〈p0, a〉
2
−֒→ 〈p1, a〉

〈p1, a〉
3
−֒→ 〈p0, ab〉

Figure 3.1: The weighted automata WA (left) and WApost∗ (right)

Formally, the weighted automaton WApost∗ is defined as (Apost∗ ,S, l),
where Apost∗ = (Q, Γ, δ, P, F). The set of states of Apost∗ is

Q = Q0 ∪ {qp′,γ′ | ∃p, γ, γ′′ : 〈p, γ〉 →֒ 〈p′, γ′γ′′〉 ∈ ∆} .

Initially, δ = δ0 and l(t) = l0(t), if t ∈ δ0 and l(t) = 0, otherwise. We
iteratively update δ and l according to the following saturation rules until
no values can be updated, i.e. until the automaton is saturated.

1. If 〈p, γ〉
a
−֒→ 〈p′, ε〉 and p

γ(b)
−−→ q in the current automaton, add (p′, ε, q)

to δ, and update l(p′, ε, q) = l(p′, ε, q) ⊕ (b ⊗ a).

2. If 〈p, γ〉
a
−֒→ 〈p′, γ′〉 and p

γ(b)
−−→ q in the current automaton, add (p′, γ′, q)

to δ, and update l(p′, γ′, q) = l(p′, γ′, q) ⊕ (b ⊗ a).

3. If 〈p, γ〉
a
−֒→ 〈p′, γ′γ′′〉 and p

γ(b)
−−→ q in the current automaton, add

(p′, γ′, qp′,γ′) and (qp′,γ′, γ′′, q) to δ, and update l(p′, γ′, qp′,γ′) = 1 and
l(qp′,γ′ , γ′′, q) = l(qp′,γ′, γ′′, q) ⊕ (b ⊗ a).

Consider again the example in Figure 3.1. The automaton WApost∗ on
the right is the output of the saturation procedure when running with WP
and WA described on the left. We explain some major steps of the procedure
in the following.

25

1. The set of states Q includes the new state qp0,a because of the rule
〈p1, a〉 →֒ 〈p0, ab〉.

2. WApost∗ is initialized with the transitions and weights from WA, i.e.
the transitions (p0, a, q0), (q0, b, q1), (q1, b, q0) together with their corre-
sponding weights are added to WApost∗ .

3. The transition (p0, a, q0) matches the rule

• 〈p0, a〉
1
−֒→ 〈p0, ε〉, so the transition (p0, ε, q0) with weight 2+1 = 3

is added, and

• 〈p0, a〉
2
−֒→ 〈p1, a〉, so the transition (p1, a, q0) with weight 2+2 = 4

is added.

4. The transition (p1, a, q0) matches the rule 〈p1, a〉
3
−֒→ 〈p0, ab〉, so the

transitions (p0, a, qp0,a) with weight 0 and (qp0,a, b, q0) with weight 4 +
3 = 7 are added.

5. We now consider (p0, a, qp0,a), and continue analogously to the steps
3–4; essentially the following transitions are added: (p0, ε, qp0,a) with
weight 1, (p1, a, qp0,a) with weight 2, (qp0,a, b, qp0,a) with weight 5. Note
that (p0, a, qp0,a) is not added again because its weight does not change.

6. No new transitions can be updated, i.e. WApost∗ is saturated.

As an example, the weight of the configuration 〈p0, abbb〉 accepted by
WApost∗ is

BWApost∗
(p0, abbb) = min(1 + 1 + 1 + 2, 1 + 7 + 5 + 0) = 5 .

Implementation

Algorithm 3.1, proposed by [51], efficiently implements the saturation proce-
dure. Lines 1–3 initialize the algorithm as described above. Initially, trans is
equal to δ0. The algorithm then repeatedly removes a transition (p, γ, q) from
trans until it is empty. The loops at lines 7, 9, and 11 handle the cases when
p and γ match left-hand sides of the rules; resembling the saturation rules
1, 2, and 3, respectively. The loops at lines 14 and 17 handle ε-transitions.
New transitions and weights are produced as a consequence.

26

Input: Weighted pushdown system (P,S, f), where P = (P, Γ, ∆),
and weighted automaton (A,S, l0), where A = (Q0, Γ, δ0, P, F)

Output: The saturated weighted automaton WApost∗

Q := Q0 ∪ {qp′,γ′ | ∃p, γ, γ′′ : 〈p, γ〉 →֒ 〈p′, γ′γ′′〉 ∈ ∆};1

δ := δ0; trans := δ0; l := λt.0;2

forall t ∈ δ0 do l(t) := l0(t);3

while trans 6= ∅ do4

remove t := (p, γ, q) from trans;5

if γ 6= ε then6

forall r = 〈p, γ〉 →֒ 〈p′, ε〉 ∈ ∆ do7

update((p′, ε, q), l(t) ⊗ f(r));8

forall r = 〈p, γ〉 →֒ 〈p′, γ′〉 ∈ ∆ do9

update((p′, γ′, q), l(t) ⊗ f(r));10

forall r = 〈p, γ〉 →֒ 〈p′, γ′γ′′〉 ∈ ∆ do11

update((p′, γ′, qp′,γ′), 1);12

update((qp′,γ′ , γ′′, q), l(t) ⊗ f(r));13

forall t′ = (p′′, ε, qp′,γ′) ∈ δ do14

update((p′′, γ′′, qp′,γ′), l(t) ⊗ f(r) ⊗ l(t′));15

else16

forall t′ = (q, γ′, q′) ∈ δ do17

update((p, γ′, q′), l(t′) ⊗ l(t));18

return ((Q, Γ, δ, P, F),S, l);19

Algorithm 3.1: A reachability algorithm for weighted pushdown systems

27

The procedure update listed in Algorithm 3.2 is called when a new weight
of a transition is computed. The new transition is added to δ before com-
bining the new weight with the old weight (lines 2–3). The if-statement at
line 4 makes sure that the transition is added to trans for further computa-
tion (line 5) only if its weight changes. As a result, line 6 can change l(t)
only to a larger value (with respect to ⊑). The algorithm continues until the
weights of all transitions stabilize, i.e. trans is empty.

procedure update(t, v)1

δ := δ ∪ {t};2

v := l(t) ⊕ v;3

if v 6= l(t) then4

trans := trans ∪ {t};5

l(t) := v;6

Algorithm 3.2: The update procedure

If Algorithm 3.1 is applied to the example in Figure 3.1, one will ob-
tain an identical result except that ε-transitions are explicitly extended with
neighboring transitions (by lines 14 and 17 of the algorithm). The transitions
(p0, b, q1) with weight 4, (p0, b, qp0,a) with weight 6, and (p0, b, q0) with weight
8 are added as a result.

Theorem 3.1 [51] Let WP = (P,S, f) be a weighted pushdown system,
where P = (P, Γ, ∆) and S is a bounded idempotent semiring having the
maximal length of ascending chains c. Let WA = (A,S, l) be a weighted
WP-automaton, where A = (Q, Γ, δ, P, F). There exists a weighted WP-
automaton WApost∗ such that L(WApost∗) = post∗(L(WA)) and for all c′ ∈
L(WApost∗), BWApost∗

(c′) =
⊕

c∈L(WA) BWA(c) ⊗ T (c, c′). Moreover, WApost∗

can be constructed in O(c|P |(|∆|(n1 + n2) + |δ0|)) time, where n1 = |Q \ P |,
and n2 is the number of different pairs (p′, γ′) such that there is a rule of the
form 〈p, γ〉 →֒ 〈p′, γ′γ′′〉.

3.1.2 Alternating pushdown systems

Notice that the algorithm for pushdown systems in the previous section gen-
erates all configurations that are reachable from a given set of configurations.
By its characteristics, the algorithm can be categorized as a forward reacha-
bility analysis. In contrast, we propose in this section a backward reachability

28

analysis for alternating pushdown systems, i.e. given a set of configurations
C we find all configurations that are backwards reachable from any subsets
of C.

We proceed analogously by first introducing a data structure for sets of
configurations. Let us fix a weighted alternating pushdown system WP =
(P,S, f), where P = (P, Γ, ∆) and S = (D,⊕,⊗,⊙, 0, 1, 1′). A weighted
alternating WP-automaton is straightforwardly generalized from weighted
WP-automaton to the alternating level. The weight of a configuration 〈p, w〉
is FWA(p, w)—the forward weight of w when starting from the state p (see
Section 2.1.2). We say that 〈p, w〉 is accepted by WA if FWA(p, w) 6= 0. The
set of configurations accepted by WA is denoted by L(WA).

We fix further a weighted alternating automaton WA = (A,S, l0), where
A = (Q, Γ, δ0, P, F) such that L(WA) = C for some C ⊆ P × Γ∗. Without
loss of generality, we assume that A has no transition leading to an initial
state. We present in this section an algorithm that constructs WApre∗ ac-
cepting a set of configurations that are backwards reachable from any subset
of configurations C ′ ⊆ C with weights computed by applying the operation
⊗ on the traces reaching C ′ and ⊙ on the weights of configurations in C ′.
Formally, WApre∗ accepts

pre∗(C) = {c ∈ P × Γ∗ | ∃C ′ ⊆ C : T (c, C ′) 6= 0}

such that the weight of a configuration c ∈ pre∗(C) is defined as

FWApre∗
(c) =

⊕

C′⊆C

(

T (c, C ′) ⊗
⊙

c′∈C′

FWA(c′)

)

.

Saturation procedure

A saturation procedure for constructing non-weighted WApre∗ was first in-
troduced in [6]. The following generalizes it to the the weighted case.

The weighted alternating automaton WApre∗ is defined as (Apre∗ ,S, l),
where Apre∗ = (Q, Γ, δ, P, F). Initially, δ = δ0 and l(t) = l0(t), if t ∈ δ0 and
l(t) = 0, otherwise. We iteratively update δ and l according to the following
saturation rule until no values can be updated, i.e. until the automaton is
saturated.

If 〈p, γ〉
a
−֒→ {〈p1, w1〉, . . . , 〈pn, wn〉} and pi

wi(bi)
−−−→ Qi for all i ∈ [n],

add t = (p, γ,
⋃n

i=1 Qi) to δ and update l(t) = l(t)⊕(a⊗
⊙n

i=1 bi).

29

We reuse the example in Section 2.2.2 to illustrate the idea. Let WA =
(A,SD, l0) be a weighted alternating WP-automaton, where

A = ({p0, p1, q}, {a, b}, {(p0, b, q), (q, b, q)}, {p0, p1}, {q}) ,

l0(p0, b, q) = 2 and l0(q, b, q) = 1. Obviously, WA accepts of the configuration
〈p0, bb

n〉, for all n ≥ 0, with weight FWA(p0, bb
n) = 2 + n.

Using the saturation procedure, we now construct the automaton WApre∗

from WA and WP. The steps of the procedure are listed in the following.

1. WApre∗ is initialized with the transitions and weights from WA.

2. Since 〈p1, a〉
3
−֒→ 〈p0, ε〉, 〈p0, b〉

4
−֒→ 〈p0, ε〉, and p0

ε(0)
−−→ {p0}, the transi-

tions (p1, a, p0) and (p0, b, p0) are added with weights 3 and 4, respec-
tively.

3. With 〈p1, b〉
2
−֒→ {〈p1, a〉, 〈p0, b〉} and p1

a(3)
−−→ {p0}, two transitions are

added, because there are two transitions leaving p0 with symbol b.

• With p0
b(4)
−−→ {p0}, the transition (p1, b, p0) is added with weight

2 + (3 + 4) = 9.

• With p0
b(2)
−−→ {q}, the transition (p1, b, {p0, q}) is added with

weight 2 + (3 + 2) = 7.

4. With 〈p0, a〉
1
−֒→ 〈p1, bb〉 and p1

b(9)
−−→ {p0}, two transitions are added,

because there are two transitions leaving p0 with symbol b.

• With p0
b(4)
−−→ {p0}, the transition (p0, a, p0) is added with weight

1 + (9 + 4) = 14.

• With p0
b(2)
−−→ {q}, the transition (p0, a, q) is added with weight

1 + (9 + 2) = 12.

5. With 〈p0, a〉
1
−֒→ 〈p1, bb〉 and p1

b(7)
−−→ {p0, q}, two transitions are added,

because there are two transitions leaving p0 with symbol b and one
transition leaving q with symbol b.

• With p0
b(4)
−−→ {p0} and q

b(1)
−−→ {q}, the transition (p0, a, {p0, q}) is

added with weight 1 + (7 + (4 + 1)) = 13.

30

• With p0
b(2)
−−→ {q} and q

b(1)
−−→ {q}, the weight of the transition

(p0, a, q) is updated with min(12, 1 + (7 + (2 + 1))) = 11.

6. No new transitions can be added or updated, i.e. WApre∗ is saturated.

As an example, the weight of the configuration 〈p1, bb〉 accepted by WApre∗

is the combination of the following two traces: (i) p1
b(9)
−−→ {p0} and p0

b(2)
−−→

{q}, (ii) p1
b(7)
−−→ {p0, q}, p0

b(2)
−−→ {q}, and q

b(1)
−−→ {q}.

FWApre∗
(p1, bb) = min(9 + 2, 7 + (2 + 1)) = 10 .

Implementation

Algorithm 3.3 presents an implementation of the saturation procedure. With-
out loss of generality, the algorithm imposes two restrictions on every rule
〈p, γ〉 →֒ R in ∆:

(R1) if R = {〈p′, w′〉}, then |w′| ≤ 2, and

(R2) if |R| > 1, then ∀〈p′, w′〉 ∈ R : |w′| = 1.

Note that any alternating pushdown system can be converted into an equiv-
alent one that satisfies (R1) and (R2) with only a linear increase in size.

Lines 1–6 initialize the algorithm. Initially, trans contains transitions
from δ0 plus an extra flag which is false (ff) by default. A flag of a transition
indicates how the transition was added to trans: false means that the tran-
sition was added in line 1 or by the procedure update, and true (tt) means
that the transition was added as a result of processing a push rule (see later).
Therefore, the procedure update used by the algorithm is slightly modified
from Algorithm 3.2 by changing line 5 to

trans := trans ∪ {(q, γ, Q′, ff) | t = (q, γ, Q′)};5

All rules are copied to ∆′ (line 3), and the auxiliary function F is ini-
tialized to map any rule r ∈ ∆ to a set containing (f(r), 1′, ∅) as the only
element (line 4). Pop rules and rules having the empty set as the right-hand
sets are dealt with first (lines 5 and 6). The algorithm then proceeds by
iteratively removing transitions from trans (line 8), and examining whether
they generate other transitions via the saturation rule (lines 9–18). The idea

31

Input: Weighted alternating pushdown system (P,S, f), where
P = (P, Γ, ∆), and weighted alternating automaton (A,S, l0),
where A = (Q, Γ, δ0, P, F)

Output: The saturated weighted alternating automaton WApre∗

δ := δ0; trans := {(q, γ, Q′, ff) | (q, γ, Q′) ∈ δ0}; l := λt.0;1

forall t ∈ δ0 do l(t) := l0(t);2

∆′ := ∆; F := λr.∅;3

forall r ∈ ∆ do F(r) := {(f(r), 1′, ∅)};4

forall r = 〈p, γ〉 →֒ 〈p′, ε〉 ∈ ∆ do update((p, γ, p′), f(r));5

forall r = 〈p, γ〉 →֒ ∅ ∈ ∆ do update((p, γ, ∅), f(r));6

while trans 6= ∅ do7

remove (q, γ, Q′, z) from trans;8

forall r = 〈p1, γ1〉 →֒ 〈q, γ〉 ∈ ∆′ and (a, b, Q′′) ∈ F(r) do9

update((p1, γ1, Q
′ ∪ Q′′), a ⊗ (l(q, γ, Q′) ⊙ b));10

forall r = 〈p1, γ1〉 →֒ 〈q, γγ2〉 ∈ ∆′ and z = ff do11

add r′ := 〈p1, γ1〉 →֒ {〈q′, γ2〉 | q′ ∈ Q′} to ∆′;12

add (f(r) ⊗ l(q, γ, Q′), 1′, ∅) to F(r′);13

forall (q′, γ2, Q
′′) ∈ δ s.t. q′ ∈ Q′ do14

add (q′, γ2, Q
′′, tt) to trans;15

forall r = 〈p, γ〉 →֒ {〈q, γ〉} ∪ R ∈ ∆′ s.t. R 6= ∅ do16

add r′ := 〈p, γ〉 →֒ R to ∆′;17

add {(a, l(q, γ, Q′) ⊙ b, Q′ ∪ Q′′) | (a, b, Q′′) ∈ F(r)} to F(r′);18

return ((Q, Γ, δ, P, F),S, l);19

Algorithm 3.3: A reachability algorithm for weighted alternating push-
down systems

32

of the algorithm is to avoid unnecessary operations. Imagine that the satura-
tion rule allows to add transition t if transitions t1 and t2 are already present.
Now, if t1 is taken from trans but t2 has not been added to WApre∗ , we do
not put t1 back to trans but store the following information instead: if t2 is
added, then we can also add t. It turns out that these implications can be
stored in the form of the auxiliary sets F(r).

Let us now look at lines 9–18 in more detail. Line 9 handles normal rules
where new transitions can be immediately added. Push rules (lines 11–15)
and alternating rules (lines 16–18), however, require a more delicate treat-
ment. At line 11 we know that (q, γ, Q′) is a transition of WApre∗ (because
it has been removed from trans) and that r = 〈p1, γ1〉 →֒ 〈q, γγ2〉 is a push
rule of P. We create the “fake rule” 〈p1, γ1〉 →֒ {〈q′, γ2〉 | q′ ∈ Q′}, and
add it to ∆′ at line 12. Its F -value is updated to include the new weight
f(r) ⊗ l(q, γ, Q′). Obviously, if Q′ contains q′ as the only element, then the
right-hand set of the fake rule is a singleton, and when a transition (q′, γ2, Q

′
2)

is later examined (line 9), we update the transition (p1, γ1, Q
′
2) with weight

f(r)⊗ l(q, γ, q′)⊗ l(q′, γ2, Q
′′
2). On the other hand, if Q′ is not a singleton, we

know that the resulting fake rule is alternating, and we treat it as a normal
alternating rule because it always satisfies the restriction (R2). Also, we need
to “reconsider” transitions leaving from a state in Q′ with symbol γ2 that
have already been added to δ, since they can be used to process the new fake
rule. This is done by putting those transitions back in trans again so that
they can be processed later at lines 9 or 16. Notice that their flags are set
to true, thus preventing them to be processed with push rules again (by the
loop guard in line 11).

At line 16 we know that (q, γ, Q′) is a transition of WApre∗ and 〈p1, γ1〉 →֒
{〈q, γ〉}∪R is an alternating rule. Therefore, we add the fake rule 〈p1, γ1〉 →֒
R, and update its F -value to include the weight of the transition (q, γ, Q′)
and the set Q′. If the set R contains more than one element, then similar
processes can take place, resulting in more fake rules with less elements in the
right-hand sets. Line 9 handles the case when the fake rule is non-alternating.

Lemma 3.1 Algorithm 3.3 terminates.

Proof: Since Q and Γ are finite sets, δ is a finite set. Also, the procedure
update cannot modify weights of any transitions infinitely many times, be-
cause the semiring is bounded. Hence, the block at lines 8–18 can only be
executed finitely many times. ∆′ is finite, since ∆ is finite and only finitely

33

many rules are added to ∆′. The flags of the transitions added at line 15 are
always true, preventing the loop at line 11 to be entered more than once with
a transition having the same weight, and therefore the loop can be entered
finitely many times. As a result, all loops after line 8 terminate, and only
finite number of elements can be added to trans. Once weights of transi-
tions in δ can no longer grow, trans can no longer grow and will be empty
eventually. This causes the algorithm to terminate. 2

Lemma 3.2 Upon termination of Algorithm 3.3, δ and l are equal to the set
of transitions and the weight function of WApre∗, respectively.

Proof: Let δpre∗ be the set of transitions and lpre∗ be the weight function of
WApre∗ . We divide the proof into two parts:

“⊆” We show that throughout the algorithm δ ⊆ δpre∗ and for all t ∈ δ,
l(t) ⊑ lpre∗(t) hold. The saturation procedure defines δpre∗ to contain
δ0 and satisfy the saturation rule. Transitions in δ0 are copied to δ at
line 1, and their weights are copied to l at line 2. Since δ contains only
elements that are derived from some elements in trans, we inspect the
lines that change trans , and show that all additions to trans satisfy the
saturation rule:

– At line 1, trans is initialized to δ0.

– Line 5 models the saturation rule in the case of pop rules.

– Line 6 models the saturation rule in the case of rules with empty
set as the right-hand sides.

– Line 15 always adds transitions that are already in δ to trans, and
therefore always satisfies the saturation rule.

– Line 10 processes the transition (q, γ, Q′) and the rule 〈p1, γ1〉 →֒
〈q, γ〉, which was added to ∆′ because of either of the following
three reasons:

1. The rule was added to ∆′ at line 3, i.e. r = 〈p1, γ1〉 →֒ 〈q, γ〉 ∈
∆ and F(r) = (f(r), 1′, ∅), and therefore updating the tran-
sition (p, γ, Q′) with weight (f(r)⊗ (l(p, γ, Q′) ⊙ 1′)) satisfies
the saturation rule.

34

2. The rule was added to ∆′ at line 12, which implies that r′

was 〈p1, γ1〉 →֒ 〈q, γ〉, and the loop at line 11 was entered
with some p′′,γ′ such that r = 〈p1, γ1〉 →֒ 〈p′′, γ′γ〉 ∈ ∆ and
(p′′, γ′, q) ∈ trans . As a result, (f(r) ⊗ l(p′′, γ′, q), 1′, ∅) was
added to F(r′) at line 13. Then, when r′ is considered at
line 9 because of the transition (q, γ, Q′), we update transition
(p1, γ1, Q

′∪∅) with weight f(r)⊗ l(p′′, γ′, q)⊗ (l(q, γ, Q′)⊙1′)
according to the saturation rule.

3. The rule was added to ∆′ at line 17, which implies that the
loop at line 16 was entered with some q′1, γ

′
1, Q

′
1 such that r =

〈p1, γ1〉 →֒ {〈q, γ〉} ∪ {〈q′1, γ
′
1〉} ∈ ∆′ (i.e., R = {〈q′1, γ

′
1〉}) and

the transition (q′1, γ
′
1, Q

′
1) ∈ trans. This information was saved

by adding (a, l(q′1, γ
′
1, Q

′
1)⊙b, Q′

1∪Q′′) to F(〈p1, γ1〉 →֒ 〈q, γ〉)
for each (a, b, Q′′) ∈ F(r) at line 18. Now, we consider again
where the rule r was added to ∆′. There are three cases:

(a) If r was added to ∆′ at line 3, i.e. r ∈ ∆, then F(r) =
{(f(r), 1′, ∅)}. Updating the transition (p1, γ1, Q

′∪Q′
1∪∅)

with weight f(r)⊗(l(q, γ, Q′)⊙ l(q′1, γ
′
1, Q

′
1)⊙1′) therefore

conforms to the saturation rule.

(b) If r was added to ∆′ at line 12, then γ = γ′
1, i.e. the

rule r was r = 〈p1, γ1〉 →֒ {〈q, γ〉, 〈q′1, γ〉}. The loop
at line 11 must be entered with some p′′, γ′ s.t. r1 =
〈p1, γ1〉 →֒ 〈p′′, γ′γ〉 ∈ ∆ and (p′′, γ′, {q, q′1}) ∈ trans. As a
result, (f(r1)⊗l(p′′, γ′, {q, q′1}), 1

′, ∅) was added to F(r) at
line 13. Again, when considering 〈p1, γ1〉 →֒ 〈q, γ〉, we up-
date (p1, γ1, Q

′∪Q′
1) with weight f(r1)⊗l(p′′, γ′, {q, q′1})⊗

(l(q, γ, Q′)⊙ l(q′1, γ
′
1, Q

′
1)⊙ 1′) according to the saturation

rule.

(c) If r was added to ∆′ at line 17, then there must eventually
be r1 = 〈p1, γ1〉 →֒ {〈q, γ〉, 〈q′1, γ

′
1〉, . . . , 〈q

′
n, γ′

n〉} ∈ ∆′ for
some n ≥ 2 such that this rule was added at either at line 3
or 12, and (q′i, γ

′
i, Q

′
i) ∈ trans for all i ∈ [n]. We can per-

form the analysis similar to (3a) and (3b), and conclude
that the update of the transition (p1, γ1, Q

′∪
⋃n

i=1 Q′
i) with

weight f(r1)⊗ (l(q, γ, Q′)⊙
⊙n

i=1 l(q′i, γ
′
i, Q

′
i)) conforms to

the saturation rule.

“⊇” We show that upon termination δ ⊇ δpre∗ and for all t ∈ δ, l(t) ⊒

35

lpre∗(t) hold. Equivalently, we prove that by the time the algorithm
terminates, all possible saturation rules have been applied. Two cases
are considered:

1. Assume r = 〈p, γ〉 →֒ 〈p′, w〉 ∈ ∆ and there was p′
w
−→ Q in δ.

– If w = ε, then Q = {p′}. The transition (p, γ, p′) has been
added with weight f(r) in line 5.

– If w = γ1 and t = (p′, γ1, Q) ∈ δ, then (p, γ, Q) has been
added with weight f(r) ⊗ l(t) in line 10

– If w = γ1γ2 and δ contained transitions t′ = (p′, γ1, Q
′) and

t′′j = (q′j , γ2, Q
′
j) for every q′j ∈ Q′, then after t′ was examined

∆′ contained the rule r′ = 〈p, γ〉 →֒ {〈q′j, γ2〉 | q′j ∈ Q′}
(line 12), and its F -value included (f(r)⊗ l(t′), 1′, ∅) (line 13).
Notice that all t′′j that had been examined before t′ were put
back to trans (line 15), and therefore were inspected again
after r′ was constructed. At this point, there were two possible
cases when a transition t′′j was examined, depending on the
number of elements in the right-hand set of the rule.

(a) If there were more than one element in the set, line 17
added a rule without 〈q′′j , γ2〉 in the right-hand side set
to ∆′. The weight of t′′j and the set Q′

j were kept in the
F -value of the new rule (line 18). This step is repeated
for each different t′′j until there is one element in the right-
hand-side set.

(b) If there was one element in the set, i.e. we had 〈p, γ〉 →֒
〈q′′j , γ2〉 at line 9, then (p, γ,

⋃

j Q′
j) has been updated with

f(r) ⊗ l(t′) ⊗
⊙

j l(t′′j) at line 10.

2. Assume r = 〈p, γ〉 →֒ {〈q1, γ1〉, . . . , 〈qn, γn〉} ∈ ∆ for some n ≥ 2
and δ contained ti = (qi, γi, Qi) for all i ∈ [n]. When a transition
ti was examined, ∆′ contained the rule identical to r, but without
〈qi, γi〉 in the right-hand set (line 17). The weight of ti and the set
Qi were saved in the F -value of the new rule (line 18). This step
was repeated for other transitions, and when the last transition
was examined the transition (p, γ,

⋃n
i=1 Qi) has been updated with

weight f(r) ⊗
⊙n

i=1 l(ti) at line 10.

2

36

Algorithm 3.3 may require exponential time, since the number of tran-
sitions of WApre∗ can be exponential in the number of states. However, a
closer look at the complexity reveals that the algorithm is exponential only
in a proper subset of states, which can be small depending on the instance.

We conduct a careful analysis in terms of certain parameters of the input,
which are listed below:

• ∆a denotes the set of alternating rules, and a denotes the maximum
number of elements in their right-hand sets. ∆0 denotes the set of pop
rules and rules where the right-hand sets are the empty set. ∆1 and
∆2 denote the set of normal and push rules, respectively.

• The set of pop control locations, denoted by Pε, is the set of control
locations p′ ∈ P such that ∆0 contains some rules 〈p, γ〉 →֒ 〈p′, ε〉.

• We define Qni as the set of non-initial states, i.e. Qni = Q \ P .

The following lemma first focuses on the case in which weights are ignored,
so that each transition can be added to δ only once. Alternatively, one can
think of the semiring ({0, 1},∨,∧,∧, 0, 1, 1), where 0 and 1 denote false and
true, respectively, and the disjunction (∨) and conjunction (∧) have their
usual meanings. We set f(r) = 1 for all r ∈ ∆ and l0(t) = 1 for all t ∈ δ0.
The lemma can be easily generalized by using the boundedness property of
the semiring.

Lemma 3.3 When weights are ignored, Algorithm 3.3 takes O(|δ0|+ |∆0|+
|∆1|2n + (|∆2|n + |∆a|2a)4n) time, where n = |Pε| + |Qni|.

Proof: Let ν be the smallest set of states such that for every transition
(q, γ, Q′) added to trans at any point during the algorithm, Q′ only contains
states of ν. Because of lines 1 and 5, we have Pε ∪ Qni ⊆ ν. However, all
other lines that add transitions to trans (namely, 10 and 15) do not add
more elements to ν, since for every transition (q, γ, Q′) they add, either the
transition was added to trans before, or Q′ must be a union of Q′′ for some
(q′, γ′, Q′′) that were in trans. So, ν = Pε ∪ Qni.

Because of the definition of ν, the number of sets Q′ ⊆ Q for which, after
termination of the algorithm, δ contains a transition of the form (q, γ, Q′) is
2|ν| = 2n.

We now consider the number of times the statements inside the main loop
are executed. Line 12 is executed once for each combination of 〈p1, γ1〉 →֒

37

〈q, γγ2〉 ∈ ∆2 and (q, γ, Q′), i.e. O(|∆2|2n) times. The alternating rules
inside ∆′ only come from ∆a, line 17, and line 12, and hence there are
O(|∆a|2a + |∆2|2n) of them. Line 17 is executed once for each combination
of alternating rule 〈p1, γ1〉 →֒ {〈q, γ〉} ∪ R ∈ ∆′ and (q, γ, Q′). Therefore,
line 17 is executed O(|∆a|2(a+n) + |∆2|4n) times. Moreover, since Q′ and γ2

are fixed, line 15 is executed O(|∆2|4n) times.
Line 10 is executed once for each combination of non-alternating rule in

∆′ and (q, γ, Q′). Since the size of ∆′ of this form is O(|∆1|+ |∆2|n + |∆a|a)
and F(r) has at most 2n elements for each rule r 6∈ ∆1, line 10 is executed
O(|∆1|2n + (|∆2|n + |∆a|a)4n) times.

Initially, the loops at lines 1, 5, and 6 are executed |δ0| + |∆0| times.
Therefore, the time complexity can be concluded from the number of times
the statements in the algorithm are executed: O(|δ0|+|∆0|+|∆1|2

n+(|∆2|n+
|∆a|2a)4n). 2

In typical applications, we usually start with a small automaton, i.e. δ0

and Qni will be small. In that case n will be dominated by |Pε|. In this
case, the complexity can be simplified to O(|∆0| + |∆1|2|Pε| + (|∆2||Pε| +
|∆a|2a)4|Pε|).

Theorem 3.2 Let WP = (P,S, f) be a weighted alternating pushdown sys-
tem, where P = (P, Γ, ∆) and S is a bounded idempotent semiring having c as
the maximal length of ascending chains. Let WA = (A,S, l) be a weighted al-
ternating WP-automaton, where A = (Q, Γ, δ, P, F). There exists a weighted
WP-automaton WApre∗ such that L(WApre∗) = pre∗(L(WA)) and for all c ∈
L(WApre∗), FWApre∗

(c) =
⊕

C′⊆L(WA) T (c, C ′) ⊗
⊙

c′∈C′ FWA(c′). Moreover,

WApre∗ can be constructed in O(c(|δ0|+ |∆0|+ |∆1|2n + (|∆2|n + |∆a|2a)4n))
time, where n = |Pε| + |Qni|.

Given an alternating pushdown system P, a configuration c of P, and
a set of configurations C, the backward reachability problem for P, c, and
C is to check whether c ∈ pre∗(C). By theorem 3.2, the problem is in
EXPTIME. The following theorem shows a corresponding lower bound. It
is a rather straightforward modification of a theorem of [12].

Theorem 3.3 The backward reachability problem for alternating pushdown
systems is EXPTIME-complete, even if C is a singleton.

Proof: We use a reduction from the acceptance problem for alternating
Turing machines.

38

More specifically, let M = (Q, Σ, δ, q0) be an alternating Turing machine,
where the control states Q are partitioned into existential, universal, accept-
ing, and rejecting states, and where δ : Q×Σ → 2Q×Σ×{L,N,R} is the transition
function.

Let us assume that, when started on the input w, M uses at most p(|w|)
space on the tape, where p is some polynomial independent of w. Thus, a
configuration of M can be represented by a word from Σ∗QΣΣ∗ of length
p(|w|). In a configuration uqv, u are the tape contents to the left of the head,
q is the current state, and v are the tape contents under and to the right
of the head, including blanks for cells that have not yet been visited. The
initial configuration for input w is q0w (padded with blanks if needed).

The computation of M on an input w is a tree whose nodes are the
tape configurations of M, rooted at the initial configuration and where the
children of each configuration are its successor configurations (w.r.t. δ). If α
is a configuration of M, we denote by Tα the subtree rooted at α. A subtree
Tα, where q is the control state of α, is called accepting if either

• q is accepting; or

• q is existential and there is a successor β of α such that Tβ is accepting;
or

• q is universal and for any successor β of α, Tβ is accepting.

The problem to check whether the computation of M on w is accepting
is known to be EXPTIME-complete [12].

