
A

From LTL to Deterministic Automata–A Safraless Compositional
Approach

JAVIER ESPARZA, Fakultät für Informatik, Technische Universität München, Germany
JAN KŘETÍNSKÝ, IST Austria
SALOMON SICKERT, Fakultät für Informatik, Technische Universität München, Germany

We present a new algorithm to construct a (generalized) deterministic Rabin automaton for an LTL formula
ϕ. The automaton is the product of a co-Büchi automaton for ϕ and an array of Rabin automata, one for
each G-subformula of ϕ. The Rabin automaton for Gψ is in charge of recognizing whether FGψ holds.
This information is passed to the co-Büchi automaton that decides on acceptance. As opposed to standard
procedures based on Safra’s determinization, the states of all our automata have a clear logical structure,
which allows for various optimizations. Experimental results show improvement in the sizes of the resulting
automata compared to existing methods.

1. INTRODUCTION
Linear temporal logic (LTL) is the most popular language for the specification of
properties of single computations of a program. The verification problem for LTL consists
of deciding if all computations of a program satisfy a given LTL-formula formalizing a
property. In the automata-theoretic approach to this problem [Vardi and Wolper 1986;
1994; Vardi 1999], the negation of the formula is translated into an ω-automaton, and
the product of this automaton with the transition system describing the semantics
of the program is analyzed. In particular, if this transition system—or some suitable
abstraction of it—has a finite number of states, then the product can be exhaustively
explored by a search algorithm, and the property can be checked automatically, at least
in principle.

While the size of the ω-automaton can be exponential or even double-exponential in
the length of the formula (depending on the kind of ω-automaton), typical formulae used
in practice are either small, or belong to classes for which this blowup does not happen.
However, since the transition system is often very large, generating small ω-automata
is still crucial for the efficiency of the approach: Even a reduction of a few states in the
ω-automaton can lead to a much larger reduction in the product.

For functional LTL verification (as opposed to the probabilistic verification discussed
in the next paragraph), verification algorithms only require to transform the LTL
formula into a non-deterministic ω-automaton, typically a Büchi or generalized Büchi
automaton and, thanks to intense research in the last decade, the problem of generating
small automata is well understood, e.g. [Gerth et al. 1995; Couvreur 1999; Gastin
and Oddoux 2001]. Several tools implement a number of heuristic simplifications (of
the formula, of intermediate automata generated during the translation, and of the
final result), and generate Büchi automata of minimal or nearly minimal size for most
common specifications, e.g. [Babiak et al. 2012; Duret-Lutz 2013]. An important factor
for this success is the fact that the states of the automaton are LTL formulae, which
allows one to use information about logical equivalence or implication between formulae
to merge states.

The picture is still very different for quantitative LTL verification of probabilistic
systems, i.e., for the problem of computing the probability with which an LTL property
is satisfied, or deciding whether it exceeds a given bound. The standard approach to this
problem requires to translate the LTL formula into a deterministic ω-automaton [Baier
and Katoen 2008; Chatterjee et al. 2013], typically a deterministic Rabin automaton
(DRA). Contrary to the functional case, up to 2012 there were no algorithms providing
a direct translation, all algorithms available proceeded in two steps: first, the formula

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

was translated into a non-deterministic Büchi automaton (NBA), and then Safra’s
construction [Safra 1988]—or improvements on it [Piterman 2006; Schewe 2009]—was
applied to transform the NBA into a DRA. (Alternatively, the determinization step can
be replaced by semi-determinization [Courcoubetis and Yannakakis 1988].) At the time
of writing this paper this is also the default approach adopted in PRISM [Kwiatkowska
et al. 2011], a leading probabilistic model checker, which reimplements the optimized
Safra’s construction of the ltl2dstar tool [Klein 2005]. While Safra’s construction
is a milestone of the theory of ω-automata, it is also difficult to implement (see e.g.
[Kupferman 2012]). In particular, it is a monolithic construction that can be applied to
any NBA, and therefore does not exploit the structure of LTL formulae.

