
jMoped: A Test Environment for Java Programs�

(Tool Paper)

Dejvuth Suwimonteerabuth, Felix Berger, Stefan Schwoon, and Javier Esparza

Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany��

1 Introduction

We present jMoped [1], a test environment for Java programs. Given a Java
method, jMoped can simulate its execution for all possible arguments within a
finite range and generate coverage information for these executions. Moreover,
it checks for some common Java errors, i.e. assertion violations, null pointer
exceptions, and array bound violations. When an error is found, jMoped finds
out the arguments that lead to the error. A JUnit [2] test case can also be
automatically generated for further testing.

Initially, jMoped was developed as a text-based translator from Java bytecode
into symbolic pushdown systems (SPDS). Technical details about the translation
process can be found in [3]. Since then, we have extended the tool with two goals:

– Harnessing the model-checking technique to support testing. Model checking
can symbolically test many inputs at the same time, is useful for finding
boundary cases, and can provide coverage metrics.

– Giving more control to the user. The tool must allow users to inspect the
intermediate results and to interrupt and refine the analysis at any time.
Partial results should also be useful for further analyses.

The resulting tool has been developed as a plug-in for Eclipse [4], which is
again called jMoped. It now consists of a graphical user interface, the translator,
and Moped [5] at the back-end. Moreover, the translator itself has been improved
in many aspects. It supports not only almost all fundamental features, e.g. as-
signment, method call, and recursion, but is also able to handle inheritance,
abstraction, and polymorphism. On the other hand, it still fails to translate
negative numbers, floats, and multi-threading programs.

2 Testing and Model Checking

Traditionally, testing and model checking are seen as distinct methodologies;
testing can detect bugs but not prove their absence, and model checking seeks
to establish the absence of bugs, possibly at the cost of taking very long to
complete (or not finishing at all). Recently, several efforts have been made at
� Partially supported by the DFG-Project “Algorithms for Software Model Checking”.

�� This work was done while the authors worked at the University of Stuttgart.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 164–167, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

jMoped: A Test Environment for Java Programs 165

cross-fertilising between these two areas. Our tool falls into this line of work in
the sense that we use a model checker to support the task of testing a program.

Internally, the tool translates a Java program into an SPDS, preserving the
control flow of the program, but modelling only a finite amount of data. The
size of variables and of the heap are bounded by user-defined (artificial) ranges.
Thus, the model-checking procedure can be thought of as an extended symbolic
testing procedure, which is still incomplete (because only runs within the given
bounds are considered); however, once the bounds are established, the model
checker will perform exact checks on all executions within these bounds.

We contend that this approach can complement traditional testing methods
for two reasons: First, model checkers using compact data structures (such as
BDDs) can simulate many executions at the same time, which can be more
efficient than exhaustive testing. For example, our tool can test a Quicksort
implementation for 60 array elements if each element has only one bit, whereas
exhaustive testing for these parameters is infeasible. Secondly, model checking is
suitable for finding boundary cases, i.e. inputs with special properties that are
easily forgotten during testing, but are prone to cause bugs. E.g., two boundary
cases for a sorting procedure would be an array where all elements are the same,
or an array that is already sorted. Even relatively small bounds on the inputs are
likely to contain many interesting boundary cases, and the model checker will test
all of them (and find the faulty ones). Thus, the approach can greatly enhance
the confidence in the correctness of a program, without strictly guaranteeing it.

The results of a model-checking procedure can support testing in other ways,
too. The quality of a set of test cases is usually measured by so-called coverage
metrics, e.g., counting how many lines of code were exercised by the test cases.
We observe that such metrics can also be obtained by running a model checker on
a set of inputs and checking which lines were found to be reachable. In jMoped,
the user can observe the progress of these metrics while the checker is running.
Moreover, the user may stop the checker at any time (e.g., if the attained level
of coverage is deemed satisfactory), or ask it to specifically search for inputs
that can reach a certain target in the program. Moreover, if the checker finds
that bugs are caused by certain inputs, those inputs can be saved in a library of
JUnit test cases, where they may be useful for future test runs.

3 Working with jMoped

jMoped consists of three parts: a graphical user interface, a translator from
Java bytecode into SPDS, and an SPDS model checker. The translator and the
checker are available as stand-alone tools, and the checker is capable of handling
programs with thousands of lines, provided that the data complexity is low as is
the case, for instance, with device drivers [5]. However, the graphical interface
was developed for unit testing, with smaller, more data-intensive programs in
mind. The interface is also described in more detail in [6].