Given M and w, we now construct an alternating pushdown system P and
configurations c, c′ such that c ∈ pre∗

P({c′}) if and only if the computation
of M on w is accepting. This proves that the backward reachability problem
is EXPTIME-hard, and together with Theorem 3.2, EXPTIME-complete.

The stack alphabet of P is Q ∪ Σ ∪ {#, L, N, R}. A run of P works
in two phases. In the first phase, P begins at a configuration 〈Start , #〉,
then nondeterministically pushes a word #c0#t1#c1#t2#c2#t3 · · · onto the
stack, where (i) c0 is the initial configuration of M on w, (ii) c1, c2, . . . are
arbitrary configurations of M, and (iii) ti, for all i ≥ 1, represents a tran-
sition of M from ci−1 to ci. A transition ti is constructed as follows: After
pushing ci−1, P first chooses a pair (q, a) ∈ Q×Σ and writes qa to the stack.
Then, if q is accepting, P goes to a control state Test and enters the second
phase (see below). If q is existential, P nondeterministically chooses a triple

39

(q′, a′, m) from δ(q, a), pushes q′a′m to the stack and continues with ci. If
q is universal, and |δ(q, a)| = n, then P executes an alternating rule with
branching degree n, where each branch writes a distinct element of δ(q, a) to
the stack, and then continues with ci.

Notice that in the first phase, there is no guarantee that ci−1, ti, and ci are
correctly related to each other. Consider a run of P where each branch has
entered the control state Test , and assume (for a moment) that the choices
of subsequent configurations and transitions along each branch correctly rep-
resent steps in M. Since the branching behavior of the run corresponds to
the branching behavior of the transitions chosen along each branch, and each
branch has entered an accepting state, such a run is possible if and only if
the computation of M on w is accepting. All that remains is to check (on
each branch) whether the configurations and transitions are correctly related
to each other. This is done in the second phase.

In the second phase, P checks (for each branch) whether the following
holds:

(i) for each pair ci−1, ti, where i ≥ 1 and ti = qa . . ., ci−1 has the form
uqav for some u, v ∈ Σ∗;

(ii) for each triple ci−1, ti = qaq′a′m, ci, where i ≥ 1, the control state in ci

is q′, and its position is correct w.r.t. the position of the control state
in ci−1 and m;

(iii) for each triple ci−1, ti, ci, where i ≥ 1, and each j ∈ {1, . . . , p(|w|)}, the
symbol on the j-th tape cell in ci is correct w.r.t. the j-th tape symbol
in ci−1 and ti.

To perform these checks, the second phase can be seen to consist of a ‘popping
thread’ that pops the stack contents and forks off a ‘checking thread’ at each
position where a check is required. The popping thread can be implemented
by an alternating rule of the kind 〈Test , γ〉 →֒ {〈Test, ε〉, 〈Check , γ〉}, where
〈Test, ε〉 is the continuation of the ‘popping thread’, and 〈Check , γ〉 is the
beginning of the ‘checking thread’.

The checking thread for condition (i) is simple to implement: the thread
pops (q, a) from the stack, enters a control state Check1(q, a), then removes
the configuration ci−1 from the stack, checking whether condition (i) is met.

The checking thread for condition (ii) is similar, except for the fact that
the thread needs a counter up to p(|w|) to check that the position is correct.

40

The checking thread for condition (iii) remembers the symbol of ci at
position j and whether the head is at position j − 1, j, j + 1, or somewhere
else, then removes the rest of ci and reads ti. From this information it can
conclude which symbol position j in ci−1 should have had. It then removes
part of ci−1 up to position j and checks whether it contains the correct
symbol. Again, a counter up to p(|w|) is needed.

Assume that all successful checking threads continue to remove the stack
contents and then enter a control state End , and that the same holds for the
popping thread. Then, all threads become 〈End , ε〉 if and only if all branches
of P in the first phase represented correct computations of M. Putting it
differently, 〈Start , #〉 ∈ pre∗({End , ε}) if and only if the computation of M
on w is accepting. The number of control states in P is O(p(|w|) · |Q| · |Σ|).
2

A special case

Recall from the saturation procedure that the exponential complexity of the
algorithm is due to the fact that the target of the new transition can be an
arbitrary set of states, and so we may have to add an exponential number of
new states in the worst case. We now consider a special class of instances in
which a new transition (p, γ, Q) need to be added only if Q is a singleton. We
show that a suitable modification of Algorithm 3.3 has polynomial running
time.

Given a set of configurations C, we say that (WP, C) is a good instance
if for every 〈p, γ〉 →֒ {〈p1, w1〉, . . . , 〈pn, wn〉} ∈ ∆ with n ≥ 2 and for every
i ∈ [n], 〈pi, wiw〉 ∈ pre∗(C) implies w = ε.

Intuitively, if the set C can be reached from 〈pi, wi〉, then it cannot be
reached from any 〈pi, wiw〉, where w is a nonempty word. Besides, we define a
class of alternating pushdown systems which always induces good instances.
A simple alternating pushdown system is a tuple (P, Γ, Ξ, ∆), where (P, Γ, ∆)
is an alternating pushdown system and Ξ ⊆ Γ is a set of bottom stack
symbols. Moreover, all transition rules in ∆ are of the following forms:

• 〈p, γ〉 →֒ 〈p′, w〉, where p, p′ ∈ P , γ ∈ Γ \ Ξ, and w ∈ (Γ \ Ξ)∗,

• 〈p,⊥〉 →֒ {〈p1, w1⊥1〉, . . . , 〈pn, wn⊥n〉}, where ⊥,⊥i ∈ Ξ and wi ∈
(Γ \ Ξ)∗ for all i ∈ [n].

Notice that the applications in Chapter 6 are based on this particular class.

41

As mentioned above, we introduce the following modification to the sat-
uration rule: a new transition (p, γ, Q) is added only if Q is a singleton.

Theorem 3.4 Let WP = (P,S, f), where P = (P, Γ, ∆), and C be a good
instance, and let WA be a non-alternating automaton recognizing C. As-
sume without loss of generality that WA has one single final state. Then, by
applying the following modified saturation procedure:

if 〈p, γ〉
a
−֒→ {〈p1, w1〉, . . . , 〈pn, wn〉} and pi

wi(bi)
−−−→ q for all i ∈ [n],

add t = (p, γ, q) to δ and update l(t) = l(t) ⊕ (a ⊗
⊙n

i=1 bi),

the resulting automaton WApre∗ is non-alternating and recognizes language
pre∗(C) such that for each c ∈ pre∗(C),

FWApre∗
(c) =

⊕

c′∈C

T (c, c′) ⊗ FWA(c′) .

Proof: Because of the modification in the rule, the modified saturation
procedure never adds an alternating rule, and so it yields a nondeterministic
automaton.

We claim that if WApre∗ contained a transition (p, γ,
⋃n

i=1 Qi) such that
⋃n

i=1 Qi is not a singleton, then at least one Qi, where i ∈ [n], would contain
a redundant state, i.e. a state from which no word can be accepted. It follows
that the transition need not be added.

To prove the claim, observe that (p, γ,
⋃n

i=1 Qi) is obtained from some rule

〈p, γ〉 →֒ {〈p1, w1〉, . . . , 〈pn, wn〉} ∈ ∆ and a set of paths p1
w1−→ Q1, . . . , pn

wn−→
Qn. Let qf be the final state of WA. If Qi 6= {qf} for some i ∈ [n], then
Qi contains a non-final state q of WA. If q were non-redundant in WApre∗ ,
then WApre∗ would recognize a word piwiw where w 6= ε. But then piwiw ∈
pre∗(C), contradicting the assumption that (WP, C) is a good instance. 2

To construct WApre∗ we again impose without loss of generality restric-
tions (R1) and (R2), and for every rule 〈p, γ〉 →֒ R ∈ ∆ : |R| ≤ 2. Algo-
rithm 3.3 implements the modified saturation procedure after the following
change to line 9:

forall r = 〈p1, γ1〉 →֒ 〈q, γ〉 ∈ ∆′ and (a, b, Q′′) ∈ F(r) s.t. Q′′ ∪ Q′ = Q′

Lemma 3.4 When weights are ignored, the modified Algorithm 3.3 takes
O(|δ0| + |∆0| + (|∆1| + |∆a|)n + |∆2|n2) time, where n = |Pε| + |Qni|, when
applied to a good instance.

42

Proof: The proof is similar to Lemma 3.3. Let ν be the set of states such
that for every transition (q, γ, q′) ∈ trans at any point of the algorithm,
q′ ∈ ν. Lines 1–6 add |Pε| + |Qni| elements to ν. Since no other lines add
more elements to ν, the size of ν is |Pε|+|Qni| = n at the end of the algorithm.
Therefore, the resulting δ contains at most n possible states in its right-hand
side.

Line 12 is executed O(|∆2|n) times, therefore adding O(|∆2|n) rules to ∆′.
Line 17 considers alternating rules, which can only come from lines 3, so they
contribute O(|∆a|) elements to ∆′. Line 15 is executed O(|∆2|n2) times, since
q′, γ2 are fixed. Also, the modification of line 9 causes line 10 to be executed
O(|∆1|n+|∆2|n2+|∆a|n) times. Altogether, the statements in the algorithm
cannot be executed more than O(|δ0|+ |∆0|+(|∆1|+ |∆a|)n+ |∆2|n2) times,
and this leads to the time complexity. 2

Note that Algorithm 3.3, when applied to a non-alternating pushdown
system (i.e. one with ∆a = ∅), has the same complexity as the algorithm
from [21] that was specially designed for non-alternating pushdown systems.

3.1.3 Pushdown networks

Throughout this section, let WN = (N ,S, (fi)i∈[n]) denote a fixed weighted
pushdown network, where N = (G, Γ, (∆i)i∈[n]). Given a global configuration
C, the global reachability problem is to compute the set

post∗(C) = {C ′ | T (C, C ′) 6= 0} .

However, the global reachability problem is undecidable; more precisely,
it is in general undecidable whether C ′ ∈ post∗(C), for a given pair C, C ′ [50].
For this reason, one tries to approximate post∗(C). One such approximation,
introduced in [47], uses the notion of context-bounded computations.

A context of WN is a sequence of transitions where all moves are made
by a single process. In other words, let us define a global reachability relation
of the i-th process by overloading the symbol ⇒i as follows

〈g, w1, . . . , wi, . . . , wn〉
a
=⇒i 〈g

′, w1, . . . , w
′
i, . . . , wn〉 iff 〈g, wi〉

a
=⇒i 〈g

′, w′
i〉 .

Then ⇒i is a relation between global configurations reachable from each
other in a single context. Given two configurations C and C ′, we define

Ti(C, C ′) =
⊕

{a ∈ D | C
a
=⇒i C ′} .

43

to be the traces of all runs of the i-th process starting from C and reaching
C ′. Correspondingly, we define the local reachability problem is to compute
post

∗
i (C) = {C ′ | Ti(C, C ′) 6= 0}, i.e. post

∗
i (C) is the set of global configu-

rations reachable from C by moves of the i-th process. Moreover, we define
−−։j, where j ≥ 0, the global reachability relation within j contexts as fol-
lows:

• C
1

−−։0 C, for all global configurations C, and

• if C
a

−−։j C ′ and C ′ b
=⇒i C ′′ for some i ∈ [n], then C

a⊗b
−−−−։j+1 C ′′.

The traces of all runs within j contexts are defined as:

T≤j(C, C ′) =
⊕

{a ∈ D | C
a

−−։j C ′}

We can now define the central problem of this section: Given k ≥ 1
and an initial configuration C, the context-bounded reachability problem is to
compute the set of configurations reachable in at most k contexts, i.e. the set

post∗≤k(C) = {C ′ | T≤k(C, C ′) 6= 0} .

View tuples

In addition to WN , let us fix a global configuration C and a context bound
k ≥ 1 for the rest of the section.

The principal problem that one faces when solving the context-bounded
reachability problem is to find a data structure for representing the set
post∗≤k(C). Note that while the global storage can assume only finitely
many values, the number of possible stack contents is infinite, thus finding
a suitable data structure for representing sets of global configurations is not
straightforward. Here, we define a data structure that will be helpful to dis-
cuss the algorithm in this section. The main idea is to represent post∗≤k(C)
by so-called view tuples.

Let C ′ = 〈g, w1, . . . , wn〉 be a global configuration. For i ∈ [n], we call the
local configuration 〈g, wi〉 the i-th view of C ′. A view tuple T = (V1, . . . , Vn)
is a collection where Vi is a regular set of configurations, i.e. a set of i-th views
for each i ∈ [n], represented by a weighted automaton (see Section 3.1.1). T
is associated with the following set of configurations:

[[T]] = {〈g, w1, . . . , wn〉 | 〈g, wi〉 ∈ Vi for all i ∈ [n]} .

44

Not every set of global configurations can be represented as a view tuple.
As a running example, let us consider a system with two processes, globals
g, g′, g′′ and stack alphabet a, b. Consider the set of global configurations
C = {〈g, a, a〉, 〈g′, b, a〉, 〈g′′, a, a〉, 〈g′′, b, b〉}. Suppose that there is a view
tuple T = (V1, V2) such that [[T]] = C. Then V1 necessarily contains the pair
〈g′′, a〉 and V2 the pair 〈g′′, b〉. But then, [[T]] also contains 〈g′′, a, b〉, which is
not in C.

More importantly, the sets arising in the context-bounded reachability
problem are not representable as view tuples. Ignoring weights, suppose
from the example above that ∆1 = {〈g, a〉 →֒ 〈g′, b〉} and ∆2 = {〈g, a〉 →֒
〈g′′, a〉, 〈g′, a〉 →֒ 〈g′′, b〉}. Then, post∗≤2(〈g, a, a〉) is exactly the set C above.

In general, the result of a context-bounded reachability query is only
representable as a union of view tuples. For instance C can be partitioned
into the sets C1 := {〈g, a, a〉, 〈g′′, a, a〉} and C2 := {〈g′, b, a〉, 〈g′′, b, b〉}, which
are both representable as view tuples. As we shall see, there are different
ways to choose the view tuples contained in this union, and we aim to find
one which requires few tuples.

A meta-algorithm for context-bounded reachability

In this section we discuss a meta-algorithm to solve the context-bounded
reachability problem. Two similar algorithms were proposed in [47] and [7].
While they differ in some details, the idea can be summarized by Algo-
rithm 3.4. It can be characterized as a worklist algorithm that computes the
effect of one context at a time.

The entries of the worklist are triples (j, i, T), where T is a view tuple
reachable within j contexts such that i was the process that made the last
move (i = 0 iff j = 0). Initially, the worklist contains just one view tuple
representing the initial configuration C. In each iteration, the algorithm
picks a view tuple from the worklist and computes the configurations that
can be reached through a single additional context. Notice that since we
are dealing with regular sets of configurations, this can be done by solving
the local reachability problem, i.e. the reachability problem for pushdown
systems, see Section 3.1.1. The previously active process, i, is excluded from
consideration because it would not add any new information.

The result of the local reachability algorithm is denoted by P , and the
principal problem is that P may no longer be representable as a single view
tuple. The task of the split function in line 9 is to generate a set of view

45

Input: Weighted pushdown network WN = (N ,S, (fi)i∈[n]), where
N = (G, Γ, (∆i)i∈[n]), initial configuration (g, w1, . . . , wn),
context bound k.

Output: The set of reachable global configurations.

result := ∅;1

worklist := { (0, 0, ({(g, w1)}, . . . , {(g, wn)})) };2

while worklist 6= ∅ do3

remove (j, i, T) from worklist ;4

add [[T]] to result ;5

if j < k then6

forall i′ ∈ [n] \ {i} do7

P := post
∗
i′([[T]]);8

forall T ′ ∈ split(P) do9

add (j + 1, i′, T ′) to worklist;10

return result ;11

Algorithm 3.4: A context-bounded reachability algorithm

tuples such that
⋃

T ′∈split(P)[[T
′]] = P . In [47, 7], split works as follows:

split(P) = {Tg | g ∈ G}, where

Tg = P ∩ {(g, w1, . . . , wn) | wi ∈ Γ∗, i ∈ [n]} .

It can be shown that the resulting sets are always view tuples. However, after
each context, every worklist entry is split |G| different ways. We call this
approach eager splitting. Loosely speaking, eager splitting processes nk|G|k

worklist entries. Moreover, after each split the algorithm will consider every
element of G individually, which does not lend itself to a meaningful symbolic
implementation (e.g., using efficient set representations such as BDDs).

The rest of this section identifies a coarser partition of P that leads to
fewer splits, in the hope of making the algorithm faster in practice. We call
this approach lazy splitting.

Lazy splitting

To simplify the presentation we consider the case of two processes and assume
without loss of generality that the second process is active, i.e. given a view

46

tuple T = (V1, V2), the task is to (i) compute the set post
∗
2([[T]]) and (ii) split

this set into new view tuples. Recall that a global configuration of pushdown
network with two processes is a tuple (g, w1, w2), where g is a global and wi

is a local configuration of the i-th process.

Throughout this section we identify a set X ⊆ X1 × . . . × Xn and the
predicate X(x1, . . . , xn) such that X(a1, . . . , an) holds iff (a1, . . . , an) ∈ X.
We liberally mix set and logical notations, and write e.g. A(x) = ∃ y : B(x, y)
to mean A = { x | ∃y : B(x, y) }. Abusing notation, we shall sometimes
denote the set [[T]], where T is a view tuple, simply by T .

We proceed as follows: We first identify a property between globals (called
confluence) that prevents certain configurations from being included in the
same partition. We then show how the confluence relation can be computed
symbolically, and finally how partitions can be computed from this relation.

Confluence and safe partitions Let R2(g, w, g′, w′) be the reachability
predicate for the second thread, i.e., R2(g, w, g′, w′) holds iff 〈g, w〉

a
=⇒2 〈g

′, w′〉
for some a 6= 0. (As usual, we use unprimed variables for the initial config-
uration and primed ones for the final configuration.) Using standard logical
manipulations we obtain

post
∗
2(T)(g′, w1, w

′
2) = ∃g :

(

V1(g, w1) ∧ ∃w2 : V2(g, w2) ∧ R2(g, w2, g
′, w′

2)
︸ ︷︷ ︸

=:U2(g,g′,w′

2
)

)

.

Since g is existentially quantified, post
∗
2(T) is not always a view tuple.

We present a generic approach for representing it as a union of view tuples.
The approach is parameterized by a partition of G. The partition is, on the
other hand, based on the following property of global values.

Two distinct global values ga, gb ∈ G are confluent if there exist g′, w′
2a,

w′
2b such that U2(ga, g

′, w′
2a) and U2(gb, g

′, w′
2b) hold. A partition of G is safe

if none of its sets contains two confluent values. Intuitively, two values in
the same set of a safe partition cannot be transformed by the second thread
into the same value. For instance, let us return to the running example. If
we choose T such that [[T]] = {〈g, a, a〉, 〈g′, b, a〉}, then post

∗
2(T) = C because

〈g, a, a〉 ⇒2 〈g′′, a, a〉 and 〈g′, b, a〉 ⇒2 〈g′′, b, b〉. In other words we have U2 =
{〈g, g, a〉, 〈g′, g′, a〉, 〈g, g′′, a〉, 〈g′, g′′, b〉}. Therefore, g and g′ are confluent,
and any safe partition must keep these two values apart.

47

Notice that safe partitions always exist, because the partition that splits
G into singletons is always safe. However, finding a coarser safe partition is
not necessarily straightforward, since U2 may contain infinitely many tuples,
and we will show how to deal with this problem later. For the time being, it
suffices to point out that any safe partition can be used to represent post

∗
2(T)

as a union of view tuples. Let G1, . . . , Gm be a safe partition of G. We define
sets V ′

11, . . . , V
′
1m of 1-views and sets V ′

21, . . . , V
′
2m of 2-views as follows:

V ′
1j(g

′, w1) = ∃g : V1(g, w1) ∧ Gj(g) ∧ ∃w′
2 : U2(g, g′, w′

2) (3.1)

V ′
2j(g

′, w′
2) = ∃g : U2(g, g′, w′

2) ∧ Gj(g) (3.2)

Intuitively, V ′
1j contains the local configurations of the first thread for

which the second thread can reach the local configuration w′
2 while leaving

the global variable in state g′. Therefore, if the first thread initially has
〈g, w1〉 as 1-view, it ends with 〈g′, w1〉: the local configuration w1 has not
changed, but the value of the global variable has. The intuition behind V ′

2j

is similar.
In the example above, we could choose G1 = {g, g′′} and G2 = {g′} as a

safe partition. Under this assumption the view tuples (V ′
11, V

′
21) and (V ′

12, V
′
22)

as defined above would represent the previously defined sets C1 and C2, whose
union is indeed equal to C. The following theorem states that this works for
every safe partition.

Theorem 3.5 Let {V ′
1j}j∈[m] and {V ′

2j}j∈[m] be defined as in (3.1) and (3.2).
Then

post
∗
2(T)(g′, w1, w

′
2) =

m∨

j=1

(

V ′
1j(g

′, w1) ∧ V ′
2j(g

′, w′
2)
)

.

Proof:
(⇒): post

∗
2(T)(g′, w1, w

′
2)

= ∃g : V1(g, w1) ∧ U2(g, g′, w′
2) (def. of post

∗
2(T))

= ∃g : V1(g, w1) ∧ U2(g, g′, w′
2) ∧ ∃j ∈ [m] : Gj(g)

= ∃j ∈ [m] : V ′
1j(g

′, w1) ∧ V ′
2j(g

′, w′
2) (logic, def. of V ′

1j, V
′
2j)

⇒
m∨

i=1

(

V ′
1j(g

′, w1) ∧ V ′
2j(g

′, w′
2)
)

(⇐): Let (g′, w1, w
′
2) be a triple satisfying V ′

1j(g
′, w1) ∧ V ′

2j(g
′, w′

2) for some
j ∈ [m]. By the definition of V ′

1j and V ′
2j there exist ga, gb, and w′′

2 such

48

that V1(ga, w1), Gj(ga), U2(ga, g
′, w′′

2), U2(gb, g
′, w′

2), and Gj(gb) hold. So,
ga and gb belong to the same set of the partition of G, namely Gj . Fur-
thermore, since U2(ga, g

′, w′′
2), U2(gb, g

′, w′
2), it follows from the definition of

safe partition that ga and gb are either confluent or equal. Since the par-
tition used to construct {V ′

1j}j∈[m] and {V ′
2j}j∈[m] is safe, we get ga = gb.

So, in particular, U2(ga, g
′, w′

2) holds, which together with V1(ga, w1) implies
post

∗
2(T)(g′, w1, w

′
2). 2

Computing the confluence relation In this part, we show how to com-
pute the relation C(x, y) of confluent pairs x, y symbolically. By its definition,

C(ga, gb) = ga 6= gb ∧ ∃g′, w′
2a, w

′
2b : U2(ga, g

′, w′
2a) ∧ U2(gb, g

′, w′
2b) .

Let us recall the definitions of U2(g, g′, w′
2) and post∗2(V2)(g

′, w′
2):

U2(g, g′, w′
2) = ∃w2 : V2(g, w2) ∧ R2(g, w2, g

′, w′
2)

post∗2(V2)(g
′, w′

2) = ∃g, w2 : V2(g, w2) ∧ R2(g, w2, g
′, w′

2) .

We now reduce the computation of U2 to a local reachability problem w.r.t.
a modified pushdown system (G × G, Γ, ∆′

2). In other words, we change
the system by duplicating the globals. Moreover, we have 〈(ḡ, g), γ〉 →֒
〈(ḡ, g′), w〉 in ∆′

2 iff 〈g, γ〉 →֒ 〈g′, w〉 in ∆2, i.e. the value of the first copy
is never changed by any transition rule. The reachability relation for the
second thread of the modified system is given by R2((ḡ, g), w2, (ḡ

′, g′), w′
2) =

R2(g, w2, g
′, w′

2)∧ ḡ = ḡ′. Define V 2((ḡ, g), w2) = V2(g, w2)∧ ḡ = g. We have:

U2(g, g′, w′
2) = ∃w2 : V2(g, w2) ∧ R2(g, w2, g

′, w′
2)

= ∃w2 : V 2((g, g), w2) ∧ R2((g, g), w2, (g, g′), w′
2)

= ∃¯̄g, ḡ, w2 : V 2((¯̄g, ḡ), w2) ∧ R2((¯̄g, ḡ), w2, (g, g′), w′
2)

= post∗2(V2)((g, g′), w′
2) .

We turn to the question how to compute C from the automaton repre-
senting U2. For this, let us define U ′

2(g, g′) := ∃w : U2(g, g′, w). Therefore,

C(ga, gb) = ga 6= gb ∧ ∃g′ : U ′
2(ga, g

′) ∧ U ′
2(gb, g

′) .

The modified pushdown system defined above has G × G as its set of
globals. Thus, the symbolic automaton for U2 uses G × G as initial states,
and a configuration 〈(g, g′), w〉 is accepted if, starting at state (g, g′), the
automaton can read the input w and end up in a final state. Thus, U ′

2(g, g′)
holds if some input is accepted from the state (g, g′).

49

Computing a safe partition Given the confluence relation C, our final
goal now is to compute a safe partition. Notice that a partition is safe if
and only if its sets are cliques of ¬C, the complement of C. Since finding a
minimal partition into cliques of a given graph is NP-complete, we restrict
ourselves to finding a reasonably coarse safe partition in a symbolic man-
ner. The resulting performance of the reachability algorithm is evaluated in
Chapter 5.

Input: Confluence relation C(x, y), total order L(x, y)
Output: A safe partition G1, . . . Gm of G

S(x, y) := ¬C(x, y); j := 0;1

while S 6= ∅ do2

pick (x0, y0) from S;3

F (x) := S(x, y0);4

while true do5

D(x, y) := L(x, y) ∧ F (x) ∧ F (y) ∧ ¬S(x, y);6

exit if D = ∅;7

F (x) := F (x) ∧ ¬(∃y : D(x, y))8

j := j + 1;9

Gj(x) := F (x);10

S(x, y) := S(x, y) ∧ ¬F (x) ∧ ¬F (y);11

Algorithm 3.5: An algorithm for computing equivalence classes

Algorithm 3.5 shows the computation of the partition. Its inputs are the
confluence relation C and an arbitrary total order relation L on globals. The
algorithm repeatedly computes sets of the partition. The inner loop makes
sure that F is a clique of S when exiting the loop. D contains the confluent
pairs (x, y) of F × F such that x is smaller than y with respect to the order
L. If D = ∅ then F is a clique. Otherwise, for each (x, y) ∈ D we remove x.
The rôle of L is to guarantee that D is antisymmetric, and so that if x and
y are confluent we remove exactly one of them from F .

Notice that the algorithm only uses Boolean operations and existential
quantification, and can therefore be easily implemented in a BDD library,
given BDD representations of L and C. The computation of C was presented
in previous section, and a BDD representation for L ⊆ G × G is trivial to
generate, because by assumption the set G is finite, and any total order (e.g.
some lexicographical ordering based on the BDD variables) will do.

50

Finally, equations (3.1) and (3.2) only use Gj, V1, U2, which are all repre-
sentable as BDDs or as symbolic automata, connected by Boolean operations.
Thus, the new view tuples can be obtained by standard operations on BDDs
and automata.

3.2 General semirings

We consider in this section another approach for analyzing reachability in
pushdown models when weights are neither bounded nor idempotent. Later
on, we show that the analyses boil down to solving equation systems over
(extended) semirings. We first define equation systems over semirings. The
definition can be straightforwardly generalized to extended semirings.

Given a semiring S = (D,⊕,⊗, 0, 1), a set of variable V , the set of terms
over S and V , denoted by S(V) is given by:

t ::= a | v | t ⊕ t | t ⊗ t ,

where a ∈ D and v ∈ V . Given n variables v = (v1, . . . , vn), a term ti(v)
(i ∈ [n]) defines a mapping from Dn to D. An equation system is given by
v = t(v) such that t(v) = (t1(v), . . . , tn(v)).

Solving equation systems over semirings is out of scope of this thesis. We
only note here that when S is ω-continuous, it can be proved that terms in
S(V) define monotonic mappings, i.e. for every term t(v) and a,b ∈ Dn, if
a ⊑ b, then t(a) ⊑ t(b), where the relation ⊑ is pointwise extended. By the
theorem of Knaster-Tarski, the least solution of v = t(v) exists. Moreover,
let 0 be a vector of zeros of length n, by Kleene’s theorem the complete-
ness property implies that this solution is the supremum of the sequence
(tn(0))n∈N, which is equal to

⊕

n∈N
tn(0) by the ω-continuity property.

The application in Section 6.2 only focuses on the extended semiring
([0, 1], +, ·, ·, 0, 1, 1), i.e. terms are polynomials over reals between 0 and 1.
In this case, solutions can be effectively estimated by using e.g. Newton’s
method (see [44] for a reference).

3.2.1 Pushdown systems

Let WP = (P,S, f), where P = (P, Γ, ∆) and S = (D,⊕,⊗, 0, 1), denote a
fixed weighted pushdown system. Again, we assume without loss of generality
that for every rule 〈p, γ〉 →֒ 〈p′, w〉 ∈ ∆, we have |w| ≤ 2.

51

We show in this section that the set of traces of all runs leading from
given configurations to other configurations can be characterized as the least
fixpoint of a system of equations. Without loss of generality, we assume
that the initial configurations are of the form 〈p, γ〉, and that all target
configurations are of the form 〈q, ε〉, where p, q ∈ P and γ ∈ Γ, i.e. the initial
stack contains a single stack symbol and the target stack is empty. For all
p, γ, q, we define the variables as triples [p, γ, q], and the set of equations as
follows:

[p, γ, q] =
⊕

〈p,γ〉
a

−֒→〈q,ε〉
a

⊕
⊕

〈p,γ〉
a

−֒→〈p′,γ′〉
a ⊗ [p′, γ′, q]

⊕
⊕

〈p,γ〉
a

−֒→〈p′,γ′γ′′〉
a ⊗

(
⊕

p′′∈P [p′, γ′, p′′] ⊗ [p′′, γ′′, q]
)

(3.3)
Intuitively, equation (3.3) lists the traces of all runs starting from 〈p, γ〉 and
reaching 〈q, ε〉. Since the runs always start form the configuration 〈p, γ〉, we
only consider the rules with 〈p, γ〉 on their left-hand side. There are three
types of runs depending on rules that are first executed:

1. if 〈p, γ〉
a
−֒→ 〈q, ε〉, then 〈p, γ〉

a
=⇒ 〈q, ε〉,

2. if 〈p, γ〉
a
−֒→ 〈p′, γ′〉, then 〈p, γ〉

a
=⇒ 〈p′, γ′〉

[p′,γ′,q]
====⇒ 〈q, ε〉, and

3. if 〈p, γ〉
a
−֒→ 〈p′, γ′γ′′〉, then 〈p, γ〉

a
=⇒ 〈p′, γ′γ′′〉

[p′,γ′,p′′]
=====⇒ 〈p′′, γ′′〉

[p′′,γ′′,q]
====⇒

〈q, ε〉, for all p′′ ∈ P .

We prove in the following theorem that Equation (3.3) combines the traces
of all possible runs. Recall from Section 2.2.1 that given two configurations
c and c′, T (c, c′) denotes the trace of all runs starting from c and reaching c′.

Theorem 3.6 Let WP = (P,S, f) be a weighted pushdown system, where
P = (P, Γ, ∆) and S = (D,⊕,⊗, 0, 1). The least fixpoint of the system of
equations (3.3) always associates [p, γ, q] to T (〈p, γ〉, 〈q, ε〉), for all p, q ∈ P
and γ ∈ Γ.

Proof: Let µ be the least fixed point. We write [p, γ, q]µ to denote the
component of µ which corresponds to the variable [p, γ, q].

It is easy to see that the tuple of all T (〈p, γ〉, 〈q, ε〉) forms a solution of the
equation system. This is done by partitioning all possible runs into disjoint

52

subsets as discussed above. Thus, [p, γ, q]µ ⊑ T (〈p, γ〉, 〈q, ε〉) for all p, q ∈ P
and γ ∈ Γ.

To prove that T (〈p, γ〉, 〈q, ε〉) ⊑ [p, γ, q]µ, we first define the relation ⇒≤k

to be the reachability relation involving only runs of lengths less than or
equal to k. Formally, ⇒≤ ⊆ (P × Γ∗) × D × N × (P × Γ∗) is the smallest
relation such that

• c
1
=⇒≤0 c, for all c ∈ P × Γ∗,

• if 〈p, γ〉
a
−֒→ 〈p′, w〉 and 〈p′, ww′〉

b
=⇒≤k c for some w′ ∈ Γ∗, b ∈ D, and

c ∈ P × Γ∗, then 〈p, γw′〉
a⊗b
==⇒≤k+1 c.

We correspondingly define the traces for each k ∈ N:

T≤k(〈p, γ〉, 〈q, ε〉) =
⊕

{a | 〈p, γ〉
a
=⇒≤k 〈q, ε〉} .

Clearly, T (〈p, γ〉, 〈q, ε〉) =
⋃

k≥0 T≤k(〈p, γ〉, 〈q, ε〉). Therefore, showing that
T (〈p, γ〉, 〈q, ε〉) ⊑ [p, γ, q]µ boils down to proving T≤k(〈p, γ〉, 〈q, ε〉) ⊑ [p, γ, q]µ
for each k ∈ N. We proceed by induction on k.

The base case, where k = 0, follows immediately from the definition.
From the definitions of T≤k+1(〈p, γ〉, 〈q, ε〉) and [p, γ, q]µ we have

T≤k+1(〈p, γ〉, 〈q, ε〉) =
⊕

〈p,γ〉
a

−֒→〈q,ε〉
a

⊕
⊕

〈p,γ〉
a

−֒→〈p′,γ′〉
a ⊗

⊕
{b | 〈p′, γ′〉

b
=⇒≤k 〈q, ε〉}

⊕
⊕

〈p,γ〉
a

−֒→〈p′,γ′γ′′〉
a ⊗

⊕
{b | 〈p′, γ′γ′′〉

b
=⇒≤k 〈q, ε〉}

and

[p, γ, q]µ =
⊕

〈p,γ〉
a

−֒→〈q,ε〉
a

⊕
⊕

〈p,γ〉
a

−֒→〈p,γ′〉
a ⊗ [p′, γ′, q]µ

⊕
⊕

〈p,γ〉
a

−֒→〈p,γ′γ′′〉
a ⊗

⊕

p′′∈P [p′, γ′, p′′]µ ⊗ [p′′, γ′′, q]µ .

So, it suffices to show

⊕

{b | 〈p′, γ′〉
b

=⇒≤k 〈q, ε〉} ⊑ [p′, γ′, q]µ and
⊕

{b | 〈p′, γ′γ′′〉
b

=⇒≤k 〈q, ε〉} ⊑
⊕

p′′∈P

[p′, γ′, p′′]µ ⊗ [p′′, γ′′, q]µ .

53

Since ⊕

{b | 〈p′, γ′〉
b

=⇒≤k 〈q, ε〉} = T≤k(〈p
′, γ′〉, 〈q, ε〉) ,

by the induction hypothesis we have
⊕

{b | 〈p′, γ′〉
b

=⇒≤k 〈q, ε〉} ⊑ [p′, γ′, q]µ .

Furthermore, from the definition of traces and the induction hypothesis
⊕

{b | 〈p′, γ′γ′′〉
b

=⇒≤k 〈q, ε〉}

⊑
⊕

p′′∈P T≤k(〈p′, γ′〉, 〈p′′, ε〉) ⊗ T≤k(〈p′′, γ′′〉, 〈q, ε〉)

⊑
⊕

p′′∈P [p′, γ′, p′′]µ ⊗ [p′′, γ′′, q]µ .

Consequently, we conclude that T≤k+1(〈p, γ〉, 〈q, ε〉) ⊑ [p, γ, q]µ. 2

3.2.2 Alternating pushdown systems

Let WP = (P,S, f), where P = (P, Γ, ∆) and S = (D,⊕,⊗,⊙, 0, 1, 1′)
denote a fixed weighted alternating pushdown system. Again, we assume
without loss of generality that WP satisfies the restrictions (R1) and (R2)
in Section 3.1.2 and, furthermore, for every rule 〈p, γ〉 →֒ R ∈ ∆ : |R| ≤ 2.

We show that the set of traces of all runs leading from given configura-
tions to sets of configurations can be characterized as the least fixpoint of
a system of equations. Without loss of generality, we assume that the ini-
tial configurations are of the form 〈p, γ〉, and that all configurations in the
target sets are of the form 〈q, ε〉, where p, q ∈ P and γ ∈ Γ, i.e. the initial
stack contains a single stack symbol and the target stacks are empty. For all
p ∈ P, γ ∈ Γ, Q ⊆ P , we define the variables as triples [p, γ, Q], and the set
of equations as follows:

[p, γ, Q] =
⊕

〈p,γ〉
a

−֒→∅ ∧ Q=∅
a

⊕
⊕

〈p,γ〉
a

−֒→〈p′,ε〉 ∧ Q={p′}
a

⊕
⊕

〈p,γ〉
a

−֒→〈p′,γ′〉
a ⊗ [p′, γ′, Q]

⊕
⊕

〈p,γ〉
a

−֒→〈p′,γ′γ′′〉
a ⊗

(
⊕

Q′[p′, γ′, Q′] ⊗
⊕

S

i Qi=Q

⊙

qj∈Q′[qj , γ
′′, Qi]

)

⊕
⊕

〈p,γ〉
a

−֒→{〈p′,γ′〉,〈p′′,γ′′〉}
a ⊗

⊕

Q′∪Q′′=Q[p′, γ′, Q′] ⊙ [p′′, γ′′, Q′′]

(3.4)

54

Intuitively, equation (3.4) lists the traces of all runs starting from 〈p, γ〉 and
reaching the set of configurations {〈q, ε〉 | q ∈ Q}. There are five different
types of runs depending on the rules that are first executed:

1. if 〈p, γ〉
a
−֒→ ∅, we have 〈p, γ〉

a
=⇒ ∅,

2. if 〈p, γ〉
a
−֒→ 〈p′, ε〉, we have 〈p, γ〉

a
=⇒ {〈p′, ε〉},

3. if 〈p, γ〉
a
−֒→ 〈p′, γ′〉, we have 〈p, γ〉

a
=⇒ 〈p′, γ′〉

[p′,γ′,Q]
====⇒ {〈q, ε〉 | q ∈ Q},

4. if 〈p, γ〉
a
−֒→ 〈p′, γ′γ′′〉, we have 〈p, γ〉

a
=⇒ 〈p′, γ′γ′′〉

[p′,γ′,Q′]
=====⇒ {〈qj, γ

′′〉 |
qj ∈ Q′}, for all Q′ ⊆ P ; moreover, for all Q1, . . . , Qn ⊆ Q such that
⋃n

i=1 Qi = Q, we have 〈qj , γ
′′〉

[qj,γ
′′,Qi]

=====⇒ {〈q, ε〉 | q ∈ Qi} for each
qj ∈ Q′, and

5. if 〈p, γ〉
a
−֒→ {〈p′, γ′〉, 〈p′′, γ′′〉}, we have 〈p, γ〉

a
=⇒ {〈p′, γ′〉, 〈p′′, γ′′〉};

moreover, for all Q′, Q′′ ⊆ Q such that Q′ ∪ Q′′ = Q, we have

〈p′, γ′〉
[p′,γ′,Q′]
=====⇒ {〈q, ε〉 | q ∈ Q′} and

〈p′′, γ′′〉
[p′′,γ′′,Q′′]
======⇒ {〈q, ε〉 | q ∈ Q′′} .

Equation (3.4) combines the traces of all possible runs.

Theorem 3.7 Let WP = (P,S, f) be a weighted alternating pushdown sys-
tem, where P = (P, Γ, ∆) and S = (D,⊕,⊗,⊙, 0, 1, 1′). The least fixpoint of
the system of equations (3.4) always associates [p, γ, Q] to T (〈p, γ〉, {〈q, ε〉 |
q ∈ Q}), for all p ∈ P , γ ∈ Γ, and Q ⊆ P .

Proof: Let 〈Q′, ∅〉 denote {〈q, ε〉 | q ∈ Q′}, for any Q′ ⊆ P . The proof
is analogous to the proof of Theorem 3.6. Let µ be the least fixed point.
We write [p, γ, Q]µ to denote the component of µ which corresponds to the
variable [p, γ, Q].

It is easy to see that the tuple of all T(〈p, γ〉, 〈Q, ε〉) forms a solution
of the equation system. This is done by partitioning all possible runs into
disjoint subsets as discussed above. Thus, [p, γ, Q]µ ⊑ T(〈p, γ〉, 〈Q, ε〉) for all
p ∈ P , γ ∈ Γ, and Q ⊆ P .

To prove that T(〈p, γ〉, 〈Q, ε〉) ⊑ [p, γ, Q]µ, we first define the relation
⇒≤k to be the reachability relation involving only runs of lengths less than
or equal to k. Formally, ⇒≤ ⊆ (P × Γ∗) × D × N × 2P×Γ∗

is the smallest
relation such that

55

• c
1
=⇒≤0 {c}, for all c ∈ P × Γ∗,

• if 〈p, γ〉
a
−֒→ {〈p1, w1〉, . . . , 〈pn, wn〉} and 〈pi, wiw〉

bi=⇒≤k Ci for some w ∈
Γ∗, bi ∈ D, and Ci ⊆ P × Γ∗, for each i ∈ [n], then

〈p, γw〉
a⊗

Jn
i=1

bi

======⇒≤k+1

n⋃

i=1

Ci .

We correspondingly define the traces for each k ∈ N:

T≤k(〈p, γ〉, 〈Q, ε〉) =
⊕

{a | 〈p, γ〉
a
=⇒≤k 〈Q, ε〉} .

Clearly, T(〈p, γ〉, 〈Q, ε〉) =
⋃

k≥0 T≤k(〈p, γ〉, 〈Q, ε〉)). Therefore, showing that
T(〈p, γ〉, 〈Q, ε〉) ⊑ [p, γ, Q]µ boils down to proving that the bound holds for
traces of all lengths, i.e. T≤k(〈p, γ〉, 〈Q, ε〉) ⊑ [p, γ, Q]µ, for each k ∈ N. We
proceed by induction on k.

The base case, where k = 0, follows immediately. From the definitions of
T≤k+1(〈p, γ〉, 〈Q, ε〉) and [p, γ, Q]µ we have

T≤k+1(〈p, γ〉, 〈Q, ε〉) =
⊕

〈p,γ〉
a

−֒→∅ ∧ Q=∅
a

⊕
⊕

〈p,γ〉
a

−֒→〈p′,ε〉 ∧ Q={p′}
a

⊕
⊕

〈p,γ〉
a

−֒→〈p′,γ′〉
a ⊗

⊕
{b | 〈p′, γ′〉

b
=⇒≤k 〈Q, ε〉}

⊕
⊕

〈p,γ〉
a

−֒→〈p′,γ′γ′′〉
a ⊗

⊕
{b | 〈p′, γ′γ′′〉

b
=⇒≤k 〈Q, ε〉}

⊕
⊕

〈p,γ〉
a

−֒→{〈p′,γ′〉,〈p′′,γ′′〉}
a ⊗

⊕
{b′ ⊙ b′′ | 〈p′, γ′〉

b′

=⇒≤k 〈Q′, ε〉 and

〈p′′, γ′′〉
b′′

=⇒≤k 〈Q′′, ε〉 s.t. Q′ ∪ Q′′ = Q}

and

[p, γ, Q]µ =
⊕

〈p,γ〉
a

−֒→∅ ∧ Q=∅
a

⊕
⊕

〈p,γ〉
a

−֒→〈p′,ε〉 ∧ Q={p′}
a

⊕
⊕

〈p,γ〉
a

−֒→〈p′,γ′〉
a ⊗ [p′, γ′, Q]µ

⊕
⊕

〈p,γ〉
a

−֒→〈p′,γ′γ′′〉
a ⊗

(
⊕

Q′[p′, γ′, Q′]µ ⊗
⊕

S

i Qi=Q

⊙

qj∈Q′[qj , γ
′′, Qi]µ

)

⊕
⊕

〈p,γ〉
a

−֒→{〈p′,γ′〉,〈p′′,γ′′〉}
a ⊗

⊕

Q′∪Q′′=Q[p′, γ′, Q′]µ ⊙ [p′′, γ′′, Q′′]µ

56

Since ⊕

{b | 〈p′, γ′〉
b

=⇒≤k 〈Q, ε〉} = T≤k(〈p
′, γ′〉, 〈Q, ε〉) ,

by the induction hypothesis we have

⊕

{b | 〈p′, γ′〉
b

=⇒≤k 〈Q, ε〉} ⊑ [p′, γ′, Q]µ .

Furthermore, from the definition of traces and the induction hypothesis

⊕
{b | 〈p′, γ′γ′′〉

b
=⇒≤k 〈Q, ε〉}

⊑
⊕

Q′ T≤k(〈p′, γ′〉, 〈Q′, ε〉) ⊗
⊕

S

i Qi=Q

⊙

qj∈Q′ T≤k(〈qj, γ
′′〉, 〈Qi, ε〉)

⊑
⊕

Q′[p′, γ′, Q′]µ ⊗
⊕

S

i Qi=Q

⊙

qj∈Q′[qj , γ
′′, Qi]µ .

Similarly,

⊕
{b′ ⊙ b′′ | 〈p′, γ′〉

b′

=⇒≤k 〈Q′, ε〉 ∧ 〈p′′, γ′′〉
b′′

=⇒≤k 〈Q′′, ε〉 s.t. Q′ ∪ Q′′ = Q}

⊑
⊕

Q′∪Q′′=Q T≤k(〈p′, γ′〉, 〈Q′, ε〉) ⊙ T≤k(〈p′′, γ′〉, 〈Q′′, ε〉)

⊑
⊕

Q′∪Q′′=Q[p′, γ′, Q′]µ ⊙ [p′′, γ′′, Q′′]µ .

Consequently, we conclude that T≤k+1(〈p, γ〉, 〈Q, ε〉) ⊑ [p, γ, Q]µ. 2

A special case

We reconsider the special case discussed in Section 3.1.2, in which compu-
tational forks can only occur when the stack content is reduced to a sin-
gle symbol. Recall that a simple alternating pushdown system is a tuple
P = (P, Γ, Ξ, ∆), where Ξ ⊆ Γ, with the following properties: (i) if 〈p,⊥〉,
where p ∈ P and ⊥ ∈ Ξ, is the root of an computational tree, then all nodes
are of the form 〈q, w⊥′〉, where q ∈ P , w ∈ (Γ \Ξ)∗, and ⊥′ ∈ Ξ; (ii) if a con-
figuration c of a computational tree has more than one child, then c = 〈p,⊥〉,
for some p ∈ P and ⊥ ∈ Ξ. It follows that if a configuration 〈p, w〉, where
p ∈ P and w ∈ (Γ \Ξ)∗, is the root of a tree, then every configuration of the
tree has at most one child, and so the tree has a unique leaf. We exploit this
fact in our solution.

We show that it is possible to characterize the sets of traces of such mod-
els by equation systems of polynomial sizes; contrary to general alternating
pushdown systems, where the associated equation systems are of exponen-
tial sizes. The variables are of the form [p,⊥, q] or [p, γ, q], where p, q ∈ P ,

57

⊥ ∈ Ξ and γ ∈ Γ \ Ξ. The variable [p,⊥, q] represents the traces of all runs
starting at 〈p,⊥〉 and eventually reaching a tree where all leaves are labeled
with 〈q,⊥1〉 for some ⊥1 ∈ Ξ. The variable [p, γ, q] represents the traces of
all runs starting at 〈p, γ〉 and reaching a tree whose unique leaf (from the
fact above) is labeled with 〈q, ε〉.

Similar to the general case, we assume without loss of generality two
restrictions on rules: the restriction (R1) in Section 3.1.2 for non-alternating
rules and for every alternating rule 〈p, γ〉 →֒ R in ∆:

(R2′) |R| = 2 and ∀〈p′, w′⊥′〉 ∈ R : |w′| ≤ 1.

The restriction (R2′) is slightly modified from (R2) in Section 3.1.2 to incor-
porate the fact that an alternating rule always involves a symbol from Ξ at
the bottom, with an optional symbol from Γ \ Ξ on the top.

Again, we show that the set of traces of all runs running from given con-
figurations to other configurations can be characterized as the least fixpoint
of a system of equations. For all p, q ∈ P and γ ∈ Γ, we define the variables
as the triples [p, γ, q], and the set of equations as follows:

[p, γ, q] =
⊕

〈p,γ〉
a

−֒→〈q,ε〉
a

⊕
⊕

〈p,γ〉
a

−֒→〈p′,γ′〉
a ⊗ [p′, γ′, q]

⊕
⊕

〈p,γ〉
a

−֒→〈p′,γ′γ′′〉
a ⊗

(
⊕

p′′∈P [p′, γ′, p′′] ⊗ [p′′, γ′′, q]
)

⊕
⊕

〈p,γ〉
a

−֒→{〈pi,γi⊥i〉|i∈[2]}
a ⊗

(
⊕

q1,q2∈P

⊙2
i=1[pi, γi, qi] ⊗ [qi,⊥i, q]

)

.

(3.5)
Moreover, we set [p,⊥, p] = 1, for all ⊥ ∈ Ξ; and [p, ε, q] = 1 if p = q, and 0
otherwise.

Intuitively, given [p, γ, q], where p, q ∈ P and γ ∈ Γ \ Ξ, the first three
parts of equation (3.5), which is exactly equation (3.3), list the traces of all
runs starting from 〈p, γ〉 and reaching 〈q, ε〉. Notice that when γ ∈ Γ \ Ξ
theses traces involve only non-alternating rules. The last part of the equation
deals with alternating rules. Given [p,⊥, q], where p, q ∈ P and ⊥ ∈ Ξ, it
lists the traces of all runs starting from 〈p,⊥〉 and reaching 〈q,⊥′〉 for any

⊥′ ∈ Ξ. The idea is that 〈p,⊥〉
a
−֒→ {〈p1, γ1⊥1〉, 〈p2, γ2⊥2〉}, corresponds to

the run

〈p,⊥〉
a
=⇒ {〈p1, γ1⊥1〉, 〈p2, γ2⊥2〉} .

58

Moreover, for any q1, q2 ∈ P , we have

〈pi, γi⊥i〉
[pi,γi,qi]
====⇒ 〈qi,⊥i〉

for all i ∈ [2], and [qi,⊥i, q] contains all traces from 〈qi,⊥i〉 to 〈q,⊥′〉 for any
⊥′ ∈ Ξ. Equation (3.5) combines the traces of all possible runs.

Theorem 3.8 Let WP = (P,S, f) be a weighted alternating pushdown sys-
tem, where P = (P, Γ, Ξ, ∆) is a simple alternating pushdown system and
S = (D,⊕,⊗,⊙, 0, 1, 1′). The least fixpoint of the system of equations (3.5)
always associates

1. [p, γ, q] to T (〈p, γ〉, 〈q, ε〉), for all p, q ∈ P and γ ∈ Γ \ Ξ; and

2. [p,⊥, q] to
⊕

⊥′∈Ξ T (〈p,⊥〉, 〈q,⊥′〉), for all p, q ∈ P and ⊥ ∈ Ξ.

Proof: Let µ be the least fixed point. We write [p, γ, q]µ (resp. [p,⊥, q]µ) to
denote the component of µ which corresponds to the variable [p, γ, q] (resp.
[p,⊥, q]).

We proceed similarly to the previous proofs. It is easy to see that the
tuple of all T (〈p, γ〉, 〈q, ε〉) and

⊕

⊥′∈Ξ T (〈p,⊥〉, 〈q,⊥′〉) forms a solution of
the equation system. This is done by partitioning all possible runs into
disjoint subsets as discussed above. Thus, [p, γ, q]µ ⊑ T (〈p, γ〉, 〈q, ε〉) and
[p,⊥, q]µ ⊑

⊕

⊥′∈Ξ T (〈p,⊥〉, 〈q,⊥′〉) for all p, q ∈ P , γ ∈ Γ \ Ξ, and ⊥ ∈ Ξ.
To prove that T (〈p, γ〉, 〈q, ε〉) ⊑ [p, γ, q]µ and

⊕

⊥′∈Ξ T (〈p,⊥〉, 〈q,⊥′〉) ⊑
[p,⊥, q]µ, we first define the relation ⇒≤k to be the reachability relation
involving only runs of lengths less than or equal to k. Formally, ⇒≤ ⊆
(P × Γ∗) × D × N × (P × Γ∗) is the smallest relation such that

• c
1
=⇒≤0 c, for all c ∈ P × Γ∗,

• if 〈p, γ〉
a
−֒→ 〈p′, w〉 and 〈p′, ww′〉

b
=⇒≤k c for some w′ ∈ Γ∗, b ∈ D, and

c ∈ P × Γ∗, then 〈p, γw′〉
a⊗b
==⇒≤k+1 c.

• if 〈p,⊥〉
a
−֒→ {〈p1, γ1⊥1〉, 〈p2, γ2⊥2〉} and 〈pi, γi⊥i〉

bi=⇒≤k c for some bi ∈

D and c ∈ P × Γ, for each i ∈ [2], then 〈p,⊥〉
a⊗(b1⊙b2)
======⇒≤k+1 c.

We correspondingly define the traces for each k ∈ N:

T≤k(c, c
′) =

⊕

{a | c
a
=⇒≤k c′} .

59

Clearly, T (c, c′) =
⋃

k≥0 T≤k(c, c
′). Therefore, showing that

T (〈p, γ〉, 〈q, ε〉) ⊑ [p, γ, q]µ and
⊕

⊥′∈Ξ

T (〈p,⊥〉, 〈q,⊥′〉) ⊑ [p, γ, q]µ

boils down to proving

T≤k(〈p, γ〉, 〈q, ε〉) ⊑ [p, γ, q]µ and
⊕

⊥′∈Ξ

T≤k(〈p,⊥〉, 〈q,⊥′〉) ⊑ [p,⊥, q]µ ,

for each k ∈ N. The proof for the non-alternating part can be found in the
proof of Theorem 3.6, hence omitted here. We prove the alternating part by
induction on k.

The base case, where k = 0, follows immediately. From the definitions of
⊕

⊥′∈Ξ T≤k+1(〈p,⊥〉, 〈q,⊥′〉) and [p,⊥, q]µ we have

⊕

⊥′∈Ξ

T≤k+1(〈p,⊥〉, 〈q,⊥′〉) ⊑
⊕

〈p,γ〉
a

−֒→{〈pi,γi⊥i〉|i∈[2]}

a ⊗ b ,

where

b =
⊕

q1,q2∈P

2⊙

i=1

T≤k(〈pi, γi〉, 〈qi, ε〉) ⊗

(
⊕

⊥′∈Ξ

T≤k(〈qi,⊥i〉, 〈q,⊥
′〉)

)

,

and

[p,⊥, q]µ =
⊕

〈p,⊥〉
a

−֒→{〈pi,γi⊥i〉|i∈[2]}

a ⊗
⊕

q1,q2∈P

2⊙

i=1

[pi, γi, q]µ ⊗ [qi,⊥i, q]µ .

By the induction hypothesis we have

T≤k(〈pi, γi〉, 〈qi, ε〉) ⊑ [pi, γi, qi]µ

and ⊕

⊥′∈Ξ

T≤k(〈qi,⊥i〉, 〈q,⊥
′〉) ⊑ [qi,⊥i, q]µ ,

for each i ∈ {1, 2}. Consequently, we conclude that
⊕

⊥′∈Ξ

T≤k+1(〈p,⊥〉, 〈q,⊥′〉) ⊑ [p,⊥, q]µ .

2

60

Chapter 4

Application to Java testing

In this chapter we describe an application of the reachability analysis on
pushdown models to the area of Java testing. Given a Java program to
be tested, the program is first compiled into so-called class files containing
Java bytecode—the machine language of the Java virtual machine. We then
construct a pushdown model from the class files such that the reachability
analysis simulates the behavior of the bytecode as if it were executed by the
Java virtual machine. In contrast to the traditional testing where test cases
are executed one after another by the Java virtual machine, one can think
of the reachability analysis as a single execution of all possible parameter
values within given ranges. Therefore, we are able to find out not only all
errors in the ranges, but also parts of the code that are not reachable by any
values. There are two obvious advantages over the traditional testing. First,
the reachability analysis always terminates, which is not always the case in
the traditional testing where infinite loops are possible. Also, it is possible
to test wider ranges of parameter values with the reachability analysis, thus
increasing more confident about the correctness of the program under test.

To make the testing possible, we need to solve at least two major prob-
lems: (i) Given a class file, how can one construct a pushdown model that
simulates the behavior of the Java virtual machine? (ii) How can one define
weights of pushdown models such that the reachability analyses can be per-
formed efficiently? We answer the first problem by means of the first two
sections. The first section introduces the Java virtual machine and the ba-
sics of Java bytecode. The second section explains a translation of bytecode
instructions into pushdown models. The third section focuses on the second
problem, where we need to represent relations as weights. We discuss several

61

issues that arise when applying the reachability algorithm from Section 3.1.
An algorithm that extracts concrete parameter values at a given (reachable)
program point is also proposed at the end of the chapter.

4.1 Java virtual machine

This section introduces the concept of the Java virtual machine (JVM)
needed for understanding the rest of the chapter. We do not list all as-
pects of the JVM in this thesis. Readers are referred to [41] for a thorough
explanation of the JVM specification. Some texts in this section are taken
either directly or with minor modifications from [41].

The JVM is an abstract computing machine that runs compiled Java
programs. Like a real computing machine, it has an instruction set and
manipulates various memory areas at run time. The JVM is a software
available on many hardware platforms and operating systems, resulting in
the portability of Java programs.

The JVM operates on two kinds of data types: primitive types and ref-
erence types. The primitive types consist of the numeric types, the boolean

type, and the returnAddress type. The numeric types are bytes (8 bits),
short (16 bits), char (16 bits), int (32 bits), float (32 bits), long (64 bits),
and double (64 bits). The boolean type supports the truth values true and
false. The value of the returnAddress type are pointers to opcodes of the
JVM instructions. Object references are of type reference. An object can
be either a (dynamically created) class instance or an array. One can think
of a reference as a pointer to an object.

The JVM maintains various runtime information during execution of a
program. The method area stores bytecode instructions and other class-
related information. The heap is where objects, i.e. class instances and arrays,
are allocated. Objects can never be explicitly allocated. Instead, the memory
occupied by objects is reclaimed by an automatic storage management system
when they are no longer referenced—a process known as a garbage collection.
For each thread, the pc (program counter) register points to the currently
executing bytecode instruction in the method area. After an instruction is
executed, the pc register points to the next instruction, either the one that
immediately follows or a jump specified by the instruction. Each thread also
keeps track of a stack of frames for method invocations and returns. A new
frame is created when a method is invoked. Then, it becomes the current

62

frame where the control transfers to. A frame is destroyed when its method
invocation completes, either a normal completion or an uncaught exception is
thrown. Upon return, the current frame passes back the result of its method
invocation, if any, to the previous frame. The current frame is then discarded
as the previous frame becomes the current one.

Each frame possesses an array of local variables and an operand stack.
A local variable can hold a value of all types that require up to 32 bits. A
consecutive pair of local variables is needed to hold a value of type long or
double. Local variables are addressed by indexing, starting from index zero.
Values of type long or double are addressed using the lesser indices. The
length of the local variable array of a frame is determined at compile time
from its associated method, and stored in the corresponding class file.

Although the Java virtual machine has no registers for storing temporary
values, it maintains something equivalent called operand stack. The operand
stack is initially empty when the frame that contains it is created. The
operand stack can be loaded with constants or values from local variables or
fields. Many instructions pop operands from the stack, operate on them, and
push the result back. Operand stacks are also used to prepare parameters for
method calls and receive method return values. The maximum depth of the
operand stack of a frame is determined at compile time from its associated
method, and stored in the corresponding class file.

4.1.1 Java bytecode basics

Java bytecode is the form of instructions that the JVM executes. Each
instruction consists of a one-byte opcode immediately followed by zero or
more operands. The numbers and types of operands are determined by the
opcodes. As in the typical assembly language style, instructions are usually
represented by their mnemonics followed by their operand values. In the
following, we always refer to the instructions by their mnemonics.

Each (non-abstract) method has a list of instructions, which will be ex-
ecuted by the JVM starting from the first instruction when the method is
active. The first instruction always has offset 0. The offsets of the next in-
structions are equal to the offsets of the previous instructions plus the sizes of
the previous instructions (in bytes). Figure 4.1 shows a Java method, which
simply stays in the loop 10 times without doing anything else, together with
its bytecode instructions. Let us consider the meaning of each bytecode in-
struction in this example. As discussed earlier, the JVM has no register for

63

Java source:

static void local() {

int i;

for (i = 0; i < 10; i++)

;

}

Bytecode instructions:

local()V

0: iconst_0

1: istore_0

2: goto 8

5: iinc 0 by 1

8: iload_0

9: bipush 10

11: if_icmplt 5

14: return

Figure 4.1: A Java method that loops 10 times

storing temporary values. Everything must be pushed onto an operand stack
before it can be used in a calculation. Bytecode instructions therefore op-
erate primarily on the operand stack. In the example, the execution starts
with the instruction iconst_0 by pushing the constant zero of type integer
onto the operand stack. With istore_0, it pops the integer value from the
operand stack, which is the zero, and stores it into the local variable at index
0. These two instructions correspond to the statement i = 0. Then, the
execution unconditionally branches to the instruction at offset 8 because of
the instruction goto 8. There, iload_0 reads the current integer value from
the local variable at index 0, and pushes it onto the operand stack. The
instruction bipush 10 converts the value 10 of type byte to type integer,
and pushes it onto the operand stack. With if_icmplt 5 (if integer com-
parison less than), two values, which must be of type integer, are popped
from the operand stack, and the execution branches to offset 5 if the second
topmost value is less than the topmost value, otherwise it continues to the
next instruction. The instructions at offsets 8–11 therefore correspond to the
comparison i < 10 in the for-loop. At offset 5, iinc 0 by 1 increases the
local variable at index 0 by 1, corresponding to the statement i++. The loop
repeats by checking the value of i again starting at offset 8. The method
returns when the execution reaches offset 14.

Similar to iload and istore, the JVM contains two instructions for
reading from and writing to static fields: getstatic and putstatic. For in-
stance, the instruction getstatic C.x pushes the value of the static field

64

x that belongs to the class C onto the operand stack. The instruction
putstatic C.x, on the other hand, pops the value from the operand stack
and stores it in x.

Passing parameters and return values

When invoking a method, the JVM uses the operand stack of the caller frame
and the local variables of the new frame to pass parameters. The JVM inter-
nally pops the values from the operand stack and stores them into the local
variables such that the first parameter is the depth-most value on the operand
stack. There are two types of method invocations in Java: class method
invocation and instance method invocation. In the case of class method in-
vocation, parameters are passed in consecutive local variables starting from
index 0. In the case of instance method invocation, local variable at index 0
is always used to pass a reference to the object on which the instance method
is being invoked (this in the Java programming language). Parameters are
passed in consecutive local variables starting from index 1.

When a method returns a value, the value is pushed onto the operand
stack of the frame of the invoker. Consider an example in Figure 4.2, where
two static methods are shown. The method tt calls the method sub with 3
and 2 as the arguments. This is done it three steps. First, the integer constant
3 is pushed, then the constant 2 is pushed before calling the method sub.
The instruction invokestatic pops the argument values from the operand
stack, and constructs a new frame for the method sub. In the method sub

the values 3 and 2 are stored in the local variables 0 and 1, respectively. The
instructions iload_0 and iload_1 load these two values onto the operand
stack. The instruction isub pops them, subtracts, and pushes the result
back. With ireturn, the result is popped, the frame of the method sub is
discarded, and the popped value is pushed back onto the operand stack of
the frame of tt. This value is returned again by ireturn in tt.

Arrays

The JVM has a distinct set of instructions for manipulating arrays. We dis-
cuss some of them by considering the example in Figure 4.3. The instruction
newarray int creates a new array of type integer by first popping an inte-
ger value from the operand stack, and then allocating the array of length
specified by the popped value from the heap. A reference to the array is

65

Java source:

static int sub(int i, int j) {

return i - j;

}

static int tt() {

return sub(3, 2);

}

Bytecode instructions:

sub(II)I

0: iload_0

1: iload_1

2: isub

3: ireturn

tt()V

0: iconst_3

1: iconst_2

2: invokestatic sub(II)I

5: ireturn

Figure 4.2: An example that illustrates parameters passing

pushed onto the operand stack. Next, the reference is stored in the local
variable 0 by astore_0. Therefore, the first three instructions correspond
to the statement int[] a = new int[2];. The instruction aload_0 loads
the array reference back onto the operand stack. Notice that astore_0 and
aload_0 are the same as istore_0 and iload_0, except that the first two
require values of type reference, instead of type int.

The instruction arraylength pops an array reference from the operand
stack, and pushes the length of the array specified by the reference onto the
stack. The instruction iastore pops a value of type int, an array index,
and an array reference, exactly in this order. Then, the value is stored in
the array element specified by the index. In the example, the instructions at
offsets 4–8 correspond to the statement a[0] = a.length;. The instruction
iaload pops an array index and an array reference, and pushes the array
element specified by the index onto the operand stack.

Class instances

In Java, a class instance can be created by using the new keyword, see Fig-
ure 4.4 for an example. The bytecode instruction new allocates a memory
for a new instance from the heap, initializes the instance variables to their
default values, and pushes a reference to the instance onto the operand stack.

66

Java source:

static int ar() {

int[] a = new int[2];

a[0] = a.length;

return a[1];

}

Bytecode instructions:

ar()I

0: iconst_2

1: newarray int

3: astore_0

4: aload_0

5: iconst_0

6: aload_0

7: arraylength

8: iastore

9: aload_0

10: iconst_1

11: iaload

12: ireturn

Figure 4.3: An example that manipulates an array

The instruction dup duplicates the top element of the operand stack The in-
struction invokespecial is used here for invoking the instance initialization
method, i.e. the constructor. Notice that the name of constructors is always
the compiler-supplied <init>. The instruction behaves just like an instance
method invocation, and therefore when executed, an object reference and
method arguments are popped from the operand stack. Then, a new frame
is created on the stack, and the local variables of the new frame are initialized
with the values of the object reference and the arguments, with the reference
in local variable 0, the first argument in local variable 1, and so on. In the
example, the constructor takes no arguments, so only the object reference is
passed to the new frame. After the call, there is one reference left on the
operand stack. This reference is subsequently popped, and stored in local
variable 0 by astore_0. Thus, the instructions at offsets 0–7 correspond to
the statement B o = new B();.

The instruction instanceof A pops a reference from the operand stack,
and determines whether its object is an instance of class A or a subclass of A.
If yes, an integer 1 is pushed onto the operand stack, otherwise an integer 0
is pushed. The instruction ifeq 20 pops an integer from the operand stack,
and branches to the instruction at offset 20 if the value is equal to zero.