The graphical interface takes the form of an Eclipse plug-in. Figure 1 shows
an example when running with a Quicksort implementation taken from [7]. The

166 D. Suwimonteerabuth et al.

Fig. 1. A view of the plug-in

left-hand side is the plug-in interface, while the right-hand side shows parts of
the code and the analysis results. Users select a method from which the analysis
should start. In the example, the method sort starting at line 43 was chosen.

jMoped has two modes of operation. In the standard mode, jMoped exhaus-
tively explores the program for all inputs within the bounds provided by the
user. This is done in two steps. First, the program (which reads input from its
user) is transformed into another program that nondeterministically generates
an input. Then, the checker exhaustively explores all behaviours of the trans-
formed program. In the second mode of operation, jMoped works backwards.
Given a postcondition, jMoped computes the set of all states (within the given
bounds) from which the states of the postcondition can be reached.

During the analysis, jMoped graphically displays its progress. First, black
markers are placed in front of all statements. While the checker is running, the
parts of the state space found to be reachable are mapped back to the Java
program, and the appearance of the corresponding markers is changed. When
a black marker turns green, it means that the corresponding Java statement is
reachable from some argument values. A red marker means that an assertion
statement has been violated by some argument values. Other markers indicate
null pointer exceptions, array bound violations, and heap overflows (see below).

After the analysis, users can either create a call trace or a JUnit test case
that reaches a given statement or violates some assertion. An example of the
call trace can be seen in lower left part of Figure 1, where the assertion violation
occured when the method sort was called with the array [1,0,1].

jMoped: A Test Environment for Java Programs 167

In a typical scenario, a user will want to achieve 100% coverage, i.e. the checker
should test a set of inputs such that every statement is exercised at least once.
The idea for achieving this is to combine the two modes of operation. First,
one uses the standard mode to cover as many instructions as possible. Say all
but three instructions were covered. Then, in a second phase, one applies three
backward searches starting from these three particular instructions. Since these
are specific searches with the “difficult” instructions as goal, the hope is that
they have better success chances than the “blind” forward search.

For performance reasons, the user starts the checker in standard mode with
small values for the parameters, in the hope of achieving a large coverage degree
quickly. However, choosing small parameters may cause some (normally reach-
able) statements to be considered unreachable. (E.g., the body of an if-statement
guarded by the condition x >= 8 would be unreachable with a specified bit size
of less than 4.) Backward search can then be used to instruct the model checker
to search for inputs that reach the remaining statements.

There are two important parameters to jMoped: the number of bits and the
heap size. These determine the bounds for the inputs and executions that are to
be tested. The number of bits restricts the range of every number that appears
in a program, including constants, integer variables, and the lengths of arrays
or strings. The heap size directly affects the number of objects that can be
instantiated. jMoped simulates the Java heap when manipulating objects. For
example, when an object is created, it occupies a part of the heap whose size
depends on the size of the object. Note that these two parameters depend on
each other, i.e. the heap size can be at most two to the number of bits minus
one. For instance, the analysis in Figure 1 was performed with 3 bits and heap
size 7. It is also possible to specify how many bits to use for individual variables,
parameters, or fields. The annotation at line 42 of Figure 1 means that the length
of array a has two bits, and each of its elements has one bit.

References

1. jMoped: A test environment for Java programs,
http://www.fmi.uni-stuttgart.de/szs/ tools/moped/jmoped/

2. JUnit: Testing resources for extreme programming, http://www.junit.org/
3. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: jMoped: A Java bytecode checker

based on Moped (Tool paper). In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005.
LNCS, vol. 3440, pp. 541–545. Springer, Heidelberg (2005)

4. Eclipse: An open development platform, http://www.eclipse.org
5. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, Technische Univer-

sität München (2002)
6. Berger, F.: A test and verification environment for Java programs. Master’s thesis,

University of Stuttgart (2007)
7. ParForCE Project Workshop: Performance comparison between Prolog and

Java, http://www.clip.dia.fi.upm.es/Projects/ParForce/Final review/slides/i ntro/
node4.html

http://www.fmi.uni-stuttgart.de/szs/tools/moped/jmoped/
http://www.fmi.uni-stuttgart.de/szs/tools/moped/jmoped/
http://www.junit.org/
http://www.eclipse.org
http://www.clip.dia.fi.upm.es/Projects/ParForce/Final_review/slides/i ntro/node4.html
http://www.clip.dia.fi.upm.es/Projects/ParForce/Final_review/slides/i ntro/node4.html

	Introduction
	Testing and Model Checking
	Working with jMoped

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