67

Java source:

class A {

int x;

}

class B extends A {

static void in() {

B o = new B();

if(o instanceof A) {

o.x = 1;

}

}

}

Bytecode instructions:

B.in()V

0: new B

3: dup

4: invokespecial B.<init>()V

7: astore_0

8: aload_0

9: instanceof A

12: ifeq 20

15: aload_0

16: iconst_1

17: putfield B.x

20: return

Figure 4.4: An example that manipulates a class instance

Otherwise, the execution continues to the next instruction. In the example,
the execution does not branch, since B is a subclass of A. The instruction
putfield pops a value and a reference from the operand stack, and stores
the value to a field of the instance specified by the reference.

Exceptions

In Java programming language, an exception can be thrown using the throw
keyword, which results in an immediate transfer of control to the nearest
enclosing catch clause of a try statement that handles the exception. Each
catch clause is represented by an exception handler. An exception handler
h specifies (i) the range rh of instruction offsets for which it is active, (ii) the
exception type th that it is able to handle, and (iii) the code location lh that
is to handle that exception. An exception matches an exception handler h if
the offset of the instruction that causes the exception is in the range rh and
the exception type is the same class as or a subclass of th. When an exception
is thrown, the JVM searches for a matching exception handler in the current
method. If a matching exception handler h is found, the execution branches
to the exception handling code specified by lh.

If a matching exception cannot be found in the current method, the cur-
rent method invocation completes abruptly. The operand stack and local

68

variables of the current frame are discarded, the frame is popped, and the
next frame on the stack—the frame of the invoker method—is reinstated.
The exception is again thrown in the context of the invoker’s frame, and
continue popping the stack of frames until an exception handler is found.
If no exception handler can be found in the last frame of the stack, the
execution of the corresponding thread terminates.

For each method, the exception handlers are stored in a table within the
class file. When an exception is thrown, the JVM sequentially searches for a
matching exception handler in the table, starting from the first entry. Fig-
ure 4.5 illustrates a small method together with its bytecode instructions and
exception table. The instructions at offsets 0–4 create and initialize an object
of type RuntimeException, and at affset 7 the object is thrown by athrow.
The only exception handler specified in the table handles Exception that
can be thrown from instructions at the offsets 0 (inclusive) to 8 (exclusive).
Therefore, the exception thrown from offset 7 always matches the exception
handler, and the execution subsequently branches to offset 8. The exception
is thrown again at offset 10, however no matching exception handler can be
found. The exception then propagates further to the invoker’s frame.

Multithreading

There are two ways to create a new thread in Java. The first approach is to
declare a class to be a subclass of java.lang.Thread. An instance of this
subclass can start the thread directly. The other approach is to declare a class
that implements the interface java.lang.Runnale. After that, an instance
of this class can be passed as an argument when creating an instance of type
Thread, and then started. Either way, the run method, which contains the
code of the new thread, must be implemented.

Figure 4.6 gives an example of the second approach. At the beginning
of f, the instruction new Thread creates a new object of type Thread, and
pushes a reference to the object onto the operand stack. The instruction
dup duplicates the top element of the operand stack. At offset 4, an object
of type C$1 is allocated. Class C$1 is an inner class of C which implements
the interface Runnable. C$1 specifies the method run which will be executed
when the thread starts.

Two initialization methods are called at offsets 8 and 11 for C$1 and
Thread, respectively. A reference to C$1 (resp. to Thread) is passed as the
first argument when initializing the C$1 (resp. Thread) object. However,

69

Java source:

static void ex() throws Exception {

try { throw new RuntimeException(); }

catch (Exception e) { throw e; }

}

Bytecode instructions:

ex()V

0: new java/lang/RuntimeException

3: dup

4: invokespecial java/lang/RuntimeException.<init>()V

7: athrow

8: astore_0

9: aload_0

10: athrow

Exception table:

From To Target Type
0 8 8 java/lang/Exception

Figure 4.5: An example that throws an exception

70

for Thread, a reference to C$1 is also passed as the second argument, which
will be stored as its field when initializing the object (codes not shown). The
thread is started at offset 14 by a call to start. Internally, the method start

starts the thread by a call to start0 (offset 29).

Synchronization

Each object has a monitor associated with it. When a thread executes the
bytecode instruction monitorenter, an object reference is popped from the
operand stack, and the thread gains the ownership of the monitor associated
with the reference, if the monitor is not owned by any thread. If the monitor
is currently owned by another thread, the current thread waits until the
monitor is released, then tries again to gain the ownership. If the current
thread already owns the monitor, it increments a counter in the monitor
indicating the number of times the thread has entered the monitor.

The bytecode instruction monitorexit pops an object reference, decre-
ments the counter of the monitor associated with the reference. If the value
of the counter becomes zero, the current thread releases the monitor. In this
case, other threads that are waiting for the monitor are allowed to try to
acquire it.

4.1.2 Instruction set

Most instructions encode information on the types of variables they operate.
For instance, iload instruction loads the content of a local variable, which
must be an integer, onto the operand stack. The lload, fload, and dload

do the same with a long, float, and double value, respectively. Notice that
letters prefixing the mnemonics indicate types. There are eight of them: a

for reference, b for byte, c for char, d for double, f for float, i for int, l
for long, and s for short. Some instructions, whose types are unambiguous,
do not have a type letter in their mnemonics. For instance, arraylength
always operates on an object that is an array. Some instructions, such as
goto—an unconditional jump, do not operate on typed operands.

Note, however, that not all instructions are available for every data type.
For instance, there is a load instruction of type int, i.e. iload, but there is
no load instruction of type byte. In fact, most instructions do not support
the types byte, char, and short. None of them support the boolean type.
Instead, they are either sign-extended or zero-extended to type int. Oper-

71

Java source:

class C {

static void f() {

new Thread(new Runnable() {

public void run() {

// New thread works

}}).start();

// Main thread works

}

}

Bytecode instructions:

C.f()V

0: new Thread

3: dup

4: new C$1

7: dup

8: invokespecial C$1.<init>()V

11: invokespecial Thread.<init>(Ljava/lang/Runnable;)V

14: invokevirtual Thread.start()V

17: ...

e: return

java/lang/Thread.start()V

0: ...

28: aload_0

29: invokespecial java/lang/Thread.start0()V

32: ...

Figure 4.6: A example that forks a new thread

72

ations on values of these types are performed by instructions operating on
values of type int.

We now summarize the instruction set. Some instructions are grouped to-
gether as they have similar behaviors. Boldfaced letters in the front indicate
group names. These names will be used later in Section 4.2.3.

Load and store instructions

The following instructions transfer values from/to local variables, operand
stacks, or static fields. Instructions with trailing brackets denote families
of instructions, e.g. fconst [0,2] denotes fconst 0, fconst 1, fconst 2,
which push constants 0, 1, 2, respectively, of type float. Such instructions
are specializations of generic instructions, e.g. fconst, that take one operand.
For the specialized instructions, the operand is implicit and does not need to
be stored or fetched. The semantics are otherwise the same, e.g. fconst_0
has the same meaning as fconst with the operand 0.

Push Push a constant onto the operand stack: bipush, sipush, ldc,
ldc w, ldc2 w, aconst null, iconst m1, iconst [0,5], lconst [0,1], f-
const [0,2], dconst [0,1].

Load Load a local variable onto the operand stack: iload, iload [0,3],
lload, lload [0,3], fload, fload [0,3], dload, dload [0,3], aload, a-
load [0,3].

Store Store a value from the operand stack into a local variable: istore,
istore [0,3], lstore, lstore [0,3], fstore, fstore [0,3], dstore, d-
store [0,3], astore, astore [0.3].

Globalload Load a static field onto the operand stack: getstatic.

Globalstore Store a value from the operand stack into a static field: put-
static.

Arithmetic instructions

The following instructions take values from local variables or operand stacks,
compute results, and put them back.

73

Unary Unary operation: pop a value from the operand stack, compute the
result, and push it back:

• Negation: ineg, lneg, fneg, dneg.

• Type conversion: i2b, i2s, i2l, i2f, i2d, l2i, l2f, l2d, f2i, f2l,
f2d, d2i, d2l, d2f.

Binary Binary operation: pop two values from the operand stack, compute
the result, and push it back:

• Addition: iadd, ladd, fadd, dadd.

• Subtraction: isub, lsub, fsub, dsub.

• Multiplication: imul, lmul, fmul, dmul.

• Division: idiv, ldiv, fdiv, ddiv.

• Remainder: irem, lrem, frem, drem.

• Shift: ishl, ishr, iushr, lshl, lshr, lushr.

• Bitwise OR: ior, lor.

• Bitwise AND: iand, land.

• Bitwise exclusive OR: ixor, lxor.

• Comparison: dcmpg, dcmpl, fcmpg, fcmpl, lcmp

Inc Increment a local variable: iinc.

Control transfer instructions

The following instructions transfer controls to instructions other than ones
immediately follow.

If Pop a value from the operand stack and branch if the comparison between
the value and a given value succeeds: ifeq, iflt, ifle, ifne, ifgt, ifge,
ifnull, ifnonnull, tableswitch, lookupswitch.

74

Ifcmp Pop two values from the operand stack and breach if the compar-
ison between the two values succeeds: if icmpeq, if icmpne, if icmplt,
if icmpgt, if icmple, if icmpge, if acmpeq, if acmpne.

Goto Unconditional branch: goto, goto w.

Invoke Invoke a new method. Parameters are popped from the operand
stack, if any: invokevirtual, invokeinterface, invokespecial, invoke-
static.

Return Return from the current method. A return value is popped from
the operand stack, if any: return, ireturn, lreturn, freturn, dreturn,
areturn.

Object manipulation instructions

The following instructions are used for manipulating objects, including ar-
rays.

Newarray Pop an array length (more than one time if multi-dimensional),
create a new array of the given length(s), and push its reference onto the
operand stack: newarray, anewarray, multianewarray.

Arraylength Pop an array reference from the operand stack and push
the length of the array specified by the reference onto the operand stack:
arraylength.

Arrayload Pop an array index and an array reference from the operand
stack, and load the array element at the index onto the operand stack:
baload, caload, saload, iaload, laload, faload, daload, aaload.

Arraystore Pop a value, an array index, and an array reference from
the operand stack, and store the value into the array element at the in-
dex: bastore, castore, sastore, iastore, lastore, fastore, dastore,
aastore.

75

New Create a new class instance and push a reference to the new instance
onto the operand stack: new.

Fieldload Pop an object reference from the operand stack and load a field
of the instance specified by the reference onto the operand stack: getfield.

Fieldstore Pop a value and an object reference from the operand stack
and store the value into a field of the instance specified by the reference:
putfield.

Instanceof Pop an object reference from the operand stack and deter-
mine whether the instance specified by the reference is of a given type:
instanceof, checkcast.

Other instructions

Pop Pop the operand stack: pop, pop2.

Dup Duplicate the operand stack: dup, dup2, dup x1, dup2 x1, dup x2,
dup2 x2.

Swap Swap the top two operand stack values: swap.

Monitorenter Enter the monitor of an object: monitorenter.

Monitorexit Exit the monitor of an object: monitorexit.

Throw Throw an exception: athrow.

Finally Implement finally: jsr, jsr w, ret.

4.2 Translator

Given a Java class file, the goal of this section is to generate a pushdown
model so that the reachability analysis in Chapter 3 can be applied. We
first focus only on modeling of sequential programs with pushdown systems
before extending to pushdown networks for multithreaded programs.

76

Java source:

static void a() {

b();

}

static void b() {

while (true) {}

}

Bytecode instructions:

a()V

0: invokestatic b

3: return

b()V

0: goto 0

Figure 4.7: An example without variables

4.2.1 Control flow modeling

Programs without variables are translated into pushdown systems of the
form ({·}, Γ, ∆), where the stack symbols are program points constructed
from each bytecode instruction of interest. In the following, we shall use
method names followed by instructions offsets as program points. Consider
an example in Figure 4.7, where three bytecode instructions are involved. In
this case, we define Γ = {a0, a3, b0}. Notice that care must be taken when two
methods have the same name. To avoid this problem, our translator always
attaches package names, class names, and method signatures alongside the
method names to guarantee the uniqueness. For readability reasons, however,
only method names are listed in our examples when there is no ambiguity.

For sequential programs, the set ∆ contains rules that transform stack
symbols into zero, one, or two stack symbols, i.e. there are three possible
types of rules programs can be translated into. For arbitrary stack symbols
γ, γ′, and γ′′,

1. Normal rule 〈·, γ〉 →֒ 〈·, γ′〉 transforms program point γ to γ′.

2. Push rule 〈·, γ〉 →֒ 〈·, γ′γ′′〉 calls a new method at program point γ,
where γ′ is the method’s entry point and γ′′ is the return address.

3. Pop rule 〈·, γ〉 →֒ 〈·, ε〉 returns from a method at program point γ.

Notice that these three types of rules obey the restriction imposed by the
algorithm in Section 3.1.1. Therefore, the algorithm can be directly applied
to the translated pushdown systems without any modifications.

77

Rules Relation types
Pop rule γ1 →֒ ε G × L × G
Normal rule γ1 →֒ γ2 G × L × G × L
Push rule γ1 →֒ γ2γ3 G × L × G × L × L

Table 4.1: Pushdown rules and their relation types

Since pushdown systems of programs without variables always contain
only one control location, we will drop it when writing rules from now on,
i.e. we write γ →֒ w instead of 〈·, γ〉 →֒ 〈·, w〉. Continuing with the example
in Figure 4.7, we construct a rule for each bytecode instruction: ∆ = {a0 →֒
b0a3, a3 →֒ ε, b0 →֒ b0} .

4.2.2 Variable modeling

The data part of a program is modeled using weights. The weight of a rule is a
relation describing the possible pairs of valuations of the variables before and
after executing the rule. Notice that the resulting model effectively separates
control and data parts. A weighted rule has the form:

γ →֒ w R ,

where γ ∈ Γ, w ∈ Γ∗ and |w| ≤ 2, and R is a relation between variables.
As usual, variables are divided into globals and locals1. Globals are shared

among all program points; whereas each program point can own a copy
of locals. Therefore, the definition of R depends on the type rules it is
assigned to. Let G and L be valuation sets for globals and locals, respectively.
Table 4.1 lists all possible relation types, depending on the numbers of right-
hand stack symbols. Intuitively, a weight can be seen as a mechanism which
updates globals and locals for each program point involved in the rule.

For instance, if the model contains a global g and a local l of type integer,
then the rule

γ1 →֒ γ2γ3 {(g, l, 0, l + 1, l) | g ∈ G and l ∈ L} ,

encodes a procedure call from γ1 to γ2, with γ3 as the return address. At the
same time, g is updated to 0, x of γ2 is greater than x of γ1 by 1, and x of
γ3 remains unchanged.

1We use the term locals here to differentiate them from Java’s local variables, whereas

the term variables is more general and will be used in both contexts.

78

In the following, we will implicitly write relations as expressions over vari-
ables. Primes are used to distinguish between copies of variables in relations.
As a convention, unprimed variables refer to the stack symbol on the left-
hand side of the rule. Singly-primed and doubly-primed variables refer to
the first and second symbol, respectively, on the right-hand side of the rule.
Therefore, we rewrite the rule above as

γ1 →֒ γ2γ3 g′ = 0 ∧ x′ = x + 1 ∧ x′′ = x .

We delay the formal definition of the relations to Section 4.3, where we
describe how they can be encoded into bounded idempotent semirings, given
bounded numbers of Boolean variables. Note that by using strings of Boolean
variables we can represent any type of variables (e.g. integer or pointer) if
it has a finite range. In Chapter 5 we compare two different representa-
tions of relations, bit vectors and BDDs, and discuss their advantages and
disadvantages.

4.2.3 Java virtual machine modeling: Basics

Given an initial method where a reachability analysis should start, we first
analyze which classes are statically reachable from the method. Then, byte-
code instructions of these classes are translated into a pushdown system. The
translation process is rather straightforward, since in most cases a bytecode
instruction is mapped into a single weighted rule. Recall that stack symbols
are constructed from method names and instruction offsets, and rules are
always of the forms described in Section 4.2.1.

Therefore, given a bytecode instruction, we focus mainly in this section
on translating the instruction into a weighted rule that models the behavior
of the instruction as executed by the JVM. Although modeling control flow is
a simple task, modeling variables is delicate, since one must fully understand
the behavior of all bytecode instructions. We proceed step by step, ignoring
some details at the beginning and only introducing them afterward.

Data types

Later on, we will need to differentiate between different data types. For the
reference types, this is done by assigning a unique number—an id—to each
class, interface, and array type that is reachable from the initial method.
These numbers are then used to refer to their corresponding types. We also

79

Variables Symbols Types
Static variables - Globals

Heap h Array of globals
Heap pointer hp Global

Operand stack s Array of locals
Operand stack pointer sp Local

Local variable i lvi Local

Table 4.2: Java variables including their notations and types

collect hierarchical information of types, which enables us to determine e.g.
all superclasses of a class or all classes that implement an interface. Modeling
of instructions such as checkcast and invokevirtual relies on this kind of
information.

To ease the following presentation, we will ignore all primitive types, and
always treat them as numbers. Section 4.2.4 discusses an extension.

Variables

The translator needs two inputs from users: the default number of bits that
all variables should have and a heap length. With this information, we main-
tain four types of variables when translating bytecode instructions. Table 4.2
summarizes all variables and the symbols we use to identify them. Static vari-
ables and local variables (lv) are modeled by globals and locals, respectively.
An operand stack (s) is modeled by an array of locals plus a stack pointer
(sp), which is initialized to zero after method each invocation, and always
points to the next available element in the array. The array length is equal
to the maximum stack depth, which is predetermined by the compiler during
compile time.

Similarly, the heap (h) is modeled by an array of globals (having the length
given by the user) plus an extra heap pointer (hp). The heap pointer always
points to the next available element in the array, and is initialized to one. We
reserve the index zero for null objects. When an object is created, it occupies
some parts of the array starting from where the heap pointer is pointing to.
The object itself can be seen as a pointer to the array. The number of array
elements an object occupies depends on its size. The size of an object, on the
other hand, depends on object-specific information including the number of

80

Instance of a class with n instance fields:

class id field1 · · · fieldn

Array a with length l:

array id
array

length (l)
a[0] · · · a[l − 1]

Figure 4.8: Object information that is stored in the heap

instance fields it has. Each object has its own copy of instance fields, which
we need to store in the array.

Figure 4.8 illustrates our design over the formats of objects in the heap.
We differentiate two types of objects: class instance and array. Both begin
with ids determining types. The next elements store instance fields in case
of a class instance. For this, we need to assign a unique offset starting from
zero to each field, and refer to them only by their offsets. For instance, if an
instance o has 3 instance fields, namely a, b, and c, we might assign 0, 1, 2
to a, b, c, respectively. To access o.c, we will need to access h[o + 1 + 2].
(Recall that objects are pointers, and we always need to add 1 for the ids.)
For arrays, we need another element for array lengths before their actual
array contents.

Translating bytecode instructions

We present in this section the translations for bytecode instructions. Recall
from Section 4.1.2 that some bytecode instructions are grouped together
because of their similar behaviors, e.g. the way the operand stack or the
heap are operated on. We use this grouping again in the following, and only
present a translation for each group. Other instructions in the same group
can be translated in a similar manner.

We assume that all bytecode instructions are at the program point p and
the next program point is n. Therefore, rules usually have the form

p →֒ n R

and we only need to describe the relation R. Moreover, we assume that all
other variables, which are not explicitly mentioned in the description of R

81

retain their values, i.e. if the variable v does not appear in an expression, we
assume that v′ = v.

Push Push constant x onto the operand stack.

s′[sp] = x ∧ sp′ = sp + 1

Load Load local variable i onto the the operand stack.

s′[sp] = lvi ∧ sp′ = sp + 1

Store Store the value from the operand stack into local variable i.

lv′i = s[sp− 1] ∧ sp′ = sp− 1

Globalload Load static field f onto the operand stack.

s′[sp] = f ∧ sp′ = sp + 1

Globalstore Store the value from the operand stack into static field f .

f ′ = s[sp− 1] ∧ sp′ = sp− 1

Unary Perform unary operation u with the value on the operand stack.

s′[sp− 1] = u(s[sp− 1])

Binary Perform binary operation ⋆ with the values on the operand stack.

s′[sp− 2] = s[sp− 2] ⋆ s[sp− 1] ∧ sp′ = sp− 1

Inc Increment local variable i by x.

lv′i = lvi + x

If Branch to label b if the comparison � between the value on the operand
stack and constant c succeeds. We have to produce more than one rule in
this case—one for each branch. Let ≻ be the complement operator of �.

p →֒ b s[sp− 1] � c ∧ sp′ = sp− 1

p →֒ n s[sp− 1] ≻ c ∧ sp′ = sp− 1

82

Ifcmp Branch to label b if the comparison � between two values on the
operand stack succeeds. We have to produce more than one rule in this
case—one for each branch. Let ≻ be the complement operator of �.

p →֒ b s[sp− 2] � s[sp− 1] ∧ sp′ = sp− 2

p →֒ n s[sp− 2] ≻ s[sp− 1] ∧ sp′ = sp− 2

Goto Unconditionally branch to label b.

p →֒ b

As an example, the method in Figure 4.1 can be translated to the push-
down system having {locali | i ∈ {0, 1, 2, 5, 8, 9, 11, 14}} as the stack alpha-
bet and containing the following weighted rules:

local0 →֒ local1 s′[sp] = 0 ∧ sp′ = sp + 1
local1 →֒ local2 lv′0 = s[sp− 1] ∧ sp′ = sp− 1
local2 →֒ local8

local5 →֒ local8 lv′0 = lv0 + 1
local8 →֒ local9 s′[sp] = lv0 ∧ sp′ = sp + 1
local9 →֒ local11 s′[sp] = 10 ∧ sp′ = sp + 1
local11 →֒ local5 s[sp− 2] < s[sp− 1] ∧ sp′ = sp− 2
local11 →֒ local14 s[sp− 2] ≥ s[sp− 1] ∧ sp′ = sp− 2
local14 →֒ ε

Invoke Invoke a method with m as its entry point. Obviously, this corre-
sponds to a push rule.

p →֒ m n sp′ = 0

The expression sp′ = 0 initializes the stack pointer of m to zero. Recall that
method arguments are passed from the operand stack to local variables of
the new method. Therefore, if the method has n > 0 arguments, we need to
append the following expression:

lv′0 = s[sp− n] ∧ . . . ∧ lv′n−1 = s[sp− 1] ∧ sp′ = 0 ∧ sp′′ = sp− n .

Note that in case of instance or interface method invocations, given a class
and method name, the method to be invoked depends on the instance type
of the reference (the n-th element on the operand stack). For this, we

83

need to find all candidate methods that can be invoked, each method cor-
responds to a candidate set of class ids. The candidate methods can be
found by searching for the invoked method up and down in the class hi-
erarchy. For instance, let the method to be invoked be size()I of class
java.util.AbstractList (having, say, id 1), and assume that there are
three other classes of interest: java.util.Vector (id 2), java.util.Stack
(id 3), and java.util.ArrayList (id 4). The classes Vector and ArrayList

are subclasses of AbstractList, while Stack is in turn a subclass of Vector.
Since only Vector and ArrayList define the method size()I in this case,
we have two candidate methods, one for each class, with the corresponding
sets {2, 3} and {4}, respectively.

Then, we create a rule for each candidate method that checks for the
membership of the instance type in the corresponding candidate sets in order
to invoke the right method. Assume that there are j candidate methods
with entry points m1, . . . , mj corresponding to candidate sets S1, . . . , Sj. We
introduce j rules of the following form, for 1 ≤ i ≤ j (omitting argument
passing):

p →֒ mi n h[s[sp− n]] ∈ Si ∧ . . .

Continuing the example above, we construct the following two rules, one
for each candidate. Assume that Vector.size0 and ArrayList.size0 are
the entry points of the methods size()I in Vector and ArrayList, respec-
tively:

p →֒ Vector.size0 n h[s[sp− 1]] ∈ {2, 3} ∧ . . .
p →֒ ArrayList.size0 n h[s[sp− 1]] ∈ {4} ∧ . . .

If the invoked method returns a value, we introduce a fresh stack symbol
f as a new return address for storing the return value from ret onto the
operand stack before continuing (cf. Return).

p →֒ mi f . . .
f →֒ n s′[sp] = ret ∧ sp′ = sp + 1

Return Method return corresponds to a pop rule.

p →֒ ε

If the method returns a value, we store it in a temporary global variable
ret. The value of ret will be retrieved later on by the invoker method (cf.

84

Invoke).

ret′ = s[sp− 1]

The example in Figure 4.2 can be translated to a pushdown system con-
taining the following weighted rules (Notice the use of the fresh stack symbol
ttf for restoring the return value.):

sub0 →֒ sub1 s′[sp] = lv0 ∧ sp′ = sp + 1
sub1 →֒ sub2 s′[sp] = lv1 ∧ sp′ = sp + 1
sub2 →֒ sub3 s′[sp− 2] = s[sp− 2] − s[sp− 1] ∧ sp′ = sp− 1
sub3 →֒ ε ret′ = s[sp− 1]
tt0 →֒ tt1 s′[sp] = 3 ∧ sp′ = sp + 1
tt1 →֒ tt2 s′[sp] = 2 ∧ sp′ = sp + 1
tt2 →֒ sub0 ttf sp′ = 0 ∧ lv′0 = s[sp− 2] ∧ lv′1 = s[sp− 1]

∧ sp′′ = sp− 2
ttf →֒ tt5 s′[sp] = ret ∧ sp′ = sp + 1
tt5 →֒ ε ret′ = s[sp− 1]

Newarray Create a one-dimensional array of type id with length deter-
mined by the value on top of the operand stack.

h′[hp] = id∧ h′[hp+1] = s[sp− 1]∧ s′[sp− 1] = hp∧ hp′ = hp+2+ s[sp− 1]

Note that a multi-dimensional array can be created similarly by using mul-
tiple copies of one-dimensional arrays.

Arraylength Load the array length of the array specified by the top ele-
ment of the operand stack onto the operand stack.

s′[sp− 1] = h[s[sp− 1] + 1]

Arrayload Load the array element at index specified by the top-of-stack
value onto the operand stack. The second element on the operand stack
specifies the array.

s′[sp− 2] = h[s[sp− 2] + 2 + s[sp− 1]] ∧ sp′ = sp− 1

85

Arraystore Store the value on top of the operand stack into an array
at index specified by the second element on the operand stack. The third
element on the operand stack specifies the array.

h′[s[sp− 3] + 2 + s[sp− 2]] = s[sp− 1] ∧ sp′ = sp− 3

The method ar in Figure 4.3 can be translated to a pushdown system
containing the following weighted rules. Assume that the array has id 1.

ar0 →֒ ar1 s′[sp] = 2 ∧ sp′ = sp + 1
ar1 →֒ ar3 h′[hp] = 1 ∧ h′[hp + 1] = s[sp− 1]

∧ s′[sp− 1] = hp ∧ hp′ = hp + 2 + s[sp− 1]
ar3 →֒ ar4 lv′0 = s[sp− 1] ∧ sp′ = sp− 1
ar4 →֒ ar5 s′[sp] = lv0 ∧ sp′ = sp + 1
ar5 →֒ ar6 s′[sp] = 0 ∧ sp′ = sp + 1
ar6 →֒ ar7 s′[sp] = lv0 ∧ sp′ = sp + 1
ar7 →֒ ar8 s′[sp− 1] = h[s[sp− 1] + 1]
ar8 →֒ ar9 h′[s[sp− 3] + 2 + s[sp− 2]] = s[sp− 1] ∧ sp′ = sp− 3
ar9 →֒ ar10 s′[sp] = lv0 ∧ sp′ = sp + 1
ar10 →֒ ar11 s′[sp] = 1 ∧ sp′ = sp + 1
ar11 →֒ ar12 s′[sp− 2] = h[s[sp− 2] + 2 + s[sp− 1]] ∧ sp′ = sp− 1
ar12 →֒ ε ret′ = s[sp− 1]

New Create a new class instance of type id having n instance fields.

h′[hp] = id ∧ s′[sp] = hp ∧ hp′ = hp + 1 + n ∧ sp′ = sp + 1

Fieldload Load the field at offset f of the class instance specified by the
top element of the operand stack.

s′[sp− 1] = h[s[sp− 1] + 1 + f]

Fieldstore Store the value on top of the operand stack to the field at offset
f of the class instance specified by the second top element of the operand
stack.

h′[s[sp− 2] + 1 + f] = s[sp− 1] ∧ sp′ = sp− 2

86

Instanceof Check whether the object specified by the reference on top of
the operand stack is of a given type. Similar to instance method invocations,
we need to precompute a candidate set S, and check whether the object’s
id belongs to S. The candidate set contains ids of all types that the object
can possibly have, which can be statically computed given types of interest.
For instance, if the type is an ordinary (nonarray) class, the candidate set
will contain its id and the ids of all subclasses. Therefore, a check whether
an object is of a given type boils down to checking whether the object’s id is
a member of the candidate set. See [41] for a complete reference of how to
constructs the candidate sets for different types. The bytecode instruction
instanceof pushes an integer 1, if the check succeeds or 0, otherwise.

(h[s[sp− 1]] ∈ S ∧ s′[sp− 1] = 1) ∨ (h[s[sp− 1]] 6∈ S ∧ s′[sp− 1] = 0)

Pop Pop the operand stack x times.

sp′ = sp− x

Dup Duplicate elements on the operand stack. There are six different
duplication instructions, and some of their behaviors depend on types of
values on the operand stack. We will not elaborate on this, but only point
out that to model all behaviors correctly, we need information on variable
types discussed in Section 4.2.4. Nevertheless, the bytecode instruction dup,
which always duplicates a single element on the operand stack, is perhaps
the most often used.

s′[sp] = s[sp− 1] ∧ sp′ = sp + 1

We consider again the example in Figure 4.4. The class B has one instance
field (with offset 0), namely x. Hence, given a reference r to an instance of
class B the value of B.x can be accessed by the expression h[r+1+0]. Assume
that the ids of the classes A and B are 1 and 2, respectively. Since A is an
ordinary class, its candidate set contains the id of A itself and the ids of all
subclasses of A, i.e. {1, 2} in this case. Let init0 be the entry point of the
constructor B.<init>()V. The method in can be translated to a weighted

87

pushdown system containing the following weighted rules:

in0 →֒ in3 h′[hp] = 2 ∧ s′[sp] = hp

∧ hp′ = hp + 1 + 1 ∧ sp′ = sp + 1
in3 →֒ in4 s′[sp] = s[sp− 1] ∧ sp′ = sp + 1
in4 →֒ init0 in7 sp′ = 0 ∧ lv′0 = s[sp− 1] ∧ sp′′ = sp− 1
in7 →֒ in8 lv′0 = s[sp− 1] ∧ sp′ = sp− 1
in8 →֒ in9 s′[sp] = lv0 ∧ sp′ = sp + 1
in9 →֒ in12 (h[s[sp− 1]] ∈ {1, 2} ∧ s′[sp− 1] = 1)

∨ (h[s[sp− 1]] 6∈ {1, 2} ∧ s′[sp− 1] = 0)
in12 →֒ in20 s[sp− 1] = 0 ∧ sp′ = sp− 1
in12 →֒ in15 s[sp− 1] 6= 0 ∧ sp′ = sp− 1
in15 →֒ in16 s′[sp] = lv0 ∧ sp′ = sp + 1
in16 →֒ in17 s′[sp] = 1 ∧ sp′ = sp + 1
in17 →֒ in20 h′[s[sp− 2] + 1 + 0] = s[sp− 1] ∧ sp′ = sp− 2
in20 →֒ ε

Swap Swap the top two operand stack values.

s′[sp− 1] = s[sp− 2] ∧ s′[sp− 2] = s[sp− 1]

Wrapper

Before analyzing a method, in addition to translating the methods that are
statically reachable as described above, we need to create a special method,
called wrapper. Basically, the wrapper initializes variables, in particular the
heap, and invoke the initial method. Accordingly, reachability analyses al-
ways start from the wrapper. The following expression initializes the heap
length l:

hp′ = 1 ∧
l−1∧

i=0

h′[i] = 0 .

Moreover, sometimes one might want to test whether a method always
works correctly within a given input range, e.g. whether a sorting implemen-
tation always correctly returns sorted arrays or whether an exception can
be thrown. We also use wrappers for this purpose. Given a initial method
the wrapper wraps the method by calling it with nondeterministic argument
values.

88

For example, to test the method m(int a, int[] b), where all values
can be either 0 or 1, and b has length at most 3, we can wrap it with the
following rules:

w0 →֒ w1 sp′ = 0 ∧ hp′ = 1 ∧
∧l−1

i=0 h
′[i] = 0

w1 →֒ w2 0 ≤ s′[sp] ≤ 1 ∧ sp′ = sp + 1
w2 →֒ w3 0 ≤ s′[sp] ≤ 3 ∧ sp′ = sp + 1
w3 →֒ w4 h′[hp] = id ∧ h′[hp + 1] = s[sp− 1]

∧ s′[sp− 1] = hp ∧ hp′ = hp + 2 + s[sp− 1]

∧
∧s[sp−1]−1

i=0 0 ≤ h′[hp + 2 + i] ≤ 1

w4 →֒ m0 w5 sp′ = 0 ∧
∧1

i=0 lv
′
i = s[sp− 2 + i] ∧ sp′′ = sp− 2 ,

where id specifies the array type. The analysis should then start from w0.

4.2.4 Java virtual machine modeling: Extensions

In this section we present some extensions needed for supporting more Java
features omitted from the model in the last section. We will not list all needed
changes, but will only explain and justify the ideas of possible extensions.
All extensions have been implemented in our tool, presented in Chapter 5.

Category 2 computational type

Although the Java virtual machine specification specifies types of variables,
on which many instructions must strictly operate, we have chosen to ignore
them so far. For instance, consider the bytecode instructions astore 0 and
istore 0, which pop an object reference and an integer, respectively, from
the operand stack and store it into the local variable 0. In the previous section
(cf. Store), we treat these two instructions exactly the same by popping
whatever is on the operand stack and storing it into the local variable 0.

The resulting models behave correctly in the case where variable types are
well-defined by bytecode instructions (most of them are), e.g. in getfield

(cf. Fieldload) the value on the operand stack is always a reference to a class
instance. For these instructions, we know which variable types are expected
in which positions on the operand stack. Obviously, here we assume that the
instructions are always correctly typed, so that illegal type conversions, such
as converting integers to object references, are not possible. Class files ob-
tained directly from Sun’s compiler are known to satisfy this constraint [41].

89

Nevertheless, [41] specifies long and double—so called category 2 compu-
tational type—differently. Most notably, each long or double occupies two
consecutive local variables. For instance, lload 1 pushes a long value spec-
ified by the local variables 1 and 2 onto the operand stack. Moreover, some
bytecode instructions such as dup2 behave differently depending on cate-
gories of values on the operand stack. This poses a problem in the design
described in the last section, where a value always occupies only one local
variable.

Our model, however, can be easily extended to support these types. We
need to differentiate between the instructions that operate on category 1
computational types (all other types except long and double) and category
2 computational types; thus introducing more expression types that must
be taken care of. Also, we use two stack elements for a value of category 2.
This decision choice is natural, since we can maintain one-to-one relationship
between stack elements and local variables. The operations such as argument
passing are easy to handle, because stack elements are simply copied one by
one to corresponding local variables of the invoked method.

Exceptions

When an exception is thrown, we need to search for its exception handler as
described in Section 4.1.1. Similar to modeling instance method invocations
described in the previous section, this behavior is modeled by enumerating
rules for all possible exception handlers. For each exception handler, we
construct a candidate set containing exception types that can be handled.
Assume that the stack symbol p corresponds to the location of athrow—the
bytecode instruction that throws the exception specified by the element on
the operand stack—and there are j possible exception handlers that handle
exceptions S1, . . . , Sj by branching to locations b1, . . . , bj, respectively. For
each 1 ≤ i ≤ j, we model athrow by the following rules. Notice that athrow
clears the operand stack before pushing the exception instance back.

p →֒ bi h[s[sp− 1]] ∈ Si ∧ s′[0] = s[sp− 1] ∧ sp′ = 1

Moreover, we need to propagate all exceptions when their handlers are not
present in the current method. Exception propagations can be modeled by
an extra global variable e, indicating the current exception state. Its value
can be either zero, meaning that no exception has been thrown, or a (non-
zero) id, signifying the class that has been thrown. The bytecode instruction

90

athrow updates the value of e with the value on the operand stack when no
exception handlers are found in the current method.

p →֒ ε h[s[sp− 1]] 6∈

j
⋃

i=1

Si ∧ e′ = s[sp− 1]

Obviously, we need to check the value of e after each instruction, including
in particular method invocations, that can throw exceptions. Assume that p
is such a location. Again, we enumerate all possible exceptions S1, . . . , Sj at
that location, and branch to their corresponding handlers b1, . . . , bj defined
in the current method. For 1 ≤ i ≤ j, we have

p →֒ bi e ∈ Si ∧ e′ = 0 ∧ s′[0] = e ∧ sp′ = 1

In the case where the handler is not found in the current method, the excep-
tion must propagate further.

p →֒ ε e 6= 0 ∧ e /∈

j
⋃

i=1

Si

Consider again the example in Figure 4.5. Let init0 be the entry point
of the constructor java/lang/RuntimeException.<init>()V. By assuming
that the class Exception has id 1, RuntimeException has id 2, and both
containing no instance fields, the method ex can be translated to a weighted
pushdown system containing the following weighted rules:

ex0 →֒ ex3 h′[hp] = 2 ∧ s′[sp] = hp

∧ hp′ = hp + 1 + 0 ∧ sp′ = sp + 1
ex3 →֒ ex4 s′[sp] = s[sp− 1] ∧ sp′ = sp + 1
ex4 →֒ init0 ex7 sp′ = 0 ∧ lv′0 = s[sp− 1] ∧ sp′′ = sp− 1
ex7 →֒ ex8 h[s[sp− 1]] ∈ {1, 2} ∧ s′[0] = s[sp− 1] ∧ sp′ = 1
ex7 →֒ ε h[s[sp− 1]] 6∈ {1, 2} ∧ e′ = s[sp− 1]
ex8 →֒ ex9 lv′0 = s[sp− 1] ∧ sp′ = sp− 1
ex9 →֒ ex10 s[sp] = lv0 ∧ sp′ = sp + 1
ex10 →֒ ε e′ = s[sp− 1]

finally

As specified in [41], finally blocks are compiled into subroutines inside meth-
ods. Two special bytecode instructions are used: jsr (jump to subroutine)

91

and ret (return from subroutine). The jsr instruction invokes a subroutine,
and pushes the return address—the address of the instruction immediately
following jsr—onto the operand stack. Then, the return address is stored
inside the subroutine into a local variable. At the end of subroutine, ret
fetches the return address from the local variable and transfers the control to
the instruction at the return address. Obviously, this behavior can be mod-
eled by mapping all labels after jsr to unique numbers. These numbers are
used to push into the operand stack when modeling jsr. When translating
ret, we just need to enumerate all these numbers in order to branch to the
right return address.

However, these two bytecode instructions are no longer supported by
Java 6.0 as they will be rejected by its type checking verifier [43]. Somewhat
informally, Sun’s compiler also no longer generate them. Instead, it inlines
the finally code to all possible exit points to guarantee that the code will
always be executed.

For this reason, we will not investigate this issue in any further detail.

Multithreading

If a program involves more than one thread, we instead translate it to a
pushdown network, to which the context-bounded reachability analysis in
Section 3.1.3 can be applied. The set of shared globals obviously contains the
heap and all class instances. Recall, however, that the reachability algorithm
is always initialized with a global configuration consisting of a fixed number
of threads. In Java, programs are started with one thread, and threads can
be dynamically created. For this, we extend the control flow modeling in
Section 4.2.1 with so-called dynamic rules

γ →֒ γ′
� γ′′ ,

which transforms the program point γ to γ′, and forks a new thread starting
with the program point γ′′. We defer the formal definition of dynamic rules
and the extension of the reachability algorithm to Section 4.3.2. For now, we
are only interested in translating bytecode instructions to pushdown networks
with dynamic thread creations.

The translation discussed in the previous section is still applicable in
most cases, except that we need to store more information in the heap for
modeling synchronization. Recall from Section 4.1.1 that each object has a
monitor associated with it. Therefore, the object information in Figure 4.8

92

Instance of a class with n instance fields:

class id
monitor
owner

monitor
counter

field1 · · · fieldn

Array a with length l:

array id
monitor
owner

monitor
counter

array
length (l)

a[0] · · · a[l − 1]

Figure 4.9: Object information for multithreaded programs

needs to be extended to incorporate two pieces of information concerning
monitors—monitor owner and monitor counter. Figure 4.9 shows our design.
We assign to each thread a unique id starting from one. The monitor owner
of an object stores the thread id that currently owns the monitor, and the
number of times the thread acquired the monitor is stored in the monitor
counter. Translations of bytecode instructions listed in the previous section
involving objects must be adjusted to include the fact that sizes of objects
are now increased by two. There are two bytecode instructions that work on
monitors.

Monitorenter Enter or reenter the monitor of the object specified by the
reference on the operand stack. We assume that the variable tid stores the
current thread id. Monitorenter succeeds only if no other thread is currently
holding the monitor.

(h[s[sp− 1] + 1] = tid ∨ h[s[sp− 1] + 2] = 0)
∧ h′[s[sp− 1] + 1] = tid

∧ h′[s[sp− 1] + 2] = h[s[sp− 1] + 2] + 1

Monitorexit Exit the monitor of the object specified by the reference on
the operand stack.

h′[s[sp− 1] + 2] = h[s[sp− 1] + 2] − 1
∧ (h[s[sp− 1] + 2] = 1 ⇒ h′[s[sp− 1] + 1] = 0)

Recall from Section 4.1.1 that there are two approaches to fork a new
thread: either directly create a subclass of Thread or implements the interface

93

Runnable and pass it as an argument when constructing an object of type
Thread. Then, a new thread can be forked by calling the method start. Both
approaches can be handled similarly, so we discuss only the second approach
in the following. Recall also that the bytecode instruction invokevirtual

might start a new thread if the invoked method is the specialized method used
by Java for starting new threads, i.e. the private native method start0() of
the class Thread. We model thread creations similarly to modeling virtual
method invocations by enumerating dynamic rules for all possible candidate
classes that implement the interface Runnable. As specified by Java, for each
enumeration i the starting point mi of the new thread is the run() method
of the corresponding candidate class. Moreover, we employ the fact that the
class instance that implements Runnable is a field of Thread. Assume that
the field has offset 0, and therefore we can write h[s[sp−1]+3+0] to access
it (cf. Fieldload). The class instance is passed as the only argument. With
the convention that the doubly-primed variables refer to the variables of the
new thread, we have

p →֒ n � mi h[h[s[sp− 1] + 3 + 0]] = idi

∧ lv′′0 = h[s[sp− 1] + 3 + 0] ∧ sp′′ = 0
∧ sp′ = sp− 1

Figure 4.10 gives an example of a pushdown network translated from
the bytecode instructions in Figure 4.6. The first four rules allocate two
objects of types Thread and C$1. We assume here that Thread and C$1 have
type 1 and 2, respectively. The Thread object is simplified from the original
Java implementation to contain only one field of type Runnable, which is
the target object where the run method is implemented. The C$1 object is
initialized at offset 8 by a push rule with c0 as the entry point and a reference
to the object as the only argument. Similarly, at offset 11 the Thread object
is initialized with t0 as the entry point, but this time both object references
are passed as the arguments. The reference to C$1 is stored as the the only
field of the Thread object (rules not shown).

The method start (abbreviated with s) is called at offset 14 with s0 as the
entry point. It later forks a new thread at offset 29, which corresponds to a
dynamic rule. Note that, in this case, there is only one class that implements
Runnable, namely C$1, so there is only one dynamic rule. Obviously, the
check whether the instance has type 2 is always true and r0 is always the
entry point of the new thread.

94

f0 →֒ f3 h′[hp] = 1 ∧ s′[sp] = hp

∧ hp′ = hp + 3 + 1 ∧ sp′ = sp + 1
f3 →֒ f4 s′[sp] = s[sp− 1] ∧ sp′ = sp + 1
f4 →֒ f7 h′[hp] = 2 ∧ s′[sp] = hp

∧ hp′ = hp + 3 ∧ sp′ = sp + 1
f7 →֒ f8 s′[sp] = s[sp− 1] ∧ sp′ = sp + 1
f8 →֒ c0 f11 lv′0 = s[sp− 1] ∧ sp′′ = sp− 1
f11 →֒ t0 f14 lv′0 = s[sp− 2] ∧ lv′1 = s[sp− 1] ∧ sp′′ = sp− 2
f14 →֒ s0 f17 lv′0 = s[sp− 1] ∧ sp′ = sp− 1

· · · · · ·
fe →֒ ε
s0 →֒
s28 →֒ s29 s′[sp] = lv0 ∧ sp′ = sp + 1
s29 →֒ s32 � r0 h[h[s[sp− 1] + 3 + 0]] = 2 ∧ sp′′ = 0

∧ lv′′0 = h[s[sp− 1] + 3 + 0] ∧ sp′ = sp− 1
· · · · · ·

Figure 4.10: A pushdown network translated from the code in Figure 4.6

95

4.3 Applying the reachability analyses

We discuss in this section several issues that arise when applying the reach-
ability analyses in Chapter 3 to the translated pushdown models generated
by the translator described in the previous section.

4.3.1 Representing variable relations as semirings

In the previous section, we discussed how Java bytecode instructions are
translated into pushdown rules where weights are relations between variables.
We now focus on how these variable relations are represented in a bounded
idempotent semiring, so that the algorithms in Sections 3.1.1 and 3.1.3—the
reachability algorithms when weights are bounded idempotent semirings—
are applicable.

When describing an expression, several copies of variables are usually
needed, e.g. for sp′ = sp+1, two copies of sp are needed in order to represent
the relation of values of sp before and after the expression. In the following,
we will restrict ourselves only to bounded variables. Notice that by using
strings of Boolean variables it is possible to represent bounded variables of
any types (e.g. integer or pointer).

Assume that bounded globals and locals can be represented by m and n
Boolean variables, respectively. We define globals and locals as

G = {0, 1}m and L = {0, 1}n .

In the following, we present the missing connection between the bounded
idempotent semiring S = (D,⊕,⊗, 0, 1) and variable relations. Recall from
Section 4.2.2 that weights for different types of rules contain different num-
bers of locals, depending on numbers of stack symbols on right-hand sides.
Therefore, to simplify the presentation we proceed by considering first the
case without locals.

Semiring without locals

When only global variables are considered, the weight domain can be defined
as D = 2G×G. The combine operation is simply union with the empty set
as neutral element. That is, given R, S ∈ D, computing T = R ⊕ S means
computing T = R ∪ S. On the other hand, we need to join two elements

96

p0 q0 q1
a(1, 0)

b(x, x)

b(x, x)

p0 q0 q1

p1

qp0,a

a(1, 0)

ε(1, 0)

a(x, x)

ε(x, x)

a(1, 1)

a(x, 1)

b(1, 1)

b(x, 1)

b(x, x)

b(x, x)

Rules:

〈p0, a〉 →֒ 〈p0, ε〉 R(x, x)
〈p0, a〉 →֒ 〈p1, a〉 R(x, 1)
〈p1, a〉 →֒ 〈p0, ab〉 R(1, 1)

Figure 4.11: The weighted automata WA (left) and WApost∗ (right)

R, S ∈ D when computing the extend operation, i.e. T = R ⊗ S is defined
as follows:

T (g, g′′) = ∃g′ ∈ G : R(g, g′) ∧ S(g′, g′′) .

The neutral element of ⊗ is the identity relation IG = {(g, g) | g ∈ G}.

Intuitively, when a weight is used to annotate a rule, it means a relation
(i.e. pairs) of variable valuations before and after the rule is executed. This
idea has been expressed earlier in Section 4.2.2. Similarly, when annotating
automaton transitions, these pairs can be considered as valuations of global
variables of the connected states. Note, however, that the pairs are in re-
versed order of the transitions, i.e. given a transition (q, a, q′) and a pair
(g, g′), the valuation g belongs to the state q′ and vice versa.

Figure 4.11—repeated from Figure 3.1, but with a different semiring—
shows an example of weighted automata when only one global (Boolean)
variable is present, i.e. G = {0, 1}. Every transition is labeled by a symbol
followed by a weight. We write (1, 0) instead of {(1, 0)}, and use x ∈ {0, 1} as
a shorthand, e.g. (x, x) means {(0, 0), (1, 1)} and (x, 1) means {(0, 1), (1, 1)}.
These abbreviations are used similarly for weights of rules.

As an example, consider the configuration 〈p0, abbb〉 accepted by both
automata. On the left automaton WA, 〈p0, abbb〉 is accepted by following

97

the path: p0
a
−→ q0

b
−→ q1

b
−→ q0

b
−→ q1. Thus, its weight is

(x, x) ⊗ (x, x) ⊗ (x, x) ⊗ (1, 0) = (1, 0) ,

which means that the global variable has value 0 in 〈p0, abbb〉. The right
automaton WApost∗ , however, accepts 〈p0, abbb〉 not only through the path

above, but also through: p0
a
−→ qp0,a

b
−→ qp0,a

b
−→ q0

b
−→ q1. This path con-

tributes the weight

(x, x) ⊗ (1, 1) ⊗ (x, 1) ⊗ (x, x) = (1, 1)

to the configuration. Thus, the weight of 〈p0, abbb〉 on the right automaton
is

(1, 0) ⊕ (1, 1) = (1, x) ,

i.e. the global variable can be either 0 or 1.

Semiring with locals

Handling locals is not as easy as handling globals due to the fact that relations
can be of different arities. Table 4.1 gives the first glimpse of such relations,
where the arities depend on numbers of stack symbols on right-hand sides.
That is, while a copy of locals is always needed on the left-hand side, zero,
one, two copies are varyingly required for pop, normal, push and dynamic
rules, respectively. Moreover, given a configuration 〈p, w〉, its weight should
contain a copy of global valuations and |w| copies of local valuations, one for
each element on the configuration stack. (In our context, these copies repre-
sent the current global and local valuations together with local valuations of
all return addresses.)

In short, the number of stack symbols determines the arity of a relation. It
is therefore reasonable to include stack symbols into weights. We call these
stack symbols signatures, or types, of the weights. Formally, the weight
domain D consists of all triples (u, v, R), where u, v ∈ Γ∗ and R ⊆ (G ×
L|u|) × (G × L|v|). We call the pair (u, v) the signature of (u, v, R). For
technical reasons, we also include two special values: ⊤ for undefined value
and 0 for neutral combine element.

The combine operation is the union of relations when the signatures are

98

the same; otherwise ⊤ is returned. Formally,

(u0, u1, R) ⊕ (v0, v1, S) =

{
(u0, u1, R ∪ S)
⊤

if u0 = v0 and u1 = v1

otherwise
⊤⊕ d = d ⊕⊤ = ⊤ for all d ∈ D
0 ⊕ d = d ⊕ 0 = d for all d ∈ D .

The definition of the extend operation is more involved. For l ∈ L, we
use ln in the following to denote the sequence l1, . . . , ln.

(u0, u1, R) ⊗ (v0, v1, S) =

(u0, v1w, T1)
(u0w, v1, T2)
⊤

if u1 = v0w for some w ∈ Γ∗

if v0 = u1w for some w ∈ Γ∗

otherwise
⊤⊗ d = d ⊗⊤ = ⊤ for all d ∈ D and d 6= 0
0 ⊗ d = d ⊗ 0 = 0 for all d ∈ D ,

where

T1(g, l|u0|, g′′, n|v1|, m|w|) = ∃g′, m|v0| : R(g, l|u0|, g′, m|u1|)∧S(g′, m|v0|, g′′, n|v1|)

T2(g, l|u0|, m|w|, g′′, n|v1|) = ∃g′, m|u1| : R(g, l|u0|, g′, m|u1|)∧S(g′, m|v0|, g′′, n|v1|)

The computation of T1 (resp. T2) can be seen as a join of R and S
with respect to the variables that correspond to v0 (resp. u1)—the common
elements of both signatures. The other elements remain unchanged, and
are simply taken to the result. The neutral element 1 can be defined as
(ε, ε, {(g, g) | g ∈ G}).

As an example, assume that the automaton on the right of Figure 4.11
has one global g and one local l. Its weights are partially listed as follows:

l(p0, a, qp0,a) = (a, a, (1, 0, 0, 1))
l(qp0,a, b, q0) = (a, ab, (1, y, 1, 0, 0))

l(q0, b, q1) = (ε, ab, (x, x, y, y)) .

Again, we use x, y ∈ {0, 1} as a shorthand, and write e.g. (1, y, 1, 0, 0) instead
of a more awkward {(1, 0, 1, 0, 0), (1, 1, 1, 0, 0)}. The weight of the configura-
tion 〈p0, abb〉 is therefore

(ε, ab, (x, x, y, y))⊗ (a, ab, (1, y, 1, 0, 0))⊗ (a, a, (1, 0, 0, 1))
= (ε, abb, (1, 1, 0, 0, y))⊗ (a, a, (1, 0, 0, 1))
= (ε, abb, (1, 0, 1, 0, y)) ,

which implies that g has value 0, whereas l is 1, 0, y on the call stack abb,
respectively.

99

4.3.2 Specialized reachability algorithms

We consider in the following some issues that arise when applying the reach-
ability algorithms from Section 3.1 to the area of program testing. Both
Algorithms 3.1 and 3.4 will be specialized for the pushdown models that are
generated by the translator described in Section 4.2.

Quasi-one

We focus in this section on line 12 of Algorithm 3.1 where push rules are
processed and new initial transitions with weight 1—the identity element—
are produced. Observe that these initial transitions are only connected to
transitions created in the same for-loop where weights are computed by l(t)⊗
f(r) (line 13). Therefore, the only purpose that the identity element serves
here is the fact that l(t)⊗f(r)⊗1 = l(t)⊗f(r). Recall in the previous section
that the identity element was defined as (ε, ε, {(g, g) | g ∈ G}). Obviously,
the relation {(g, g) | g ∈ G} may contain redundant pairs, i.e. pairs that are
never used when joining with l(t) ⊗ f(r). This section explains how these
pairs are eliminated and why this is useful.

Given a semiring (D,⊕,⊗, 0, 1) and an element d ∈ D, we call 1d ∈ D a
quasi-one of d if and only if

d ⊗ 1d = d .

Intuitively, a quasi-one acts as the neutral element 1 for a specific element in
the domain without requiring commutativity.

Following from the definition and the fact that all connected transitions
have weights l(t)⊗f(r), we can replace the identity element in the algorithm
with quasi-ones of l(t) ⊗ f(r) without effecting the correctness of the algo-
rithm. If l(t)⊗ f(r) = (β, γ′γ′′, R), its quasi-one can be defined as (γ′, γ′, S),
where

S(g′, l′, g′′, l′′′) = ∃g, l, l′′ : R(g, l, g′, l′, l′′) ∧ g′ = g′′ ∧ l′ = l′′′ .

It is obvious that (β, γ′γ′′, R) ⊗ 1 = (β, γ′γ′′, R) ⊗ (γ′, γ′, S) = (β, γ′γ′′, R).
The benefit of replacing the identity element with quasi-ones is that the

quasi-ones represent global and local valuations when push rules are executed,
i.e. when methods are called. Thus, the weight of an initial transition is
always guaranteed to contain only valid global valuations and local valuations
of the method on top of the stack. This makes it possible to obtain the

100

actual valuations of globals and locals by inspecting only initial transitions.
In the original algorithm (without quasi-ones) one must perform the extend
operations on all transitions reachable from the initial transition to the final
states in order to get the valid global and local valuations.

Dynamic thread creation

Recall that in Section 3.1.3, the reachability algorithm for pushdown net-
works (Algorithm 3.4) is initialized with a global configuration consisting of
n threads. The algorithm makes use of the reachability algorithm for push-
down systems (Algorithm 3.1), where each thread is locally saturated without
dynamic rules. However, to resemble many typical programming languages,
including Java, it is more natural to start an analysis with a single main
thread, and new threads can be constructed later during the analysis. The
translator in Section 4.2 already produces dynamic rules when the bytecode
instruction that forks new threads is encountered. The aim of this section is
to give the formal definition of dynamic rules and extend the algorithms to
support them.

We slightly modify the definition of pushdown networks in Section 2.2.3
to include dynamic rules. We no longer define a set of rules for each thread,
but only a single set of rules that are shared among threads. Formally, a
pushdown network is a triple N = (G, Γ, ∆), where ∆ is extended with rules
of the form

〈g, γ〉 →֒ 〈g′, γ′〉 � γ′′ ,

where g, g′ ∈ G and γ, γ′, γ′′ ∈ Γ. Intuitively, the rule means that if the
system’s current global is g and a process has γ as the top-of-stack element,
then the system can update the global to g′, replace γ with γ′, and create a
new process with γ′′ as the only symbol on the stack. A weighted pushdown
network is similarly modified: WN = (N ,S, f), where N = (G, Γ, ∆) is
a pushdown network, S = (D,⊕,⊗, 0, 1) is a semiring, and f : ∆ → D
is a function that assigns a weight from D to each rule in ∆. The global
reachability relation between global configurations is extended for dynamic

rules, i.e. if 〈g, γ〉
a
−֒→ 〈g′, γ′〉 � γ′′ ∈ ∆, then:

〈g, w1, . . . , γwi, . . . , wn〉
a
=⇒ 〈g′, w1, . . . , γ

′wi, . . . , wn, γ′′〉 ,

where wi ∈ Γ∗ for all i ∈ [n]. Notice that the number of processes is in-
creased by one on the right-hand configuration. However, as discussed in

101

Section 4.3.1, the relations between globals are not explicitly encoded in
rules but implicitly represented in weights. Therefore, rules are only listed
by their relations between stack symbols (cf. Section 4.2.1), e.g. γ →֒ γ′

�γ′′.

What remains is to define weights for dynamic rules. Comparing to Ta-
ble 4.1, a dynamic rule γ →֒ γ′

� γ′′ should obviously have a relation of the
form G×L×G×L×L. However, to conform to the semiring representation
in Section 4.3.1, we need to introduce for every rule γ →֒ γ′

�γ′′ a new stack
symbol β ′ and split it into two rules:

γ →֒ β ′
� γ′′ (γ, γ′′, R(g, l, g′′, l′′))

β ′ →֒ γ′ (γ, γ′, S(g, l, g′, l′)) ,

in which the first rule defines the relation R for the new thread, whereas the
second rule gives the relation S for the current thread.

We now extend Algorithm 3.1 to handle dynamic rules when locally satu-
rating a thread. We assume without loss of generality that the initial automa-
ton that represents configurations of the main thread has one final state qf .
Moreover, we say that p is the only control location (cf. Section 4.2.1), and
therefore the only initial state in the automaton. Let i′ be the thread un-
der consideration, i.e. the automaton WAi′ = ((Qi′ , Γ, δi′, p, qf),S, li′) is
currently being saturated. We insert the following snippet after line 15 of
Algorithm 3.1 (assuming that variables j, i, and worklist of Algorithm 3.4
are accessible).

forall r = γ →֒ β ′
� γ′′ ∈ ∆ and |T | < n do16

create new WAi′ and WA′ (see text for definitions);17

add (j, i, (T,WA′)[WAi′ → WAi′]) to worklist;18

The loop guard checks whether the size of the view tuple T is less than
the threshold n. If true, two new automata WAi′ and WA′ are constructed.
The automaton WAi′ represents configurations of the thread i′ after creating
the new thread. Formally, WAi′ = ((Qi′ , Γ, δi′, p, qf),S, li′), where

δi′ = {(p, β ′, q)} ∪ {t′ ∈ δi′ | t′ reachable from q}

and

li′(t) =

li′(p, γ, q) if t = (p, β ′, q)
li′(t) if t ∈ {t′ ∈ δi′ | t′ reachable from q}
0 otherwise.

102

The weight of the new transition (p, β ′, q) is defined as a copy of the weight
of the transition (p, γ, q). Therefore, the desired result, i.e. the weight after
the new thread is forked, will be obtained at a later stage when processing
(p, β ′, q) with the rule β ′ →֒ γ′.

On the other hand, the automaton WA′ represents the configuration of the
new thread. Formally, WA′ = (({p, qf}, Γ, {(p, γ′′, qf)}, p, qf),S, l′), where

l′(p, γ′′, qf) = li′(t) ⊗ f(r) .

At line 18 we create a new view tuple (T,WA′)[WAi′ → WAi′] as a concate-
nation of T with WA′ and replacing WAi′ with WAi′. The new tuple is then
added to worklist (of Algorithm 3.4) for future processing.

Eager splitting

We focus in this part on the split function in Algorithm 3.4. Recall that by
using quasi-ones one can determine global valuations directly from weights
of initial transitions. Thus, in eager splitting the function split only needs
to take initial transitions into account, and splits on every possible global
valuation in G′(g′) =

⋃

t∈δi′
{∃l, g, l′ : R(g, l, g′, l′) | li′(t) = (γ, γ′, R)}.

split i′(T) = {Ti′,g′ | g′ ∈ G′(g′)}, where

Ti′,g′ = T [WAi′ → WAi′,g′] .

The new view tuple Ti′,g′ is a copy of T with the i′-th view WAi′ = (Ai′,S, li′)
replaced by WAi′,g′ = (Ai′,S, li′,g′). The configurations accepted by WAi′,g′

are the configurations with global valuation g′ that are accepted WAi′. For-
mally, for each t ∈ δi′ , we define the function

li′,g′(t) =

{
li′(t) ∧ g′ if t is initial
li′(t) otherwise.

Lazy splitting

Recall that in Section 3.1.3 we make use of the updated relation U ′
i′(x, y)

when computing the confluence relation Ci′(x, y) after analyzing a local
reachability for thread i′. The relation U ′

i′(x, y) defines the set of pairs of
global valuations before and after the thread was active, hence the name
“updated”. As explained earlier, the pairs can be obtained by introducing

103

another copy of globals. For this purpose, we extend the weight domain to
include it, i.e. the weight domain now contains (u, v, R), where u, v ∈ Γ∗ and
R ⊆ (G × G × L|u|) × (G × G × L|v|). In contrast to the first copy, which
stores the current global valuations, the second copy is used for memorizing
the global valuations that the thread had when it became active.

We have the updated relation,

U ′
i′(g

′
0, g

′
1) =

⋃

t∈δi′

{∃g0, g1, l, l
′ : R(g0, g1, l, g

′
0, g

′
1, l

′) | li′(t) = (γ, γ′, R)} ,

to which Algorithm 3.5 can be directly applied for computing equivalence
classes G1, . . . , Gm. The split function becomes

split i′(T) = {Ti′,Gj
| Gj ∈ {G1, . . . , Gm}}, where

Ti′,Gj
= (WA1,Gj

, . . . ,WA|T |,Gj
) .

For all k ∈ [|T |], the automaton WAk,Gj
is a copy of the k-th view of

T , but with their global valuations updated by thread i′. Let WAk =
((Qk, Γ, δk, p, qf),S, lk) be the k-th view of T and U ′

i′,Gj
(g′

0, g
′
1) = U ′

i′(g
′
0, g

′
1)∧

Gj(g
′
0) be the updated relation with g′

0 restricted to Gj . We have

WAk,Gj
= ((Qk, Γ, δk, p, qf),S, lk,Gj

), and

lk,Gj
(t) = (u, v, R′) for all t ∈ δk and lk(t) = (u, v, R) ,

where

R′ = (∃g′
0 : (∃g′

1 : R(g0, g1, l
|u|, g′

0, g
′
1, m

|v|)) ∧ U ′
i′,Gj

(g′
0, g

′
1)) ∧ g′

0 = g′
1 .

Note that since the new copy of globals never change its valuations during
the course of computing local reachability, the translator in Section 4.2 can
be applied here without any modifications.

4.3.3 Counterexample extraction

Recall that given a Java method and a range of values to be tested, the
translator in Section 4.2 produces a wrapper which calls the method with
nondeterministic values inside the range. A reachability analysis (with Algo-
rithm 3.1) always starts from the wrapper as the only method on the stack,
i.e. the initial automaton WA accepts exactly one configuration 〈p, w0〉, where

104

w0 is entry point of the wrapper. We say that a stack symbol (or, equiva-
lently, a program point) γ is reachable, if it is possible reach a configuration
with γ as the top symbol on the stack, i.e. 〈p, γw〉 is reachable from 〈p, w0〉 for
some w ∈ Γ∗. The fact that γ is reachable is immediately known during the
analysis when a transition (p, γ, q) is added to WApost∗ for some q. However,
it is unknown that how γ is reached. The aim of this section is to find an
answer to this question.

In [51], an approach that constructs witness graphs during performing
reachability analyses was presented. Basically, it keeps extra information
“how transitions were added”, and therefore can answer precisely how a
configuration can be reached. We propose here another technique which
extracts method arguments that the wrapper passed to the method under
test (in order to reach a program point) from weights of transitions, i.e. from
the information we already have. An obvious drawback of our approach is
that it cannot directly generate any execution traces. We believe, however,
that these traces can be easily obtained by using a debugging tool together
with the extracted method arguments. Comparing to [51], our approach
is simpler and requires no modifications of the post∗ algorithm. Also, our
approach requires much less memory as we extract the method arguments
only when needed; unlike [51] where the witness graphs always need to be
constructed.

Let us fix a weighted automaton returned by Algorithm 3.1 WApost∗ =
(Apost∗ ,S, l), where Apost∗ = (Q, Γ, δ, p, qf). Moreover, let t be a transition
such that l(t) = (a, w, R(g, l, g′, m|w|)) for some a ∈ Γ, w ∈ Γ∗. We define the
witness of t to be the relation d(g, l) = ∃g′, m|w| : R(g, l, g′, m|w|). Because
of the way the weight is defined, it can be readily seen that the witness of
t is the variable relation when the method that corresponds to t was called.
Therefore, if t = (p, γ, q) and there exists a transition from q to qf , i.e. γ
belongs to the method invoked by the wrapper, then the witness of t obviously
contains method arguments that make γ reachable. Clearly, we also have to
consider all paths from q to qf (since they also make γ reachable). For this,
we need to join the witness and the weights of the connected transitions
together until reaching the final state.

Algorithm 4.1 realizes the idea above. The algorithm starts by initializing
workset to the set of states that are connected to p. Then, it repeatedly
removes a state from workset , finds adjacent states, and puts them into
workset if their d-value changes. The function d : Q → G × L implements
the idea of witnesses, i.e. it maps “middle states” involved in reaching γ

105

Input: Weighted automaton WApost∗ = (Apost∗ ,S, l), where
Apost∗ = (Q, Γ, δ, p, qf), and γ ∈ Γ.

Output: The method arguments that lead to γ.

workset := {q | (p, γ, q) ∈ δ}; d := λq.∅;1

forall t = (p, γ, q) ∈ workset, where l(t) = (a, γ, R) do2

d(q) := ∃g′, l′ : R(g, l, g′, l′);3

while workset 6= ∅ do4

remove q from workset ;5

forall t = (q, a, q′) ∈ δ, where l(t) = (b, ac, R) do6

if q′ 6= qf then7

v := d(q′) ∨ ∃g′, l′, l′′ : (R(g, l, g′, l′, l′′) ∧ d(q)(g′, l′));8

if v 6= d(q′) then9

d(q′) := v;10

add q′ to workset ;11

return
∨

(q,a,qf)∈δ d(q);12

Algorithm 4.1: A counterexample generation algorithm

into variable valuations that can be used to reach γ from that states. For
t = (p, γ, q) ∈ δ, d(q) is initialized to the arguments of the method of γ;
formally d(q)(g, l) = ∃g′, l′ : R(g, l, g′, l′) such that l(t) = (a, γ, R) for some
a ∈ Γ; otherwise, it is initialized to 0.

After removing a state q from the workset , the algorithm looks for all
adjacent states q′ (line 6). d(q) already represents some method arguments
if the method of γ was called when there is only one method on the call
stack, i.e. when q′ = qf . Otherwise, we consider the transition t = (q, a, q′),
and update the value of d(q′) at line 8 by joining R(g, l, g′, l′, l′′) such that
l(t) = (b, ac, R) with d(q)(g′, l′) before abstracting g′, l′, l′′ away. The state q′

is added to workset if d(q′) is changed.
After workset is empty, the disjunction of d(q) for all states q that corre-

sponds to the call by the wrapper is returned.

A toy example

We demonstrate in this section the whole procedure of applying the reacha-
bility analyses in Chapter 3 to Java programs with a toy example. Consider

106

the following method m:

static void m(int x) {

if (x != 0) m(x + 2);

return;

}

The method m has one parameter x and simply recursively calls itself with
the argument x + 2 if x is not equal to zero. Taking modulo arithmetic
into account, one can see that m only returns when x is an even number;
The method is compiled into a class file containing the following bytecode
instructions:

m(I)V

0: iload_0

1: ifeq 10

4: iload_0

5: iconst_2

6: iadd

7: invokestatic m(I)V

10: return

The parameter x is represented by local variable 0. The first instruction
pushes local variable 0 onto the operand stack. The second instruction (offset
1) pops the operand stack and compares it with zero. If true, the execution
jumps to offset 10 and returns; otherwise it continues to the next instruction.
The next instruction (offset 4) again pushes local variable 0. The instruction
at offset 5 pushes a constant 2. The instruction iadd pops two elements from
the operand stack, adds them, and pushes the result back. At offset 7, the
method m is recursively called with the value on the operand stack as the
argument.

We now translate the bytecode instructions into a weighted pushdown
system. It can be seen that the method uses one local variable and two stack
elements. As described in Section 4.2.3, we declare correspondingly four vari-
ables: local variable 0 (lv0), stack pointer (sp), and two stack elements (s[0]
and s[1]). The translation is straightforward as one instruction is translated
into one pushdown rule (except the ifeq instruction) with a weight modeling
the behavior of the instruction. The following weighted rules describe the

107

resulting pushdown system for method m (with the default control location
p omitted).

m0 →֒ m1 s′[sp] = lv0 ∧ sp′ = sp + 1
m1 →֒ m10 s[sp− 1] = 0 ∧ sp′ = sp− 1
m1 →֒ m4 s[sp− 1] 6= 0 ∧ sp′ = sp− 1
m4 →֒ m5 s′[sp] = lv0 ∧ sp′ = sp + 1
m5 →֒ m6 s′[sp] = 2 ∧ sp′ = sp + 1
m6 →֒ m7 s′[sp− 2] = s[sp− 2] + s[sp− 1] ∧ sp′ = sp− 1
m7 →֒ m0 m10 lv′0 = s[sp− 1] ∧ sp′ = 0 ∧ sp′′ = sp− 1
m10 →֒ ε

To test the method m, we assume that every variable has two bits, i.e.
by using a two’s-complement system, its value can only be inside the range
[−2, 1] We construct a wrapper that calls m with all possible values inside the
range.

w0 →֒ w1 −2 ≤ s[sp] ≤ 1 ∧ sp′ = sp + 1
w1 →֒ m0 w2 lv′0 = s[sp− 1] ∧ sp′ = 0 ∧ sp′′ = sp− 1

We have now defined the weighted pushdown system WP = (P,S, f), where
P = ({p}, Γ, ∆) such that Γ, ∆, and f are implicitly defined above.

Next, we define the weight domain D of the semiring S = (D,⊕,⊗, 0, 1).
See Section 4.3.1 for the definitions of ⊕, ⊗, 0, and 1. With four variables,
each has two bits, we have L = {0, 1}8. We define the following meanings to
words in L: the first two bits are for local variable 0, followed by two bits for
the stack pointer, and two bits for each stack element 0 and 1, respectively.
Let I = {−2,−1, 0, 1} be the set of all possible values. In the following, we
informally use a quintuple to represent a subset of L, and liberally mix I and
variables as a shorthand. For instance, given a variable a that can take any
value inside the range, the tuple (a, 1, a, I) represents {a01ab | a, b ∈ {0, 1}2}.
Similarly, a concatenation of tuples represents a relation over L.

We now define the weighted automaton WA = (A,S, l0), where A =
({p, q}, Γ, δ0, {p}, {q}). The set δ0 contains only one transition (p, w0, q) with
weight (ε, w0, (0, 0, I, I)). Therefore, L(WA) = {〈p, w0〉}. In other words,
this means that we start the analysis at the wrapper method, where its local
variable 0 and the stack pointer are set to zero. The stack contents are not
initialized.

What remains is to apply Algorithm 3.1 to WP and WA. This pro-
duces WApost∗ = (Apost∗ ,S, l), where A = (Q, Γ, δ, {p}, {q}). Because of the

108

push rules, we have the Q = Q0 ∪ {qp,m0
}. The set of transitions δ and the

weight function l are first initialized to δ0 and l0, respectively. Then, the
algorithm sequentially adds new transitions and their corresponding weights
as described in Table 4.3.

Notice that at step 2, the weight of transition (p, m0, qp,m0
) is the quasi-one

of the weight of (qp,m0 , w2, q). At step 10, however, the weight of transition
(p, m0, qp,m0

) is not modified (thus no need to consider the transition again
in the algorithm), because it already includes the quasi-one of the weight of
(qp,m0

, m10, qp,m0
). Also, because of the use of the quasi-ones, one can inspect

the weight of (p, m10, qp,m0) (step 11) and conclude that the valuations of local
variable 0 at m10 are either 0 or −2 for all configurations having m10 on top of
the stack. Recall that m10 corresponds to the return statement in the Java
version of method m. This means the return statement is only reachable
when the parameter x is either 0 or −2, i.e. the even numbers inside the
range.

Notice also that although the method under test does not terminate with
certain argument values, our analysis always terminates, and is able to find
out the argument values that make the method terminates.

109

Transitions Extended with Results
1 (p, w0, q) w0 →֒ w1 (p, w1, q) (ε, w1, (0, 1, a, I))
2 (p, w1, q) w1 →֒ m0 w2 (qp,m0 , w2, q) (ε, m0w2, (a, 0, b, c)(0, 0, a, I))

(p, m0, qp,m0) (m0, m0, (a, 0, b, c)(a, 0, b, c))
3 (p, m0, qp,m0) m0 →֒ m1 (p, m1, qp,m0) (m0, m1, (a, 0, b, c)(a, 1, a, c))
4 (p, m1, qp,m0) m1 →֒ m10 (p, m10, qp,m0

) (m0, m10, (0, 0, b, c)(0, 0, 0, c))
m1 →֒ m4 (p, m4, qp,m0) (m0, m4, (u, 0, b, c)(u, 0, u, c))

5 (p, m10, qp,m0
) m10 →֒ ε (p, ε, qp,m0) (m0, ε, (0, 0, b, c))

6 (qp,m0
, w2, q) (p, ε, qp,m0) (p, w2, q) (ε, w2, (0, 0, 0, I))

7 (p, m4, qp,m0) m4 →֒ m5 (p, m5, qp,m0) (m0, m5, (u, 0, b, c)(u, 1, u, c))
8 (p, m5, qp,m0) m5 →֒ m6 (p, m6, qp,m0) (m0, m6, (u, 0, b, c)(u, 2, u, 2))
9 (p, m6, qp,m0) m6 →֒ m7 (p, m7, qp,m0) (m0, m7, (u, 0, b, c)(u, 1, u + 2, 2))

10 (p, m7, qp,m0) m7 →֒ m0 m10 (qp,m0 , m10, qp,m0) (m0, m0m10, (u, 0, b, c)(u + 2, 0, d, e)(u, 0, u + 2, 2))
11 (qp,m0

, m10, qp,m0) (p, ε, qp,m0) (p, m10, qp,m0
) (m0, m10, (−2, 0, b, c)(−2, 0, 0, 2))

⊕ (m0, m10, (0, 0, b, c)(0, 0, 0, c))
12 (p, m10, qp,m0

) m10 →֒ ε (p, ε, qp,m0) (m0, ε, ({−2, 0}, 0, b, c))
13 (qp,m0

, w2, q) (p, ε, qp,m0) (p, w2, q) (ε, w2, (0, 0, {−2, 0}, I))

Table 4.3: Computational steps. Variables can take any values from I, except u, which must be nonzero.

11
0

Chapter 5

Experiments with jMoped

This chapter presents a tool named jMoped, which implements the reachabil-
ity algorithms and the translator discussed in Section 3.1 and 4.2, and reports
on experimental results. jMoped is an Eclipse plug-in which enables Java de-
velopers to easily test their programs without knowing the model-checking
techniques behind it. Figure 5.1 shows a screenshot when running with a
quicksort implementation taken from [46]. The left-hand side is the plug-in
interface. The right-hand side shows the code and the analysis results. To
test a program, users simply select a method where the analysis should start.
In the example, the method test starting at line 48 was chosen.

One can think of jMoped as a virtual machine that can execute the code
for all possible parameter values (within given bounds) in a single run, in
contrast to the Java virtual machine which always executes the program
with a concrete value. During the analysis, jMoped graphically displays its
progress. First, black markers are placed in front of all statements that are
statically reachable from the selected method. While the checker is running,
the parts of the state space found to be reachable are mapped back to the
Java program, and the appearance of the corresponding markers is changed.
When a black marker turns green, it means that the corresponding Java
statement is reachable from some argument values. A red marker means
that an assertion statement has been violated by some argument values.
Other markers indicate null pointer exceptions, array bound violations, and
heap overflows. See the tool’s website [34] for more information.

If an assertion is violated, users can generate all argument values that
violate the assertion. JUnit test cases can also be generated for future testing.
An example of the argument values can be seen in lower left part of Figure 5.1,

111

Figure 5.1: A view of the plug-in.

112

where the assertion was violated when the method sort was called with the
arrays [1,0,0] and [1,0,1], i.e. the quicksort implementation does not
sort these two arrays correctly. The assertion makes use of the method
Utils.isSorted(array), which returns true if the array is sorted, or false
otherwise. Its code is not shown here.

There are two important parameters to jMoped required from users when
testing a sequential program—the number of bits of the program variables
and the heap size. Section 4.2 discusses the meanings of these two param-
eters in great detail. However, as users it suffices to know the following:
The number of bits restricts the range of every number that appears in the
program, i.e. with b bits, every integer must be in the range [−2b−1, 2b−1 − 1]
(with an exception when b = 1, the range is [0, 1]). This includes for in-
stance constants, integer variables, and array lengths. Like in Java, jMoped
implements modulo arithmetic, and therefore it is possible to obtain e.g. a
negative number by adding two positive numbers. The heap size directly
affects the number of objects that can be instantiated. jMoped simulates the
heap when manipulating objects, i.e. when an object is created, it occupies a
part of the heap whose size depends on the size of the object. The size of an
object, on the other hand, depends on the number of instance fields it has.
The analysis in Figure 5.1 was performed with 3 bits and heap size 7. It is
also possible to specify numbers of bits for individual variables, parameters,
or fields by using annotations. The annotations at lines 46–47 in Figure 5.1
indicate that the length of array is three, and each of its element has one
bit, i.e. elements can only be either 0 or 1.

Given an argument range of a test method, one might argue that it is also
possible to test the method simply by executing the test method for each
possible argument value consecutively. This feature is also implemented in
jMoped. The idea is that the translator will generate a wrapper (cf. Sec-
tion 4.2.3) that repeatedly calls the test method with different argument
values inside the range. Then, the translated pushdown model will be ex-
ecuted by a virtual machine in a similar way to the Java virtual machine
executing bytecode instructions. Users can turn this mode on by checking
the box “Execute Remopla” in the plug-in. (Remopla is the name of the
language that we use for representing pushdown systems.)

Two more parameters are involved when testing multithreaded programs:
thread bound and context bound. The thread bound limits the number threads
in the program. No new threads are forked when the bound is reached. The
context bound limits the number times threads can become active. Context

113

bound k indicates that threads can be active at most k times, i.e. they can
communicate at most k − 1 times. See Section 3.1.3 and 4.3.2 for detailed
discussions.

For more details of the tool, see [34]. This chapter reports on experimental
results with several examples. All experiments were performed on an AMD
3GHz machine with 64GB memory.

5.1 BDDs vs. bit vectors

In Section 4.3.1, we discussed a representation of variable relations as semi-
rings. We, however, did not specify any concrete data structure that can be
used to store these relations. This section focuses on this issue, and discusses
advantages and disadvantages of different data structures.

jMoped has two implementations for variable relations: bit vectors and
BDDs. As the name suggests, in bit vectors a relation is explicitly stored as a
set of sequences of numbers. Sets are implemented by using a hash function
to ensure that same sequences are kept only once. Operations on relations
such as composition involve considering each element in the relations one-
by-one. In contrast, with BDDs (see Section 2.3) we try to reduce space and
time required for storing and performing operations on relations. jMoped
uses the JavaBDD library [61] for manipulating BDDs. JavaBDD includes
a pure Java implementation as well as interfaces to several C libraries. All
experiments in this thesis were performed with the interface to the CUDD
library [55].

The method test1 in Figure 5.2 exemplifies the first difference between
the two implementations. When analyzing the method with jMoped, it first
constructs a wrapper method, which calls test1 with x having all possible
values within the range [−512, 511], if the number of bits is set to 10. Clearly,
with bit vectors all 1024 values must be explicitly stored using 1024 vectors,
and each of them must be explicitly updated each time y is increased in the
loop. The loop is repeated 100 times, so 102400 vectors must be updated in
total. jMoped needs 304.2 seconds to test the method in this case. On the
other hand, when using BDDs we hope for a more compact data structure,
on which operations can be performed more efficiently. Here, all 1024 values
can be represented in a single BDD. Operations are much cheaper as a result,
and jMoped only requires 7.2 seconds in this case.

Nevertheless, BDDs are not a silver bullet for all types of relations. Notice

114

public class O {

public static void test1(int x) {

int y = x;

for (int i = 0; i < 100; i++)

y++;

assert(x + 100 == y);

}

int x;

public O(int x) {

this.x = x;

}

public static void test2() {

O o = null;

for (int i = 0; i < 100; i++)

o = new O(i);

assert(o.x == 99);

}

}

Figure 5.2: Two test methods for comparing bit vectors with BDDs.

115

that the method test1 does not make use of the heap. We experienced slow-
downs with BDDs when heaps are large. Consider for instance the method
test2 in Figure 5.2, which repeatedly allocates 100 objects of type O into
the heap. The heap is initially empty, and contains one more object each
time the loop is executed. Therefore, when analyzing the method the vari-
able relation of the statement inside the loop must represent the union of
the empty heap, the heap with one object, the heap with two objects, and so
on. The corresponding BDD becomes much more complex than the explicit
representation with bit vectors. In the experiment, more than 215000 BDD
nodes are required for the relation inside the loop when variables have 10
bits. jMoped requires 122.8 seconds to test the method with BDDs, but only
needs 2.5 seconds with bit vectors.

To summarize from experience, BDDs tend to perform better when testing
ranges are large. This makes enumerating all possible valuations with bit
vectors becomes too slow or even impossible. BDDs benefit from the fact
that they can “compress” those valuations into smaller representations, on
which operations can be performed efficiently. On the other hand, heap
manipulations are more expensive on BDDs. The difference on this issue
becomes more visible when programs under test require large amounts of
heaps, or repeatedly modify heaps, e.g. in loops.

5.2 Quicksort

Quicksort is a sorting algorithm based on the divide-and-conquer paradigm.
Given an array to be sorted, the algorithm takes the following steps:

1. An element of the array is picked as the pivot.

2. The array is reordered such that all elements less than or equal to pivot
are moved to the left of pivot. The elements that are greater than pivot
are moved to the right.

3. The array is divided at the pivot, and the two sub-arrays are solved
recursively.

We consider in this section two different versions of quicksort implementa-
tions. In both implementations, given an array of integer values, the returned
array should be sorted in nondescending order. We use jMoped to test this
property with various array lengths, and report on experimental results. All

116

experiments were performed in the BDD mode. The reason is justified, since
the bit-vector mode tends to be slower when testing ranges are large, i.e. when
arrays under test contains nontrivial numbers of elements. See Section 5.1
for discussions on this issue.

5.2.1 Version 1

The first version, taken from [46], is shown in Figure 5.3. The method sort is
supposed to sort the array a from the index lo0 to hi0. We use the following
method to test whether, given an array a, a is always correctly sorted after
the method returns.

static void test(int a[]) {

sort(a, 0, a.length - 1);

assert(isSorted(a));

}

When analyzed with jMoped, the test method is wrapped by a new method
that creates the array a with nondeterministic values (within a given range).
The wrapper then calls the test method with a as the argument. We ensure
that a is correctly sorted after the call to sort by inserting an assertion
statement in the test method. The method isSorted(a) (code not shown)
returns true if a is sorted, or false otherwise.

The first half of Table 5.1 shows experimental results: time and numbers
of BDD nodes required, when running jMoped on the test method with dif-
ferent array lengths. We assume in all experiments that every array element
has only one bit, i.e. its value can be either 0 or 1. jMoped found assertion
violations when the array lengths are greater than two, which indicates that
there are some arrays that are not correctly sorted. Table 5.1 also lists the
numbers of such arrays.

Notice that until now what jMoped does is simply test the method with all
possible arrays of given lengths. Obviously, one can argue that the same effect
can be achieved by running the test method one by one for each possible array.
For this, we use the option “Execute Remopla” to execute the underlying
pushdown system for each array. The experimental results are listed with
the label “Exec. time” in Table 5.1. One can see that the execution time
rapidly worsens when array lengths grow.

It is well known that quicksort can take quadratic time when pivots are
poorly selected, resulting in partitions that are extremely unequal. A safe so-

117

static void sort(int a[], int lo0, int hi0) {

int lo = lo0;

int hi = hi0;

if (lo >= hi) {

return;

}

int mid = a[(lo + hi) / 2];

while (lo < hi) {

while (lo<hi && a[lo] < mid) {

lo++;

}

while (lo<hi && a[hi] >= mid) {

hi--;

}

if (lo < hi) {

int T = a[lo];

a[lo] = a[hi];

a[hi] = T;

}

}

if (hi < lo) {

int T = hi;

hi = lo;

lo = T;

}

sort(a, lo0, lo);

sort(a, lo == lo0 ? lo+1 : lo, hi0);

}

Figure 5.3: Quicksort version 1

118

Lengths 3 6 9 12 15 18

O
ri

gi
n
al Time (s) 0.9 1.1 3.5 11.3 36.3 159.2

Nodes (×106) 0.03 0.2 0.5 1.2 2.8 7.5
Unsorted 2 20 216 1456 14032 93600
Exec. time (s) 0.7 0.9 1.2 9.8 93.4 973.3

R
an

d
om

Time (s) 0.9 1.5 7.5 63.5 525.8 4136.7
Nodes (×106) 0.03 0.3 1.0 4.6 18.8 105.4
Unsorted 4 57 502 4083 32752 262125
Exec. time (s) 1.0 1.0 1.3 9.7 94.9 1036.3
Unsorted 2 18 150 1311 10525 85318

(50%) (32%) (30%) (32%) (32%) (33%)

Table 5.1: Experimental results: quicksort version 1

lution is to pick pivots randomly, and relies on the unlikeliness that random
pivots would consistently lead to poor partitions. Notice that the imple-
mentation in Figure 5.1 always picks the pivots in the middle of arrays. In
the following, we consider an alternative version by modifying the code in
Figure 5.1 so that mid is randomly selected from a (between lo and hi).

Nevertheless, adding randomness to an algorithm makes it more difficult
to test, because it is no longer possible to simply enumerate all possible input
arguments to ensure the correctness. In our example, picking some pivots
will not correctly sort an array, while some other pivots will do. As a result,
we might end up with successful tests just because pivots we picked correctly
sort the arrays under test. To cope with the problem, jMoped models the
random function as a function that always returns a nondeterministic value.
Therefore, when no errors can be found with jMoped, one is certain that the
algorithm always works correctly for any random values.

We reran the experiments again, but this time with random pivots. The
results are shown in the second half of Table 5.1. One can see that, compared
to the original version, more time is required for the same array lengths as
more degrees of nondeterminism are involved. Again, we compare the results
with the time required to execute the underlying pushdown system. The
execution time remains mostly unchanged when comparing to the time for
the original version. However, only parts of assertion violations were found.
We ran each experiment three times and computed the average numbers of
unsorted arrays. The numbers in parentheses are percentages of errors found

119

compared to the total numbers of errors.

5.2.2 Version 2

Figure 5.4 lists another version of quicksort, taken from [60] with a slight
modification. It sorts the array a from index left to index right. This im-
plementation is carefully optimized in many aspects. It calls insertionsort,
another sorting algorithm (code not shown), when the array to be sorted is
small enough, i.e. when the difference between right and left is less than
or equal to a predefined constant CUTOFF.

Pivots are selected by calls to the method median3. Given an array a

and indices left and right, the method median3 works as follows: (i) it
compares the elements of a at left, right, and center = (left+right)/2
before putting the least element to a[left], the median to a[center], and
the largest element to a[right]; (ii) as another side effect, the median is
swapped with the second last element, i.e. the array elements a[center]

and a[right− 1] are swapped; and (iii) the median is returned as the pivot.
The benefit of implementing median3 this way is twofold. First, the

partitioning can start at i = left+1 and j = right−2 because the elements
at left and right are already in their proper partitions. Moreover, since
a[left] is smaller than the pivot, j will never run past the end, thus saving
a check for the array bound. The same applies to i, since the partitioning
stops on elements larger than or equal to the pivot, so it always stops at
right− 1.

We use jMoped to test the method sort in a similar way to the previous
experiment such that we call sort with arrays of various lengths, and test
whether the returned arrays are correctly sorted. The constant CUTOFF is set
to 3. The time and number of BDD nodes required for each array length are
listed Table 5.2. Again, all array elements are limited to one bit, i.e. their
values can be either 0 or 1. No errors were found.

For comparisons, Table 5.2 also includes execution time where the method
sort is tested one by one for each array within a given range. One can see
that the execution time increases rapidly as array lengths grow, and it takes
more than two hours when the array under test is of length 24.

As pointed out in [60], it is tempting to change the initializations of i

and j and the inner loops to the following:

int i = left + 1; j = right - 2;

120

private static int median3(int[] a, int left, int right) {

int center = (left + right)/2;

if (a[center] < a[left]) swap(a, center, left);

if (a[right] < a[left]) swap(a, right, left);

if (a[right] < a[center]) swap(a, right, center);

swap(a, center, right - 1); // Pivot at right - 1

return a[right - 1];

}

static void sort(int[] a, int left, int right) {

if (left + CUTOFF >= right) {

insertionsort(a, left, right);

return;

}

int pivot = median3(a, left, right);

int i = left, j = right - 1;

while (true) {

while (a[++i] < pivot) {}

while (a[--j] > pivot) {}

if (i < j) swap(a, i, j);

else break;

}

swap(a, i, right - 1); // Restores pivot

sort(a, left, i - 1);

sort(a, i + 1, right);

}

Figure 5.4: Quicksort version 2

Lengths 3 6 9 12 15 18 21 24
Time (s) 0.8 1.1 4.0 19.5 98.1 397.9 1220.7 8402.3
Nodes (×106) 0.02 0.2 0.7 2.4 8.7 31.4 116.7 479.4
Exec. time (s) 0.8 1.5 1.7 8.1 74.8 731.1 6492.3 timeout

Table 5.2: Experimental results: quicksort version 2

121

while (true) {

while (a[i] < pivot) i++;

while (a[j] > pivot) j--;

if (i < j) swap(a, i, j);

else break;

}

However, the modification not work because of the infinite loop when a[i]

and a[j] are equal to pivot. We reran the analyses again with the buggy
code for each array length listed in Table 5.2. jMoped was able to find
out almost immediately that the method sort never return with any arrays
having lengths not less than 9, and only half of the possible arrays with length
6 are sorted correctly, whereas the other half are stuck inside the loop.

Notice that classical testing is not applicable here because of the infinite
loop. The experiment exemplifies another use of jMoped in that it always
terminates even when the code under test does not. In this respect, jMoped
is more beneficial than classical testing when it is not possible to differentiate
between programs that are not terminate from others that simply take long
time. This error can be captured with jMoped by comparing the numbers
of possible argument values before and after a call to method under test.
Usually, they should be equal, indicating that the method always terminates
with every possible argument value.

5.3 jMoped BDD library

This experiment focuses on applying jMoped to a part of itself. The purpose
is to demonstrate its usability for code closer to real applications.

As discussed in Chapter 4, jMoped translates bytecode instructions into
weighted pushdown models, where weights are relations between variables.
Let R be a translated relation. When using BDDs for encoding weights, it is
possible to translate R into a BDD before performing reachability analyses.
However, an obvious drawback is that the BDD for R can be very large,
especially when variables have non-trivial numbers of bits. For instance, if R
is x′ = x+1, where x is an integer variable with n bits, the BDD for R must
contain the relation {(x, x + 1) | x ∈ {−2n−1, . . . , 2n−1 − 1}}, which grows
exponentially in n. This makes the reachability analyses become impractical
very quickly (even before the analyses start) when the number of bits grows.

122

To cope with the problem, jMoped only build BDDs when they are
needed, i.e. when performing extend operations (see Section 3.1). The idea is
that given a BDD A and a relation R, jMoped first inspects all possible values
in A of variables that appear in R. Then, it constructs a new BDD B satisfy-
ing the relation R, but containing only inspected values from A. One can see
that the resulting BDDs can be much smaller, especially when numbers of
bits are large but only a handful of values appear in A. Continuing with the
above example, assume that the values of x in A can only be {0, 1}, jMoped
then only constructs B representing the relation {(0, 1), (1, 2)}, where the
pairs represent the relation between x and x′, respectively.

For this purpose, we have implemented a library for jMoped that manip-
ulates BDDs for different types of relations. Given a BDD and a relation
written in a text format (e.g. x′ = x + 1), the library returns a new BDD,
which is the result of extending the BDD with the relation. The library
supports all relations generated from the translator. Recall from Section 4.2
that some relations have similar behaviors, and therefore can be grouped to-
gether. For example, given a constant x, the group Push pushes x onto the
operand stack. As a result, the library was constructed in such a way that
it contains functions that handle each relation type. We use jMoped to test
these functions in this experiment, e.g. to test the group Push, we create an
initial BDD, set the constant x to be nondeterministic, and check whether
the BDD that the library returns correctly has x on top of the stack.

Figure 5.5 gives a glimpse of the function Load. It takes a BDD bdd and a
local variable’s index, and loads the local variable at index onto the operand
stack. The method first obtains BDD domains—a set of BDD variables—of
the stack pointer, the stack element pointed by the stack pointer, and the
local variable via external methods (code not shown). Then, old values of the
stack pointer and the stack element are abstracted away before updating with
new values from the local variable. The method buildEquals constructs a
BDD representing the equality between BDD variables of two BDD domains.

Table 5.3 summarizes the experiments. Each experiment tests whether
the library works correctly within a bounded nondeterministic input range.
It first creates a BDD and a relation with variables of interest having val-
ues inside the range, inputs them into the library, then checks whether the
output BDD is correctly constructed, i.e. whether the values are updated
and stored in expected variables. The translated pushdown system for the
library contains approximately 145000 rules. Table 5.4 shows the experi-
mental results when the variables under test have 1 bit. The table lists time

123

/**

* Reads a BDD encoding a variable relation, and

* loads a local variable onto the operand stack.

* @param bdd the BDD.

* @param index the local variable’s index.

* @return a new BDD, loaded with the local variable at index.

*/

private BDD load(BDD bdd, int index) {

/*

* Gets the BDD domains of the stack pointer, the stack

* element pointed by the stack pointer, and the local

* variable at index.

*/

BDDDomain spdom = getStackPointerDomain();

int sp = bdd.scanVar(spdom).intValue();

BDDDomain s0dom = getStackDomain(sp);

BDDDomain vdom = getLocalVarDomain(index);

/*

* Abstracts the stack pointer and

* the stack element from the BDD.

*/

BDDVarSet varset = spdom.set().unionWith(s0dom.set());

BDD newbdd = bdd.exist(varset);

varset.free();

// Updates the stack pointer and the stack element.

newbdd.andWith(spdom.ithVar(sp + 1));

newbdd.andWith(s0dom.buildEquals(vdom));

return newbdd;

}

Figure 5.5: A simplified version of a method in the jMoped’s BDD library.

124

and heaps required to test each relation type. One can see that the time
is greatly influenced by the heap sizes used, especially for complex relations
that manipulate heaps such as Arrayload and Arraystore (cf. Section 4.2).
All experiments were performed with weights encoded as bit vectors.

Note that tests are fully automatic, and the library was tested as is,
i.e. neither preprocessing nor modifications were performed. However, since
jMoped cannot afford very large heaps, in order to make the tests possible
we have written a simple library that performs basic operations on BDDs.
The library caches less than JavaBDD—the library jMoped actually uses. It
is slower, but requires less memory. This results in heap sizes that are small
enough for jMoped.

5.4 java.util.Vector class

The rest of this chapter deals with multithreading programs. In this exper-
iment we consider the class java.util.Vector from the Java library. The
Vector class implements a growable array of objects. In [59], a race con-
dition in a constructor of Vector was reported. The following test method
illustrates the situation where the race condition can occur.

static void test(Integer x) {

final Vector<Integer> v1 = new Vector<Integer>();

v1.add(x);

new Thread(new Runnable() {

public void run() { v1.removeAllElements(); }

}).start();

Vector<Integer> v2 = new Vector<Integer>(v1);

assert(v2.isEmpty() || v2.elementAt(0) == x);

}

The method creates two vectors. First an empty vector v1 is created, and
then an integer x is added to it as its first element. After that, a new
thread is forked, which removes all elements from v1 (only x in this case). In
parallel, the first thread creates a copy v2 of v1. Intuitively, only two cases
are possible: if the elements of v1 are removed before v2 is created, then v2

is empty; if v2 is created before the elements of v1 are removed, then the
first element of v2 is equal to x. The last line of code asserts this property.

125

Types Variables Tests the output BDDs whether . . .
Push constant constant is pushed.
Load local var. local variable is pushed.
Store stack stack is popped to local variable.
Globalload global var. global variable is pushed.
Globalstore stack stack is popped to global variable.
Unary stack stack is modified w.r.t. unary operation.
Binary stack stack is modified w.r.t. binary operation.
Inc local var. local variable is incremented.
New class id class id stored in heap,

heap pointer is pushed.
Fieldload heap heap at field is pushed.
Fieldstore stack stack is popped to heap at field.
Newarray length, length is store in heap,

values elements are initialized to values,
heap pointer is pushed.

Arrayload heap heap at array element is pushed.
Arraystore stack stack is popped to heap at array element.
If stack stack is popped, if comparison

succeeded; or it is false, otherwise.
Ifcmp stack stack is popped twice, if comparison

succeeded; or it is false otherwise.
Invoke stack stack is popped to local variables.
Return stack stack is popped to return variable.
Pop stack stack is popped.
Dup stack stack is duplicated.
Swap stack two top elements are swapped.
Monitorenter heap monitor is entered, if succeeded;

or it is false, otherwise.
Monitorexit heap monitor is exited.

Table 5.3: The summary of experiments: jMoped BDD library.

126

Types Time (s) Heap sizes
Push 8 170
Load 25 227
Store 40 237
Globalload 27 252
Globalstore 35 262
Unary 388 308
Binary 3517 433
Inc 146 224
New 20984 812
Fieldload 10067 670
Fieldstore 10426 800
Newarray 36531 831
Arrayload 161755 1331
Arraystore 101681 1382
If 6 161
Ifcmp 151 259
Invoke 36 235
Return 82 260
Pop 7 142
Dup 529 373
Swap 10302 575
Monitorenter 8787 734
Monitorexit 5396 719

Table 5.4: Experimental results: jMoped BDD library.

127

Sizes of x (bits) 1 2 3 4 5 6 7 8
J
av

a
5.

0

E
ag

er T (s) 9.3 10.8 16.9 31.1 67.9 117.8 225.7 457.9
N (106) 0.4 0.5 0.8 1.4 2.5 5.2 9.0 18.1
VT 48 87 167 327 648 1348 2567 5126

L
az

y T (s) 19.7 17.7 19.6 17.5 17.2 18.9 16.7 18.8
N (106) 1.2 1.2 1.2 1.3 1.2 1.3 1.3 1.3
VT 3 3 3 3 3 3 3 3

J
av

a
6.

0

E
ag

er T (s) 15.1 18.6 37.5 64.3 147.7 301.7 642.0 1732.0
N (106) 0.4 0.7 1.1 2.0 3.7 7.1 13.9 27.9
VT 105 209 417 833 1655 3329 6657 13313

L
az

y T (s) 20.9 20.8 19.4 22.3 20.8 18.8 23.4 23.2
N (106) 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
VT 3 3 3 3 3 3 3 3

Table 5.5: Experimental results: java.util.Vector class.

However, in Java 5.0, the constructor of v2 is not atomic, and as a result
the assertion can be violated, i.e. v2 is not empty but x is not inside v2.
jMoped detects this bug. The first half of Table 5.5 shows the time until the
bug is found (T), the number of BDD nodes required (N), and the number
of view tuples inspected (VT) in several experiments. In all experiments the
bit size of all variables except x is set to 8, the heap size to 50 blocks, and
the context bound to 3. The experiments differ on the size of x (1 to 8 bits),
and on the splitting mode (eager or lazy).

In the current version of Java (version 6.0), the bug has been fixed.
We reran all experiments with Java 6.0 and verified that, within the given
bounds, the assertion is not violated. The second half of Table 5.5 presents
the results.

Notice that the behavior of the program is independent of the value of
x. The lazy approach benefits from this fact, and does not split at all when
switching contexts. Therefore, the running time remains essentially constant
when the number of bits of x increases. On the other hand, the time for eager
splitting increases exponentially. However, the eager approach is faster and
requires fewer BDD nodes when x is small. One of the reasons is that the
lazy approach requires an extra copy of globals for keeping relations between
current values of globals and initial values when the thread is awakened,
which results in bigger BDDs.

128

One could argue that, since the Java 5.0 bug is already detected when x

has 1 bit, the lazy approach does not give any advantage in this case. For
Java 6.0, however, the analysis of larger ranges provides more confidence in
the correctness of the code, and here the lazy approach clearly outperforms
eager splitting.

Finally, we remark that the experiment is not as small as it seems. While
the test method has only a few lines of code, the class Vector actually involves
around 130 classes which together translate into a pushdown network of
30,000 rules. We are able to automatically translate all classes without any
manipulations except in java.lang.System, where the method arraycopy

is implemented in native code. The method arraycopy takes two arrays as
parameters, and copies contents of an array to the other array. We need to
manually create a stub in this case.

5.5 Windows NT Bluetooth driver

In this experiment, we consider three versions of a Windows NT Bluetooth
driver [48, 11]. Figure 5.6 shows a Java implementation of the second version.
All three versions follow the same idea and differ only in some implementation
details. They all use the following class Device, which contains four fields:

int pendingIo; boolean stopFlag, stopEvent, stopped;

Device() {

pendingIo = 1; stopFlag = stopEvent = stopped = false;

}

• pendingIo counts the number of threads that are currently executing
in the driver. It is initialized to one in the constructor, increased by
one when a new thread enters the driver, and decreased by one when
a thread leaves.

• stopFlag becomes true when a thread tries to stop the driver.

• stopEvent models a stopping event, fired when pendingIo becomes
zero. The field is initialized to false and set to true when the event
happens.

• stopped is introduced only to check a safety property. Initially false,
it is set to true when the driver is successfully stopped.

129

The drivers has two types of threads, stoppers and adders. A stopper calls
stop to halt the driver. It first sets stopFlag to true before decrementing
pendingIo via a call to dec. The method dec fires the stopping event when
pendingIo is zero. An adder calls the method add to perform I/O in the
driver. It calls the method inc to increment pendingIo; inc returns a suc-
cessful status if stopFlag is not yet set. It then asserts that stopped is false
before start performing I/O in the driver. The adder decrements pendingIo
before exiting.

static void add(Device d) {

int status = inc(d);

if (status > 0) {

assert(!d.stopped);

// Performs I/O

}

dec(d);

}

static void stop(Device d) {

d.stopFlag = true;

dec(d);

while (!d.stopEvent) {}

d.stopped = true;

}

static int inc(Device d) {

int status;

synchronized (d) {

d.pendingIo++;

}

if (d.stopFlag) {

dec(d);

status = -1;

} else status = 1;

return status;

}

static void dec(Device d) {

int pio;

synchronized (d) {

d.pendingIo--;

pio = d.pendingIo;

}

if (pio == 0)

d.stopEvent = true;

}

Figure 5.6: Version 2 of Bluetooth driver

In the first version of the driver, the method inc was implemented dif-
ferently:

private int inc(Device d) {

if (d.stopFlag) return -1;

synchronized (d) { d.pendingIo++; }

return 0;

}

130

Moreover, the if-statement in add reads if (status == 0). [48] reports a
race condition for this version, which occurs when the adder first runs until it
checks the value of stopFlag. Then, the stopper thread runs until the end,
where it successfully stops the driver. When the context switches back to the
adder, it returns from inc with status zero and finds out that the assertion
is violated.

In [11] a bug in the second version of the driver was reported. The bug
only occurs in the presence of at least two adders, and four context switches
are required to unveil it: (i) The first adder increases pendingIo to 2 and
halts just before the assertion statement. (ii) The stopper sets stopFlag to
true, decreases pendingIo back to 1, and waits for the stopping event. (iii)
The second adder increases pendingIo to 2. However, since stopFlag is
already set it decreases pendingIo back to 1 again. It returns from inc with
status −1, which makes pendingIo become 0 and fires the stopping event.
(iv) The stopper acknowledges the stopping event and sets stopped to true.
(v) The first adder violates the assertion. Note that the bug can also be
found in a slightly different manner where the second adder starts before the
stopper.

The third version moves dec(d) inside the if-block in the method add.
This eliminates the bug for the case with two adders and one stopper. How-
ever, jMoped found another assertion violation for one adder and two stop-
pers. We believe that this has not been previously reported, although it is
less subtle than the previous bugs, requiring three context switches: (i) The
adder increases pendingIo to 2 and halts just before the assertion statement.
(ii) The first stopper decreases pendingIo to 1. (iii) The second stopper de-
creases pendingIo to 0 and sets stopped to true. (iv) The adder violates
the assertion.

Table 5.6 reports experimental results on these three versions. Notice that
the lazy approach always involves fewer view tuples. This becomes more
obvious when the number of contexts grows. As a consequence, we argue
that by splitting lazily we can palliate explosions in the context-bounded
reachability problem.

5.6 Binary search tree

We briefly give an intuition on the scalability of our approach by considering
a binary search tree implementation [37] that supports concurrent manip-

131

Version 1 Version 2 Version 3
Eager Lazy Eager Lazy Eager Lazy

Time (s) 1.1 1.3 51.7 36.0 11.9 6.0
Nodes (×103) 46 88 720 1851 195 518
View tuples 21 4 1460 154 234 16
Contexts 3 5 4

Table 5.6: Experimental results: Bluetooth drivers

ulations on trees. Unlike the previous two experiments, this algorithm is
recursive.

Figure 5.7 presents the method find that searches for a node with value
v, starting from node n, with n.value 6= v. (The implementation makes
sure that the value of the root is always greater than values of other nodes.)
The method returns a node f, where f.dir() points to a node with value v

if it exists, i.e. f.dir().value = v; otherwise f.dir() = null. Note that
f.dir() is specified by f.setDir(LEFT) and f.setDir(RIGHT), which set
f.dir() to the left and right child of f, respectively. The node f is locked
at the time when the method returns.

Note that after the node f is locked the method ensures that f is still
the parent of s, i.e. it checks whether s = f.dir(). The check is necessary,
since another thread might change f.dir() after deciding that s = null

or s.value = v, and just before the statement f.lock(). In this case, the
search must be resumed at node f again.

Figure 5.8 lists methods search and insert. Given a binary search tree,
the method search searches for a node with value v in the tree. It simply
calls the method find, and unlocks the returned node afterward. The method
insert inserts a node with value v into the tree. It calls find to traverse the
tree and find the right position of the new node. The method does nothing
if a node with value v already exists in the tree. Otherwise, it creates a new
node, and inserts it into the tree. The method f.insert(w) sets f.dir() to
the node w.

We perform experiments with two types of threads, inserter and searcher.
An inserter calls insert with a nondeterministic value, while a searcher calls
search to search for the same value. We run jMoped with different numbers
of inserters and searchers, and generate all reachable configurations within
given contexts.

132

/**

* Finds a node with value v in the tree, starting from node n.

* If the node exists, the method returns a node f, where

* f.dir() points to the node; otherwise f.dir() is null.

* The node f is locked when the method returns.

* @param n the node where the search starts.

* @param v the searching value.

* @return the parent node of the node with value v.

*/

private Node find(Node n, int v) {

Node f = n;

if (v < f.value) f.setDir(LEFT);

else f.setDir(RIGHT);

Node s = f.dir();

if (s != null && s.value != v)

return find(s,v);

else {

f.lock();

if (s != f.dir()) {

// It slipped away, find again.

f.unlock();

return find(f,v);

}

return f;

}

}

Figure 5.7: Binary search tree: the find method

133

/**

* Searches for a node with value v in the binary search tree.

* @param v the searching value.

* @return the node with value v, if exist; or null, otherwise.

*/

public Node search(int v) {

Node f = find(root, v);

Node s = f.dir();

f.unlock();

return s;

}

/**

* Insert a node with value v into the binary search tree.

* The tree is unchanged if a node with value v already exists.

* @param v the value of the new node.

*/

public void insert(int v) {

Node f = find(root, v);

if (f.dir() != null)

f.unlock();

else {

Node w = new Node(v);

f.insert(w);

f.unlock();

}

}

Figure 5.8: Binary search tree: the search and insert methods

134

Table 5.7 gives the running times. The numbers of threads are in the form
x+y, where x and y are the numbers of inserters and searchers, respectively.
The analysis took more than three hours in the case of 2 + 2 threads with
bound 6.

Threads Contexts Time (s)
1 + 1 3 3.8
1 + 1 4 8.3
2 + 1 4 127.1
2 + 1 5 712.3
2 + 1 6 5528.2
2 + 2 5 6488.0
2 + 2 6 timeout

Table 5.7: Experimental results: binary search trees

135

Chapter 6

Applications to SPKI/SDSI

SDSI, proposed by Lampson and Rivest [38], is a simple distributed security
infrastructure that combines a simple public-key infrastructure design (SPKI)
with a means of defining local name spaces. The combined SPKI/SDSI
allows a principal to locally create groups of principals and delegate rights to
other principals or groups of principals (without knowing individuals in the
groups). In this chapter we introduce authorization and reputation systems
based on SPKI/SDSI, and connect them to pushdown models. Later, we show
that problems of determining whether a principal is authorized to access a
resource or a problem of determining how much trust a principal places in
another principal boil down to reachability problems of pushdown models
with different weights.

6.1 Authorization systems

In access control of shared resources, authorization systems allow to specify
a security policy that assigns permissions to principals in the system. The
authorization problem is, given a security policy, should a principal be allowed
access to a specific resource? In frameworks such as SPKI/SDSI [20] and
RT0 [40], the security policy is expressed as a set of certificates. Principals
are public keys. A certificate is an electronic document signed by a principal.
Given a set of certificates, the authorization problem reduces to discovering a
chain of certificates proving that a given principal is allowed to access a given
resource. Jha and Reps [32] showed that a set of SPKI/SDSI certificates can
be seen as a pushdown system, and that certificate-chain discovery reduces

136

to pushdown reachability. The SPKI/SDSI specification also provides for so-
called threshold certificates, allowing specifications whereby a principal can
be granted access to a resource if he/she can produce authorizations from
multiple sources. We observe that this extension reduces to reachability on
alternating pushdown systems.

We proceed in two steps. First, we present a subset of SPKI/SDSI
that has been considered in most of the work on this topic. This subset
of SPKI/SDSI does not handle threshold certificates, which we present in
the second part.

6.1.1 SPKI/SDSI

In this thesis, we introduce only the basic notations that are required to
understand SPKI/SDSI and its connections with alternating pushdown sys-
tems. A more thorough explanation can be found in [32].

SPKI/SDSI was designed to express authorization policies in a distributed
environment. A central notion of SPKI/SDSI are principals. A principal can
be a person or an organization. Each principal defines his/her own name-
space, which assigns rôles to (other) principals. For instance, principal Fred
can define the rôle friend and associate principal George with this rôle. Such
associations are made in SPKI/SDSI by issuing so-called name certificates
(name certs, for short). A special feature is that principals may reference
the namespace of other principals in their certificates. For instance, Fred
may state that all of George’s friends are also his own friends. In this way,
SPKI/SDSI allows to associate a rôle with a group of principals described
in a symbolic and distributed manner. SPKI/SDSI then allows to assign
permissions to rôles using so-called authorization certificates (or auth certs).

The SPKI/SDSI standard also uses a public-key infrastructure that allows
for certificates to be signed and verified for authenticity. Public-key infras-
tructure does not play a major rôle in our approach, but we shall re-use the
ideas behind its naming scheme.

More formally, a SPKI/SDSI system can be seen as a tuple (P, A, C),
where P is a set of principals, A is a set of rôle identifiers (or identifiers, for
short) and C = Na ⊎ Au is a set of certificates. Certificates can be either
name certificates (contained in Na), or authorization certificates (contained
in Au).

A term is formed by a principal followed by zero or more identifiers, i.e.,
an element of the set PA∗. A term t is interpreted as denoting a set of

137

principals, written [[t]], which are defined by the set of name certificates (see
below).

A name certificate is of the form p a → t, where p is a principal, a is an
identifier, and t is a term. Notice that p a itself is a term. The sets [[t]], for
all terms t, are the smallest sets satisfying the following constraints:

• if t = p for some principal p, then [[t]] = {p};

• if t = t′ a, then for all p ∈ [[t′]] we have [[p a]] ⊆ [[t]];

• if p a → t is a name certificate, then [[t]] ⊆ [[p a]].

For instance, Let Fred , George, and Henry be principals and friend be an
identifier. Consider the following certificates.

Fred friend → George (6.1)

Henry friend → Fred (6.2)

George friend → Henry friend (6.3)

Henry friend → Henry friend friend (6.4)

The certificates (6.1) and (6.2) express that George is a friend of Fred and
Fred is a friend of Henry, respectively, and (6.3) means that all of Henry’s
friends are also George’s friends, and (6.4) says that the friends of Henry’s
friends are also his friends.

An authorization certificate has the form p � → t b, where p is a principal,
t is a term, and b is either � or �. Such a certificate denotes that p grants
some authorization to all principals in [[t]]. If b = �, then the principals in [[t]]
are allowed to delegate said authorization to others; if b = �, then they are
not. (Auth certs in SPKI/SDSI contain more details about the authorization
that they confer; this detail is not important for our approach.)

Formally, auth certs define a smallest relation aut ⊆ P × P between
principals such that aut(p, p′) holds iff p grants an authorization to p′:

• if there is an auth cert p � → t b, for b ∈ {�, �}, and p′ ∈ [[t]], then
aut(p, p′);

• if there is an auth cert p � → t �, p′ ∈ [[t]], and aut(p′, p′′), then
aut(p, p′′).

138

For instance, the certificate

Fred � → George friend � (6.5)

means that Fred grants some right to all of George’s friends, however, they
friends are not allowed to delegate that right to other principals.

The authorization problem in SPKI/SDSI is to determine, given a system
(P, A, C) and two principals p and p′, whether p′ is granted authorization by
p, i.e., whether aut(p, p′).

SPKI/SDSI and pushdown systems

Certificates in SPKI/SDSI can be interpreted as prefix rewrite systems. For
instance, if p a → p′ b c and p′ b → p′′ d e are two certificates inter-
preted as rewrite rules, then their concatenation rewrites p a to p′′ d e c. In
SPKI/SDSI, a concatenation of two or more certificates is called a certificate
chain. It is easy to see that the authorization problem, given principals p
and p′, reduces to the problem of whether there exists a certificate chain that
rewrites p � into either p′ � or p′ � (in the first case, p′ also has the right to
delegate the authorization further, in the second case he has not). Consider
as an example the certificates (6.1)–(6.5) above. It can be shown that Fred
grants a right to George by the following certificate chain.

Fred �
(6.5)
−−→ George friend �

(6.3)
−−→ Henry friend �

(6.4)
−−→ Henry friend friend �

(6.2)
−−→ Fred friend �

(6.1)
−−→ George �

Moreover, it is well-known that the type of rewrite systems induced by
a set of SPKI/SDSI certificates is equivalent to that of a pushdown system,
see, e.g. [32, 54, 57, 33]. For example, a cert like p a → p′ b c is interpreted as
a pushdown transition, where p, p′ are states of the finite control and where
the stack content a is replaced by bc. More precisely, a system (P, A, C) cor-
responds to a pushdown system (P, A∪{�, �}, C), where P is re-interpreted
as the set of control locations, A ∪ {�, �} as the stack alphabet, and C as
the set of transitions of the pushdown system. Then, the SPKI/SDSI autho-
rization problem reduces to a pushdown reachability problem, i.e., whether

139

from control location p with the symbol � on the stack (and nothing else)
one can eventually reach control location p′ with either � or � on the stack.

6.1.2 Intersection certificates

The SPKI/SDSI standard provides for so-called threshold certificates, which
consist of, say, given n > 1 an auth cert of the form

p � → {t1b1, . . . , tnbn}, where b1, . . . , bn ∈ {�, �} , (6.6)

and an integer k ≤ n. The meaning of such a cert is that p grants autho-
rization to principal p′ if there is a certificate chain to p′ from at least k out
of t1b1, . . . , tnbn. We restrict ourselves to the case where k = n and use the
more suggestive name intersection certificate instead. Notice that threshold
certificates for name certs could be defined analogously. However, we re-
strict the use of threshold certificates to just auth certs, following the claim
from [15, 32] that the use of threshold certificates in name certs would make
the semantics “almost surely too convoluted”.

If intersection certificates are involved, proofs of authorization can no
longer be done purely by certificate chains. Instead, a proof becomes a
certificate tree, where the nodes are labeled with terms and the edges with
rewrite rules that can be applied to the term labeling their source nodes. The
root is of the form p �, and if an intersection certificate is used to rewrite a
node u, then the children of u are the elements of the right-hand side of the
certificate. The tree is considered a valid proof of authorization for principal
p′ if all the children can be rewritten to p′ b, where b ∈ {�, �}.

It can now easily be seen that in the presence of intersection certificates,
the certificate set can be interpreted as an alternating pushdown system,
and that the authorization problem reduces to the reachability analysis of the
alternating pushdown system. In other words, p′ is granted access to resource
of p if it can be proved that 〈p, �〉 ∈ pre∗({〈p′, �〉, 〈p′, �〉}). Moreover,
the certificate set always conforms the special case in Section 3.1.2, i.e. the
resulting alternating pushdown system is simple, having {�, �} as the set
of bottom stack symbols. The reason can be readily seen, since only auth
certs can result in more than one child node in the certificate tree, and they
always of the form depicted in (6.6). Consequently, the pair of the alternating
pushdown system and the set {〈p′, �〉, 〈p′, �〉} forms a good instance.

To apply the algorithm in Section 3.1.2, we assume without loss of gener-
ality that terms in name certs, non-intersection auth certs, and intersection

140

auth certs contain at most two, one, and zero identifiers, respectively, and
that the number of terms in intersection certs is two. Therefore, we have
C = C0 ⊎ C1 ⊎ C2 ⊎ Ct, where Ct contains intersection certs, C0 contains
the name certs in which terms have zero identifiers, C1 contains the name
and non-intersection auth certs in which terms have one and zero identifiers,
respectively, and C2 consists of the rest. Let n be the number of different
terms in C0. The following theorem follows immediately from Lemma 3.4.

Theorem 6.1 The authorization problem in a SPKI/SDSI system (P, A, C)
can be solved in O(|C0| + (|C1| + |Ct|)n + |C2|n2) time.

6.1.3 Example and experiments

We have implemented a prototype of Algorithm 3.3 (in fact, a dedicated ver-
sion for good instances) inside the Nexus platform [27]. Nexus is a platform
that provides an infrastructure to support spatial-aware applications. An ap-
plication can use Nexus “middleware” in order to obtain context data about
mobile objects registered at the platform, like the position of an object or
whether it enjoys a given relation to another object.

Nexus is based on an Augmented World Model (AWM). AWM can con-
tain both real world objects (e.g. rooms or streets) and virtual objects (e.g.
websites). Furthermore, Nexus defines a language called Augmented World
Modeling Language (AWML). This XML-based language is used for exchang-
ing Nexus objects between the platform and data repositories.

Our prototype extends the AWM and AWML with name and authoriza-
tion relations, which can be viewed as name and authorization certificates
in the case of SPKI/SDSI, respectively. In other words, we model relations
as virtual objects in the Nexus context. Moreover, we extend the platform
so that it can serve applications querying relations between entities. Note
that, normally, the base information about objects is contained in a Nexus
database (the so-called context server) and returned in the form of AWML
documents. Our prototype is not yet connected to such a database; instead,
all data is kept directly in AWML.

A scenario

Consider a scenario where company X takes part in a trade fair. The ex-
hibition center consists of 2 exhibitions. An exhibition’s area is a hierar-
chical structure with 3 exhibition halls, divided into 4 floors with 5 booths

141

each. The structure can be written by pushdown rules as follows, given that
1 ≤ i ≤ 2, 1 ≤ j ≤ 3, 1 ≤ k ≤ 4, 1 ≤ l ≤ 5:

Ei Area → Ei Hall Floor Booth (6.7)

Ei Hall → H[i,j] (6.8)

H[i,j] Floor → F[i,j,k] (6.9)

F[i,j,k] Booth → B[i,j,k,l] (6.10)

Now, company X launches a promotion for visitors of the exhibition cen-
ter to freely download ringtones for their mobile phones. The following vis-
itors are allowed to download: (1) customers of X who are currently in the
area of exhibition 1; (2) non-customers to whom the right has been delegated
by one of X’s customers; (3) customers who are currently not in the area
of exhibition 1, but have received delegation from another visitor of exhibi-
tion 1. The company can express this authorization policy by the following
rule:

KX � → {E1 Area Visitor �, KX Customer �} (6.11)

We consider varying numbers of visitors and customers in the following
experiments. For instance, the facts that Alice is visiting a booth in exhibi-
tion 1, and that she delegates her right to Bob, who is a customer of X, can
be written as:

B[1,j,k,l] Visitor → KAlice, for some j, k, l (6.12)

KAlice � → KBob � (6.13)

KX Customer → KBob (6.14)

When Bob wants to download a ringtone, we can efficiently compute the
set pre∗({〈KBob, �〉, 〈KBob, �〉}) by noting the fact that the rules (6.7)–(6.14)
and {〈KBob, �〉, 〈KBob, �〉} form a good instance. Bob’s request is granted
in this case because 〈X, �〉 ∈ pre∗({〈KBob, �〉, 〈KBob, �〉}). Note that Bob
can only download as long as Alice stays in booths in the exhibition 1. As
soon as she moves away (i.e. the rule (6.12) is removed), a request from Bob
can no longer be granted even though he is a customer of X.

The above scenario is implemented as an application of the Nexus plat-
form. We report on the running time for some experiments. The experiments
should give a rough idea of the size of problems that can be handled in rea-
sonable time.

142

We randomly add visitors to the exhibition center, and let them randomly
issue certificates. Requests for ringtones are also made randomly. For each
request, we measure time needed for finding an evidential certificate chain,
i.e. the time needed for deciding whether the request should be granted or
not. We consider a base case with 1000 visitors in the exhibition center, 100
of them are customers of the company X, and the visitors issue 1000 autho-
rization certificates. The issuer of a certificate decides randomly whether the
right can be further delegated or not. The series were conducted on a 2GHz
PC with 256MB RAM.

Experiment 1

In the base case, 10% of visitors are customers of X, and a visitor issues
one certificate on average. In our first experiment we keep these two ratios
constant, and increase the number of visitors (for example, if there are 2000
visitors, there will be 200 customers that authorize 2000 times). We ran the
experiment five times for each set of parameters. In each run 1000 random
download requests are made. Table 6.1 displays the average results for 1000,
2000, 5000, and 10000 visitors (V). The table shows how often the request
was granted (G) and rejected (R), the average time of a certificate search (T),
and average time for granted (T(G)) and rejected (T(R)) searches. All mea-
surements are in milliseconds.

In a realistic scenario, solving the authorization problem requires to query
databases (e.g. databases containing the positions of objects) and transmit
data over a network, which are comparatively expensive operations. We kept
relations of various types in different AWML files and whenever a piece of
data was needed, we retrieved it from there. Since opening and reading
files is also a comparatively expensive operation, this gives some insight as
to the overhead such operations would incur in practice. The table shows
the number of times AWML files (F) needed to be opened in average. For
comparison, the numbers for granted (F(G)) and rejected (F(R)) requests
are also displayed.

This experiment allows to draw a first conclusion: The average time
of a search does not depend on the number of visitors per se. When a
visitor requests a download, the algorithm has to search for the issuers of
its certificates. Since the number of certificates is equal to the number of
visitors, each visitor has one certificate in average.

143

V G R T T(G) T(R) F F(G) F(R)
1000 229.8 770.2 18.71 29.09 15.49 13.84 22.54 11.19
2000 195.6 804.4 19.23 28.76 16.92 13.14 21.25 11.16
5000 202.2 797.8 18.62 29.33 15.90 12.99 21.10 10.93

10000 199.4 800.6 24.90 38.25 21.60 13.00 22.00 10.77

Table 6.1: Results of Experiment 1, time (T) measured in milliseconds

C G R T T(G) T(R) F F(G) F(R)
1000 23.0 77.0 18.71 29.09 15.49 13.84 22.54 11.19
2000 56.2 43.8 120.72 193.93 21.96 74.68 118.50 15.83
3000 86.4 13.6 1477.35 1704.21 33.66 625.41 721.69 12.91
4000 95.2 4.8 2279.13 2393.81 13.40 898.01 942.94 9.64

Table 6.2: Results of Experiment 2, time (T) measured in milliseconds

Experiment 2

In this experiment, we kept the number of visitors constant, and increased
the number of certificates they issue, shown in column C in Table 6.2. The
other columns are as in Experiment 1. Again, we ran the experiment five
times for each value of C. Each run consisted of 100 random requests.

We see that the running time grows rapidly with the number of certificates
issued. The explanation is the larger number of certificates received by each
visitor, which leads to many more certificate chains. Observe also that the
number of granted requests increases.

The overall conclusion of the two experiments is that the algorithm scales
well to realistic numbers of visitors and certificates. Notice that in the in-
tended application a user will be willing to wait for a few seconds.

6.2 Reputation system

A reputation system is a system that holds opinions or trusts that partic-
ipants in a community have in each other, and attempts to determine a
rating for each participant. A reputation system can be simple such as in
eBay, where a pair of users can rate each other after they complete a trans-

144

action. A user’s reputation consists of the number of positive and negative
ratings that the user obtained in the history. The most successful reputa-
tion system is perhaps Google’s PageRank [45]. In PageRank, web pages
are ranked based on numbers of incoming links they have and the rankings
of web pages where the links come from. In other words, a web page can
“recommend” other web pages if it has links to them, and the “quality” of
the recommendations depends on the reputation of the web page itself.

In the section, we present our reputation system, SDSIrep, which extends
SPKI/SDSI with weights on certificates. SDSIrep can be used to build a
reputation system suitable for modeling trust relationships in an open-world
scenario. Moreover, SDSIrep allows to distinguish between the trust one has
in a person and in their recommendations. We then show how these trust
values can be aggregated to measure each participant’s reputation.

We also expose the relationship between SDSIrep and probabilistic push-
down systems, and extend the probabilistic approach to alternating push-
down systems. This solution allows to handle intersection certificates in
SDSIrep, therefore increasing the expressiveness of the framework at prac-
tically no extra computational cost. As a small case study, we propose a
system for measuring academic reputation. We implement the algorithms
for computing reputations in this example and report on their performance.

6.2.1 SDSIrep

We now introduce the model of trust and reputation employed by SDSIrep,
which later motivates the design of our system. We then proceed to show
how to compute trust and reputation values in this system.

A numerical model of trust

Many reputation systems allow participants to express degrees of trust nu-
merically. A common problem with this is that malicious participants may
attempt to “spam” the system and boost each other’s reputations with arbi-
trarily high values. The solution employed here is to normalize trust values.
In SDSIrep, each principal has a total trust of 1 at his/her disposal, fractions
of which can be allocated freely to other principals.

Like in EigenTrust [36], this approach lends itself to a probabilistic in-
terpretation, similar to the “Random Surfer” model used in PageRank. We
interpret a SDSIrep system as a Markov chain whose states are the par-

145

ticipants, and where the trust that participant A has in B (expressed as a
fraction between 0 and 1) serves as the probability of going from A to B.
Then, one way to find reputable participants is to perform a random walk on
this Markov chain: after a “long enough” period of time, one is more likely
to be at a well-reputed participant than not. In particular, each party’s rep-
utation is taken as their value in the stationary vector of the Markov chain.
Thus, even though all participants can distribute a total trust value of 1 to
others, this does mean that the opinions of all participants have the same
influence. Well-reputed participants will be visited more often in a random
walk than less-reputed ones, giving more weight to their opinions.

What distinguishes SDSIrep from EigenTrust is the way peer-to-peer rat-
ings are specified: principals can assign their trust to groups of principals
that are defined indirectly, using name certificates like in SPKI/SDSI. Mem-
bership in a group is associated with a numeric value, in a kind of fuzzy
logic. Suppose, for instance, that a researcher wants to recommend those
researchers whose findings have been published in a certain journal. Then,
somebody with 10 papers in that journal could be considered to belong more
strongly to that group than somebody with just one paper. SDSIrep allows
to make such distinctions.

In the terminology of [35], PageRank, EigenTrust, and SDSIrep are all
examples of flow models. In a flow model, participants can only increase
their reputation at the cost of others. This property is obviously satisfied
by SDSIrep, because the sum of the reputation values over all participants
is bounded by 1. Thus, the absolute reputation values computed within the
SDSIrep framework have no meaning in themselves; they only indicate how
well-reputed each participant is in comparison with others.

SDSIrep certificates

Our system is based on the design of SPKI/SDSI, i.e. a SDSIrep system is
again a triple (P, A, C) with (almost) the same meaning as in Section 6.1.1.
However, in SDSIrep, we are not concerned with authorization problems.
Rather, we reinterpret authorization certificates as recommendations, which
express trust in certain groups of principals.

Another change is the addition of weights to certificates. Adding weights
drawn from the set [0, 1] to recommendation certs allows to express the degree
of recommendations. Similarly, weights on name certs express the degree of
membership to a set. We provide only simple examples in this section; a

146

more elaborate example of a SDSIrep system is presented in Section 6.2.3.

Weighted recommendation certs allow to recommend all members of a
group by issuing one single cert. This reflects common situations in which a
principal recommends a group even though the members of the group change
along time, or even though he or she does not know many of its members.

A weighted recommendation cert has the form p �
x
−→ t �, where x ∈

[0, 1] is its weight. Such a cert states that the principal p recommends the
principals of the set [[t]] with weight x. The cert p �

x
−→ t � states that p

recommends not the principals of [[t]] themselves, but their recommendations
with weight x.

As an example, suppose that researcher A wants to give 50% of his “share”
of recommendations to the authors of journal J . This could be stated by the

cert A �
0.5
−→ J aut �. To explain the semantic difference between � and

�, imagine a reputation system for film directors with directors and critics
as principals. Film critics will not be recommended for their directing skills,
only for their recommendations. A similar distinction exists in PGP, which
separates the trust that principals have in the authenticity of some person’s
public key from the trust they have in the ability of that person to correctly
judge the authenticity of other people’s keys.

Notice that there is no certificate with � on the left-hand side. Thus, a
chain starting with a recommendation cert of the form p �

x
−→ t � neces-

sarily ends when t has been rewritten to an element of [[t]], whereas a chain
starting with p �

x
−→ t � allows to apply further recommendation certs at

that point. This corresponds to the idea that � expresses a recommendation
of somebody’s recommendations, whereas � expresses a recommendation of
that person as such.

To normalize the trust values in the system, and in order to enable a prob-
abilistic interpretation as discussed in this section, we additionally demand
that the weights on each principal’s recommendation certs add up to 1.

Weighted name certs have the form p a
x
−→ t, where x ∈ [0, 1]. Intuitively,

such a cert states a fuzzy membership relation: the elements of [[t]] belong to
the set [[p a]] with membership degree x.

As an example, consider a journal J and an identifier aut such that
[[J aut]] are the authors that have published in J . Then, if the journal has
published 100 papers and B has authored 10 of them, B might be considered

147

to belong to [[J aut]] with degree 10%, expressed as J aut
0.1
−→ B. In order

to uphold the probabilistic interpretation we demand that for all pairs p a,
the sum of the weights on all name certs with p a on the left-hand side is 1.

Certificate chains and Markov chains

Consider the certs A �
0.5
−→ J aut � and J aut

0.1
−→ B. If A gives 50% of his

recommendations to the authors of J , and B has authored 10% of the papers
in J , then a natural interpretation is that 5% of A’s recommendations go
to B. Thus, the weight of the certificate chain formed from the two certs is
obtained by multiplying their individual weights.

To find out how much trust A puts into B, we are interested in the cer-
tificate chains going from A � to B �. In general, there could be more than
one such chain. Thus, one needs to find all these chains in order to determine
the degree of recommendation A gives to B. The following example shows
that the number of such paths can in fact be infinite:

A �
1
−→ A friend � (6.15)

B �
1
−→ A � (6.16)

A friend
x
−→ B (6.17)

B friend
1
−→ A (6.18)

A friend
1−x
−−→ A friend friend (6.19)

Cert (6.19) is the crucial one. It states that the friends of A’s friends also
belong to A’s friends, albeit with smaller weight. Notice that whenever this
cert can be applied, it can be applied arbitrarily often. So A recommends
B through many possible chains: for instance, we can apply the cert (6.15),
then cert (6.19) 2n times, and then certs (6.17) and (6.18) alternatingly n
times each.

We can now define the two algorithmic problems related to SDSIrep. The
trust problem in SDSIrep is as follows: Given two principals p and p′, compute
the sum of the weights of all certificate chains that rewrite p � into p′ �.
The reputation problem is to compute, for each principal, their value in the
stationary vector of the Markov chain in which the transition probabilities
are given by the solutions to the pairwise trust problems. Next, we discuss
solutions for the trust and reputation problems.

148

Solving the trust and reputation problems

It is easy to see that a system of SDSIrep certificates corresponds to a
weighted pushdown system with the semiring ([0, 1], +,×, 0, 1). This type
of weighted pushdown system is usually called probabilistic pushdown sys-
tem. The trust problem in SDSIrep then reduces to a reachability problem on
the probabilistic pushdown system, i.e., given p and p′, compute the proba-
bility of reaching control location p′ with stack content � when starting from
p and �.

Recall from Section 3.2 that the solution to this is given by an equation
system. One can observe in this case that the semiring is ω-continuous (see
Section 2.1.1), which ensures the existence of the least solution. We assume
without loss of generality that terms in name and auth certs contain at most
two and one identifiers, respectively. Given a SDSIrep system (P, A, C), the
variables are elements of the set { [p, a, q] | p, q ∈ P, a ∈ A∪{�, �} }, where
[p, a, q] denotes the probability of rewriting the term p a into q. To solve the

trust problem, we also add an artificial certificate p′ �
1
−→ p̄′, where p̄′ is a

fresh control location; since p′ � does not appear on any other left-hand side,
the solution of [p, �, p̄′] gives us the trust placed by p in p′. Each variable
[p, a, q] has the following equation:

[p, a, q] =
∑

pa
x−→p′bc

x ·
∑

r∈P

[p′, b, r] · [r, c, q] +
∑

pa
x−→p′b

x · [p′, b, q] +
∑

pa
x−→q

x

(6.20)
Intuitively, equation (6.20) sums up the probabilities for all the possible

ways of reaching q from p a. We just explain the first half of the expression;
the other cases are simpler and analogous: if p a is replaced by p′ b c (with
probability x), then one first needs to rewrite this term to r c for some r ∈ P ,
which happens with the probability computed by [p′, b, r], and then r c needs
to be rewritten into q, which is expressed by the variable [r, c, q].

For instance, consider the system consisting of rules (6.15) to (6.19). Some
of the resulting equations are (abbreviating f for friend):

[B, f, A] = 1 [B, �, B] = 1 · [A, �, B]
[A, f, B] = x + (1 − x) · ([A, f, A] · [A, f, B] + [A, f, B] · [B, f, B])

This equation system has a least solution, and the elements of this least
solution correspond to the aforementioned probabilities. Notice that the

149

equation system is non-linear in general. We discuss the resulting algorithmic
problems in more detail in Section 6.2.3. The following theorem now follows
from the definitions and Theorem 3.6.

Theorem 6.2 The solution to the trust problem for principals p and p′ is
equal to the value of variable [p, �, p̄′] in the least solution of the equation
system (6.20).

In general, the least solution cannot be computed exactly, but can be
approximated to an arbitrary degree of precision using standard fix-point
computation methods. We give more details on this computation when dis-
cussing our experiments in Section 6.2.3. Notice that the equation system
actually gives the probabilities (and hence the trust values) for all pairs of
principals, therefore all values in the Markov chain used for solving the rep-
utation problem can be obtained from just one fixpoint computation.

As discussed earlier, a measure of the “reputation” of principals in the
system can be obtained by computing the stationary vector of the Markov
chain whose states are the principals and whose transition probabilities are
given by the solutions of the trust problems. Computing the stationary vector
amounts to solving a linear equation system, using well-known techniques.

However, for the stationary vector to exist, the Markov chain needs to be
irreducible and aperiodic. This is not guaranteed in general: e.g., if there is a
clique of participants who trust only each other, the Markov chain contains a
“sink”, i.e., it is not irreducible. This type of problem is also encountered in
other models based on random walks, e.g. EigenTrust or PageRank, and the
solutions employed there also apply to SDSIrep. For instance, the irreducibil-
ity and aperiodicity constraint can be enforced by allowing the random walk
to jump to random states at any move with small probability. Notice that
the example in Section 6.2.3 does not exhibit this kind of problem; therefore,
we did not use this trick in our experiments.

6.2.2 Intersection certificates

Sometimes one wishes to recommend principals belonging to the intersection
of two or more groups. For instance, researcher A may wish to recommend
those of his co-authors that have published in journal J . In SDSIrep, we
model this by a certificate such as A �

x
−→ {A coaut �, J aut �}. In

general, intersection certificates have the form p �
x
−→ {t1 b1, . . . tn bn}, where

150

b1, . . . , bn ∈ {�, �}, and express that p recommends the set
⋂n

i=1[[ti]] with
weight x.

The trust problem for the case without intersection certs consists of com-
puting the values of certificate chains. When intersection certs come into
play, we need to think of certificate trees instead, where each node is labeled
by a term, and a node labeled by term t has a set of children labeled by T if
T is the result of applying a rewrite rule to t. For instance, if in addition to
the previous intersection certificate we have A coaut

y
−→ B and J aut

z
−→ B,

then we have the following certificate tree:

A �
x
→

{
A coaut �

y
→ B �

J aut �
z
→ B �

In the probabilistic interpretation, the probability for this tree is x · y ·
z. Thus, the trust problem for SDSIrep with intersection certificates is as
follows: Given principals p and p′, compute the sum of the probabilities of
all trees whose root is labeled by p � and all of whose children are labeled by
p′ �. Notice that the solution for the associated reputation problem remains
essentially unchanged, as the addition of intersection certs merely changes
the way peer-to-peer trust is assigned.

Solving the trust problem with intersection certs

We now extend the equation system from Section 6.2.1 to the case of in-
tersection certificates. By following a similar reasoning to Section 6.1.2, it
is easy to see that a SDSIrep system with intersection certificates corre-
sponds to a simple weighted alternating pushdown system with the semiring
([0, 1], +,×,×, 0, 1, 1). Let Ξ = {�, �}. Since intersection is restricted to
recommendation certs, the following important properties hold: (1) if p � is
the root of a certificate tree, then all nodes are of the form t b, where b ∈ Ξ
and t does not contain any symbol from Ξ; (2) if a term t of a certificate tree
has more than one child, t = p � for some p. It follows that if a term p w
is the root of a tree and w does not contain any occurrence of � or �, then
every term of the tree has at most one child, and so the tree has a unique
leaf. We exploit this fact in our solution.

We assume without loss of generality that terms in name and auth certs
contain at most two and one identifiers, respectively, and that the number
of terms in intersection certs is two. Let (P, A, C) be a SDSIrep system
with intersection certificates. The variables of the equation system are of

151

the form [p,⊥, q] or [p, a, q], where p, q ∈ P , ⊥ ∈ Ξ, a ∈ A. The variable
[p,⊥, q] represents the probability of, starting at p ⊥, eventually reaching a
tree where all leaves are labeled with q. The variable [p, a, q] represents the
probability of, starting at p a, reaching a tree whose unique leaf (here we use
the fact above) is labeled with q. We add (as in Section 6.2.1) an artificial

rule p′ �
1
−→ p′, which is the only rule consuming the � symbol.

With ([0, 1], +,×,×, 0, 1, 1) as the extended semiring we have the follow-
ing system of equations (Section 3.2.2), for p, q ∈ P and a ∈ A ∪ Ξ:

[p, a, q] =
∑

pa
x−→p′bc

x ·
∑

r∈P

[p′, b, r] · [r, c, q] +
∑

pa
x−→p′b

x · [p′, b, q] +
∑

pa
x−→q

x

+
∑

pa
x−→{p1a1⊥1,p2a2⊥2}

x ·
∑

q1,q2∈P

2∏

i=1

[pi, ai, qi] · [qi,⊥i, q] (6.21)

(Notice that if a ∈ A then the last sum is equal to 0 by property (2) above.)
Moreover, we set [p, ε, q] = 1 if p = q and 0 otherwise.

Intuitively, equation (6.21) sums up the probabilities for all the possible
ways of reaching q from p a. The idea of the first three sums of the expression
is the same as in the case without alternation, see Section 6.2.1. The last
sum handles alternating rules: if p a is replaced by {p1 a1⊥1, p2 a2⊥2} (with
probability x), then one needs to rewrite for all i ∈ [2], pi ai to qi for some
qi ∈ P , which happens with the probability computed by [pi, ai, qi], and
then qi ⊥i needs to be rewritten into q, which is expressed by the variable
[qi,⊥i, q]. The corresponding equation system also has the same properties
as in Section 6.2.1 and can be solved in the same way. The following theorem
directly follows from Theorem 3.8.

Theorem 6.3 The solution to the trust problem for principals p and p′ in
a SDSIrep system with intersection certificates is equal to the solution of
variable [p, �, p′] in the least solution of the equation system (6.21).

6.2.3 Example and experiments

For demonstration purposes, we have used SDSIrep to model a simple rep-
utation system for the PC members of TACAS 2008. We have chosen this
example because the reader is likely to be familiar with the sources of reputa-
tion in academia, in particular in computer science. We do not claim that our

152

experiments say anything really relevant about the actual reputation of the
PC members, in particular because part of the required data (the personal
preferences of the PC members, see below) was not available to us.

In this section, we give some details on this system, and report on the
performance of our solver for the equation systems given in Sections 6.2.1
and 6.2.2.

A small system for academic reputation

Principals and identifiers. The set of principals contains the 28 mem-
bers of the TACAS programme committee, 6 of the main conferences on
automated verification (CAV, ICALP, LICS, POPL, VMCAI, TACAS), and
3 rankings: the CiteSeer list of 10,000 top authors in computer science (year
2006) [13], denoted CiteSeer, the CiteSeer list of conferences and journals
with the highest impact factors (year 2003) [14], denoted Impact, and the
list of h-indices [26] for computer scientists (year 2007), denoted H-index.
The identifiers are aut, publ, coaut, and circ, with the following fuzzy sets
as intended meaning:

• [[c aut]]: researchers that publish in conference c;

• [[r publ]]: conferences in which researcher r has published;

• [[r coaut]]: r’s co-authors;

• [[r circ]]: r’s “circle”, defined as r’s coauthors, plus the coauthors of
r’s coauthors, and so on (the degree of membership to the circle will
decrease with the “distance” to r).

Name certs. Some illustrative examples of the certs in our system are
shown in Figure 6.1. For the sake of readability, we present them without
having normalized the weights (normalized values are more difficult to read
and compare). So, to set up the equation system, one has to take all the
certs with the same tuple p a on the left-hand side, say p a

x1−→ t1, . . . , p a
xn−→

tn, and then replace each xi by xi/
∑n

i=1 xi. In this way, all weights are
normalized.

Two certs describe to which degree a PC member is an author of a con-
ference and which share each conference has in the PC member’s publication
list. In both cases, the weight (before normalization) is the number of papers

153

TACAS aut
10
−→ KL (6.22)

KL publ
10
−→ TACAS (6.23)

KL coaut
22
−→ PP (6.24)

KL circ
0.8
−→ KL coaut (6.25)

KL circ
0.2
−→ KL circ circ (6.26)

Impact �
1.24
−−→ TACAS aut � (6.27)

H-index �
34
−→ KL � (6.28)

CiteSeer �
2023
−−→ KL � (6.29)

KL �
4
−→ KL publ aut � (6.30)

KL �
3
−→ KL circ � (6.31)

KL �
2
−→ Impact � (6.32)

KL �
3
−→ {CiteSeer �, H-index �} (6.33)

Figure 6.1: Name and recommendation certificates for the example

the author has published in the conference, obtained from DBLP [39]. For
instance, for TACAS and Kim Larsen (KL), we have certs (6.22) and (6.23).

Another set of certs describes which PC members are coauthors of each
other. The weight is the number of jointly written papers, obtained again
from DBLP. For instance, cert (6.24) denotes that KL has written 22 papers
with PP.

Finally, each PC member has a circle of fellow researchers, composed of
the member’s coauthors, the coauthors of the member’s coauthors, and so
on. We define KL’s circle by means of certs (6.25) and (6.26).

Recommendation certs. The system contains one recommendation cert
for each conference, in which Impact recommends the authors of the con-
ference with the weight given by its impact factor. For TACAS we have
cert (6.27).

The next two certs, (6.28) and (6.29) express that the h-index and Cite-
Seer lists recommend a PC member (in this case KL) with a weight propor-

154

tional to his h-index and to his number of citations in the list, respectively.
Finally, each PC member issues four more certs. The certs for KL are

given in (6.30)–(6.33). Intuitively, they determine the weight with which KL

wishes to recommend his circle, the authors of the conferences he publishes in,
and how much trust he puts in the CiteSeer and h-index rankings. In a real
system, each PC member would allocate the weights for his/her own certs; in
our example we have assumed that all PC members give the same weights. In
order to illustrate the use of intersection certs we have assumed that KL only
recommends researchers on the basis of their ranking values if they appear in
both CiteSeer’s list and in the h-index list (6.33). Moreover, observe that in
certs (6.32) and (6.33), KL places trust in the recommendations given by the
rule targets (signified by �), whereas in the other rules he expresses trust in
the principals themselves.

In the following two sections we describe the running times and some
interesting aspects of solving the equation systems computing the reputation
of each researcher. All experiments were performed on a Pentium4 3.2 GHz
machine with 3GB memory.

Experiment 1

We have written a program which takes as input the set of SDSIrep certifi-
cates described above, generates the equation system of Section 6.2.2, and
computes its solution. We can then compute the degree to which researchers
recommend one another. From the result we build a Markov chain as de-
scribed in Section 6.2.1. The stationary distribution of the Markov chain,
given at the top of Table 6.3, can be interpreted as the (relative) reputation
of each researcher when compared to the others in the system.

The lower part of Table 6.3 shows how the running time scales when the
number of researchers is increased. For this experiment we have put together
the PCs of TACAS, FOSSACS, and ESOP, with a total of 76 members,
adding FOSSACS and ESOP to the list of conferences. We have computed
the stationary distribution for subsets of 10, 20, . . . , 76 PC members. The
first line of the table shows the number of variables in the system (which is
also the number of equations), and the second shows the time required to
solve it and compute the stationary distribution.

Notice that the equation system used here is non-linear. We solve it using
Newton’s iterative method, stopping when an iteration does not change any
component of the solution by more than 0.0001.

155

PB EB TB RC BC BD PG OG AG FH MH JJ KJ JK

26 18 19 78 45 6 56 60 30 19 45 19 5 23

BK MK KL NL KN PP SR CR JR AR SS SS BS LZ

10 30 88 26 37 33 64 22 45 6 54 15 80 41

scientists 10 20 30 40 50 60 70 76
variables 627 1653 3089 4907 7126 9752 12777 14779
time (s) 0.47 2.07 6.85 12.55 23.90 44.89 78.35 106.55

Table 6.3: Stationary distribution for TACAS PC members (values multiplied
by 1000) and statistics for different numbers of researchers.

Experiment 2

In contrast to other trust systems, in which trust is assigned from one in-
dividual to another, our choice of SDSIrep allows to assign trust measures
to sets of principals using multiple levels of indirection. For instance, A can
transfer trust to B even without knowing the fact that B is a coauthor of
C, and C publishes in the same conference as A. This added expressiveness
comes at a price. Certs with more than one identifier on the right-hand
side, like (6.26) or (6.30), cause the resulting equation system to become
non-linear. Likewise, intersection certs also give rise to non-linear equations.

On the other hand, if the system does not contain these two types of
certs, the resulting equation system is linear, and instead of Newton’s method
more efficient techniques can be applied, e.g. the Gauß-Seidel method. See
for instance [44] for a reference.

In the following, let us assume that intersection certs are absent. Consider
cert (6.26). The certificate is “recursive” in the sense that it can be applied
arbitrarily often in a certificate chain, rewriting KL circ to KL circn, for
any n ≥ 1. Thus, the length of terms to which KL circ can be rewritten
is unbounded. (In pushdown terms, the “stack” can grow to an unbounded
size.) If the set of certs is such that this effect cannot happen, then each term
can be rewritten into only finitely many different other terms. Therefore, we
can apply a process similar to that of “flattening” a pushdown system into
a finite-state machine and derive a larger, but linear, equivalent equation
system. If there are recursive certs, we can still choose an arbitrary bound
on the length of terms and ignore the contributions of larger terms. In

156

this case, the “unflattened” and “flattened” systems do not have the same
solution, but the solution of the “flattened” system converges to the solution
of the “unflattened” one when the bound increases.

This provokes the question of whether the performance of the equation
solver can be improved by bounding the maximal term length, “flattening”
the non-linear system into a linear one, and solving the linear system. In
order to experimentally address this question, we again took the system
described earlier in the section, but without cert (6.33). We fixed the maximal
term depth to various numbers, computed the corresponding linear flattened
systems, and solved them using the Gauß-Seidel method. (We omit the
details, which are standard.)

Unflattened D 2 D 3 D 4 D 5 D 6 D 7 D 8
vars 2545 5320 7059 8798 10537 12276 14015 15754
time 5.83 1.23 3.32 6.39 10.34 18.78 32.18 42.97

Table 6.4: Size of equation system and running time for flattened systems

We found that in this example flattening works very well. Even with stack
depth 2 we obtained a solution that differed from the one given by Newton’s
method by less than 1% and can be computed in 1.23 seconds instead of
5.83. Table 6.4 shows the results for stack depths up to 8 (D stands for
depth), i.e. the size of the equation system obtained for each stack depth
and the time required to solve it. Notice that in this case, the growth of the
equation system as the stack depth grows is benign (only linear); in general,
the growth could be exponential.

This result might suggest that using Newton’s method could always be
replaced by flattening in the absence of intersection certs. However, some
caution is required. When we tried to repeat the experiment for the case with
76 researchers, our solver was able to solve the unflattened system within two
minutes, but ran out of memory even for a flattened stack depth of 2.

6.3 Pushdown games

In [10] Cachat provided an algorithm for computing the winning positions of
a player in a pushdown reachability game. It is straightforward to reformu-
late the algorithm in terms of pre∗ computations for alternating pushdown

157

systems. We do this, and apply the results of Section 3.1.2 to provide very
precise upper bounds for the complexity of these problems.

A pushdown game system (PGS) is a tuple G = (P, Γ, ∆G, P0, P1), where
(P, Γ, ∆G) is a pushdown system and P0, P1 is a partition of P . A PGS
defines a pushdown game graph GG = (V,→) where V = PΓ∗ is the set of
all configurations, and pγv → qwv for every v ∈ Γ∗ iff (p, γ, q, w) ∈ ∆G. P0

and P1 induce a partition V0 = P0Γ
∗ and V1 = P1Γ

∗ on V . Intuitively, V0

and V1 are the nodes at which players 0 and 1 choose a move, respectively.
Given a start configuration π0 ∈ V , a play is a maximal (possibly infinite)
path π0π1π2 . . . of GG; the transitions of the path are called moves; a move
πi → πi+1 is made by player 0 if πi ∈ V0; otherwise it is made by player 1.

The winning condition of a reachability game is a regular goal set of con-
figurations R ⊆ PΓ∗. Player 0 wins those plays that visit some configuration
of the goal set and also those that reach a deadlock for player 1. Player 1
wins the rest. We wish to compute the winning region for player 0, denoted
by Attr0(R), i.e. the set of nodes from which player 0 can always force a visit
to R or a deadlock for player 1. Formally [10]:

Attr0
0(R) = R ,

Attri+1
0 (R) = Attri

0(R) ∪ {u ∈ V0 | ∃v : u → v, v ∈ Attri
0(R)}

∪ {u ∈ V1 | ∀v : u → v ⇒ v ∈ Attri
0(R)} ,

Attr0(R) =
⋃

i∈N

Attri
0(R) .

Given a PGS G = (P, Γ, ∆G, P0, P1), we define an alternating pushdown
system P = (P, Γ, ∆) as follows. For every p ∈ P and γ ∈ Γ: if p ∈ P0,
then for every rule 〈p, γ〉 →֒ 〈q, w〉 of ∆G add the rule 〈p, γ〉 →֒ 〈q, w〉 to ∆; if
p ∈ P1 and S is the set of right-hand-side configurations of rules with 〈p, γ〉
as left-hand-side, then add 〈p, γ〉 →֒ S to ∆. It follows immediately from
the definitions that Attr0(R) = pre∗

P(R) (intuitively, if c ∈ pre∗
P(R) then

c ⇒ C for some C ⊆ R, and so player 0 can force the play into the set C).
So we can use Algorithm 3.3 to compute Attr0(R). To derive the complexity
bound, we apply Lemma 3.3:

Theorem 6.4 Let G = (P, Γ, ∆G, P0, P1) be a PGS and a goal set R rec-
ognized by an alternating automaton AR = (Q, Γ, δ0, P, F). An alternating
automaton accepting the winning region can be computed in O(|δ0| + |∆0| +
|∆1|2n + (|∆2|n + |∆a|2a)4n) time, where n = |Pε| + |Qni|.

158

In [10] an upper bound of O(|∆| · 2c·|Q|2) is given. Our algorithm runs in
O(|∆|·2c·|Q|) time, and in fact Theorem 6.4 further reduces the exponent c·|Q|
to |Pε| + |Qni|. Typically, |Pε| + |Qni| is much smaller than |Q|. First, recall
that, because of the definition of P-automaton, we have P ⊆ Q. Moreover,
goal sets often take the form p1Γ

∗ ∪ . . .∪ pnΓ∗, i.e., player 0 wins if the play
hits one of the control states p1, . . . , pn. In this case we can construct AR

with |Qni| = 1. Since |Pε| is typically much smaller than |P |, the parameter
n is much smaller than |Q|.

159

Chapter 7

Conclusions

The main contribution of the thesis is the development of reachability anal-
yses for three weighted pushdown models—pushdown systems, alternating
pushdown systems, and pushdown networks—and their application to dif-
ferent areas. We have proposed different algorithms depending on types of
weights the models are based upon. The algorithms together with a Java
front-end have been optimized and implemented in jMoped, enabling Java
testing on wider ranges of inputs than one could achieve in traditional testing.
One can think of jMoped as a virtual machine that can symbolically execute
bytecode instructions on all inputs in a single run. jMoped has been success-
fully applied to non-trivial programs, both sequential and multithreading.
Notably, jMoped was successfully applied to a part of itself.

We believe that one of the reasons that software model checking has not
been extensively used in practice is because of the steep learning curve of
existing tools. jMoped, an Eclipse plug-in with a user-friendly interface,
has been designed to require the minimum amount of effort from users. It
allows users to easily test Java programs without knowing model-checking
techniques behind it. Unlike many model checkers that return only yes or
no after the end of an analysis, jMoped progressively shows results of the
analysis almost immediately after the analysis starts. Users can stop the
analysis at any time, and are still able to obtain partial results.

jMoped can be improved in many aspects. Basically, jMoped only works
when bytecode instructions are available. This is, however, not always the
case; especially when the Java library is involved. As a result, jMoped might
not be able to test some programs, unless stubs are explicitly written. Be-
sides, jMoped tends to be slow for programs with many objects, i.e., when

160

large heaps are required. Heap in jMoped is straightforwardly represented as
an array of fixed-size integers, whose elements are never garbage-collected.
Interesting questions are perhaps, how to encode heaps in a more efficient
way, or even how to approximate sizes of heap elements in order to reduce
the heap sizes. We believe that more intelligent ways of heap management
are necessary to boost applicability of the tool.

Additionally, we have applied reachability analyses on pushdown models
to the area of authorization and reputation systems. Both systems can be
modeled by alternating pushdown systems in a very similar manner, except
that weights are of different types. The problem of determining whether a
principal is authorized to access a given resource or the problem determining
a reputation of a principal boil down to solving reachability problems. At
first this fact seemed to prevent its application in real-life, since reachability
analyses on alternating pushdown systems takes exponential time in general.
We, however, have pointed out that since the alternating part of a model can
only be resulted from intersection authorization (or recommendation) certifi-
cates, the resulting model always satisfies a special case in which analyses
merely take polynomial time.

Still, experiments have shown that naive implementations of the algo-
rithms can be inadequate for real-life applications, especially when a large
number of principals is involved. The problem is more serious in reputa-
tion systems where systems of equations need to be solved. For instance, to
solve a system of equations with 30000 variables (which is a reasonable fig-
ure, recall that the largest experiment in Section 6.2.3 involve around 15000
variables) with the Newton’s method one would need to deal with 30000-by-
30000 matrices. Assuming that each element in the matrices is stored as a
64-bit (or 8-byte) double precision floating point, a total of 7.2 × 109 bytes
is required to store a single matrix. This amount of memory already exceeds
available memory of today’s standard computers, not to mention how to ef-
ficiently solve the equations if one were able to somehow store the matrices.
We believe that tackling these problems is an interesting future work that
would lead to a broader applicability of pushdown models in this area.

161

Bibliography

[1] R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state
machines. In Proc. CAV, 2001.

[2] H. R. Andersen. An introduction to binary decision diagrams. Technical
report, Technical University of Denmark, 1997. Lecture Notes.

[3] T. Ball and S. K. Rajamani. The SLAM project: debugging system
software via static analysis. In Proc. POPL, pages 1–3, 2002.

[4] M. Benedikt, P. Godefroid, and T. Reps. Model checking of unrestricted
hierarchical state machines. In Proc. ICALP, 2001.

[5] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software
model checker BLAST: applications to software engineering. Int. Journal
on Software Tools for Technology Transfer, 9:505–525, 2007.

[6] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of push-
down automata: Application to model-checking. In Proc. CONCUR,
1997.

[7] A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejček. Reachability
analysis of multithreaded software with asynchronous communication.
In Proc. FSTTCS, LNCS 3821, pages 348–359, 2005.

[8] R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on Computers, 35:677–691, 1986.

[9] O. Burkart and B. Steffen. Model checking for context-free processes.
In Proc. CONCUR, LNCS 630, pages 123–137, 1992.

[10] T. Cachat. Symbolic strategy synthesis for games on pushdown graphs.
In Proc. ICALP, LNCS 2380, pages 704–715, 2002.

163

[11] S. Chaki, E. M. Clarke, N. Kidd, T. Reps, and T. Touili. Verifying
concurrent message-passing C programs with recursive calls. In Proc.
TACAS, LNCS 3920, pages 334–349, 2006.

[12] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J.
ACM, 28(1):114–133, 1981.

[13] CiteSeer. Top 10,000 cited authors in computer science, available at
http://citeseer.ist.psu.edu/allcited.html.

[14] CiteSeer. Estimated impact of publication venues in computer science,
available at http://citeseer.ist.psu.edu/impact.html.

[15] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L.
Rivest. Certificate chain discovery in SPKI/SDSI. Journal of Computer
Security, 9:2001, 2001.

[16] E. M. Clarke and E. A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. In Logic of Programs,
pages 52–71. Springer-Verlag, 1982.

[17] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The
MIT Press, 1999.

[18] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu,
Robby, and H. Zheng. Bandera: Extracting finite-state models from
java source code. In Proc. ICSE, pages 439–448. ACM Press, 2000.

[19] C. Demartini, R. Iosif, and R. Sisto. dSPIN: A dynamic extension of
SPIN. In Proc. SPIN, LNCS 1680, pages 261–276, 1999.

[20] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylönen.
RFC 2693: SPKI Certificate Theory. The Internet Society, 1999.

[21] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient al-
gorithms for model checking pushdown systems. In Proc. CAV, LNCS
1855, pages 232–247, 2000.

[22] J. Esparza, S. Kiefer, and S. Schwoon. Abstraction refinement with
Craig interpolation and symbolic pushdown systems. In Proc. TACAS,
LNCS 3920, pages 489–503, 2006.

164

[23] J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic push-
down automata. In Proc. LICS. IEEE, 2004.

[24] J. Esparza and S. Schwoon. A BDD-based model checker for recursive
programs. In Proc. CAV, LNCS 2102, pages 324–336, 2001.

[25] K. Havelund. Java PathFinder, a translator from Java to Promela. In
Proc. SPIN, LNCS 1680, page 152, 1999.

[26] J. E. Hirsch. An index to quantify an individual’s scientific research
output. PNAS, 102(46):16569–16572, 2005.

[27] F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel, and M. Schwehm.
Nexus - an open global infrastructure for spatial-aware applications.
Technical Report 1999/02, Universität Stuttgart: SFB 627, 1999.

[28] G. J. Holzmann. Logic verification of ANSI-C code with Spin. In Proc.
SPIN, LNCS 1885, pages 131–147, 2000.

[29] G. J. Holzmann. The SPIN Model Checker: Primer and Reference Man-
ual. Addison-Wesley Professional, 2003.

[30] Java PathFinder, available at http://javapathfinder.sourceforge.net/.

[31] S. Jha and T. Reps. Analysis of SPKI/SDSI certificates using model
checking. In Proc. CSFW, page 129. IEEE Computer Society, 2002.

[32] S. Jha and T. Reps. Model checking SPKI/SDSI. JCS, 12(3–4):317–353,
2004.

[33] S. Jha, S. Schwoon, H. Wang, and T. Reps. Weighted pushdown systems
and trust-management systems. In Proc. TACAS, LNCS 3920, pages 1–
26, 2006.

[34] jMoped. The tool’s website, http://www7.in.tum.de/tools/jmoped/.

[35] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation
systems for online service provision. In Decision Support Systems, 2005.

[36] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The EigenTrust
algorithm for reputation management in P2P networks. In Proc. WWW,
2003.

165

[37] H. T. Kung and P. L. Lehman. Concurrent manipulation of binary
search trees. ACM Trans. Database Syst., 5(3):354–382, 1980.

[38] B. Lampson and R. L. Rivest. SDSI – a simple distributed security in-
frastructure, available at http://people.csail.mit.edu/rivest/sdsi11.html.

[39] M. Ley. DBLP bibliography, available at http://www.informatik.uni-
trier.de/˜ley/db/.

[40] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential
chain discovery in trust management. Journal of Computer Security,
11(1):35–86, 2003.

[41] T. Lindholm and F. Yellin. The JavaTMVirtual Machine Specification.
Prentice Hall, 2nd edition, 1999.

[42] K. L. McMillan. Symbolic Model Checking: An approach to the state
explosion problem. PhD thesis, Carnegie Mellon University, 1992.

[43] OpenJDK, available at http://community.java.net/openjdk/.

[44] J. M. Ortega. Numerical Analysis: A Second Course. Academic Press,
1972.

[45] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation
ranking: Bringing order to the web. Technical report, Stanford Digital
Library Technologies Project, 1998.

[46] ParForCE Project Workshop. Performance comparison between Pro-
log and Java, available at http://www.clip.dia.fi.upm.es/Projects/Par
Force/Final review/slides/intro/node4.html.

[47] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent
software. In Proc. TACAS, LNCS 3440, pages 93–107, 2005.

[48] S. Qadeer and D. Wu. KISS: keep it simple and sequential. In Proc.
PLDI, pages 14–24. ACM, 2004.

[49] J.-P. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In Proc. Symposium on Programming, LNCS 137,
pages 337–351, 1982.

166

[50] G. Ramalingam. Context-sensitive synchronization-sensitive analysis
is undecidable. ACM Trans. Programming Languages and Systems,
22(2):416–430, 2000.

[51] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems
and their application to interprocedural dataflow analysis. Science of
Computer Programming, 58(1–2):206–263, 2005.

[52] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an extensible and highly-
modular software model checking framework. In Proc. FSE, pages 267–
276. ACM, 2003.

[53] S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technische
Universität München, 2002.

[54] S. Schwoon, S. Jha, T. Reps, and S. Stubblebine. On generalized autho-
rization problems. In Proc. CSFW, pages 202–218. IEEE, 2003.

[55] F. Somenzi. CUDD: CU decision diagram package release 2.4.1, available
at http://vlsi.colorado.edu/˜fabio/CUDD/.

[56] D. Suwimonteerabuth. Verifying Java bytecode with the Moped model
checker. Master’s thesis, Universität Stuttgart, 2004.

[57] D. Suwimonteerabuth, S. Schwoon, and J. Esparza. Efficient algorithms
for alternating pushdown systems with an application to the computa-
tion of certificate chains. In Proc. ATVA, LNCS 4218, pages 141–153,
2006.

[58] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking
programs. Automated Software Engineering, 10(2):203–232, 2003.

[59] L. Wang and S. D. Stoller. Runtime analysis of atomicity for multi-
threaded programs. IEEE Trans. Software Eng., 32(2):93–110, 2006.

[60] M. A. Weiss. Data Structures and Algorithm Analysis in Java. Addison
Wesley, 1999.

[61] J. Whaley. JavaBDD, available at http://javabdd.sourceforge.net/.

167