In 2011 the second author initiated a research program for the design and implemen-
tation of a direct LTL-to-DRA translation that “bypasses” Safra’s construction. As a
first result, a translation for the LTL fragment containing only the temporal operators
F and G was presented in [Křetínský and Esparza 2012]. The translation yields a
deterministic generalized Rabin automaton (DGRA), which can then be degeneralized
into a standard DRA. Alternatively, a verification algorithm was proposed in [Chatterjee
et al. 2013] which does not require to degeneralize, and exhibits the same worst-case
complexity. In both cases much smaller automata were obtained for many formulae.
(For instance, while the standard approach translates a conjunction of three fairness
constraints into an automaton with over a million states, the algorithm of [Křetínský
and Esparza 2012] yields a DGRA with one single state (when acceptance is defined
on transitions), and a DRA with 462 states.) Subsequently, the approach was extended
to larger fragments of LTL containing the X operator and restricted appearances of U
[Gaiser et al. 2012; Křetínský and Ledesma-Garza 2013]. However, a general algorithm
remained elusive.

In this paper we present a novel approach able to handle full LTL. The approach is
compositional: the DGRA is obtained as a parallel composition of automata running in
lockstep1. More specifically, the automaton for a formula ϕ is the parallel composition
of a co-Büchi automaton (a special case of DRA) and an array of DRAs, one for each
G-subformula of ϕ. Intuitively, the state of the co-Büchi automaton after reading a
finite word corresponds to “the formula that remains to be fulfilled” (we say that the
automaton monitors the remaining formula). For example, if ϕ = (¬a ∧Xa) ∨XXGa,
then the remaining formula after reading ∅{a} is tt, and after reading {a} it is XGa. In
particular, if the automaton reaches the state tt, it accepts.

If the co-Büchi automaton never reaches tt, then it needs information from the
DRAs to decide on acceptance. The DRA for a G-subformula Gψ checks whether Gψ
eventually holds, i.e., whether FGψ holds. Like the co-Büchi automaton, the DRA also
monitors the remaining formula, but only partially: more precisely, it does not monitor
any G-subformula of ψ, because other DRAs are responsible for them. For instance, if
ψ = a ∧Gb ∧Gc, then the DRA for Gψ checks FGa, and “delegates” checking FGb and
FGc to other automata. Further, and crucially, the DRA for Gψ may also provide the
information that not only FGψ, but a stronger formula FG(ψ ∧ ψ′) holds. For example,
the run of the DRA for G(a ∨Xc) on the word cω supplies the information that not only
FG(a ∨Xc), but also the stronger formula FG((a ∨Xc) ∧Xc) ≡ FGXc holds.

The acceptance condition of the full parallel composition is a disjunction over all
possible subsets G of G-subformulae, and all possible sets of stronger formulae F that
the DRAs can check together. Intuitively, the parallel composition accepts a word w by
means of the disjunct for G and F when w satisfies FG (meaning that w satisfies FGψ

1We could also speak of a product of automata, but the operational view behind the term parallel composition
helps to convey the intuition.

2

for every Gψ ∈ G) and also FGF . The co-Büchi automaton is in charge of checking the
conditional property that if w satisfies FGG and FGF , then it also satisfies ϕ.

A previous version of our compositional algorithm appeared in [Esparza and Křetín-
ský 2014]. Since the construction was involved and had a number of corner cases,
the third author mechanically verified it in the Isabelle theorem prover. The exercise
revealed that, as expected, some minor corrections were necessary, but also exposed a
more serious bug requiring a substantial change in a lemma. An analysis revealed that
the smallest to us known formula for which the construction of [Esparza and Křetínský
2014] would have produced a wrong result is G(Xa ∨GXb), which has a high chance of
surviving a large amount of testing.

Related work. There are many constructions translating LTL to NBA, e.g., [Gerth
et al. 1995; Couvreur 1999; Daniele et al. 1999; Etessami and Holzmann 2000; Somenzi
and Bloem 2000; Gastin and Oddoux 2001; Giannakopoulou and Lerda 2002; Fritz
2003; Babiak et al. 2012; Duret-Lutz 2013]. The one recommended by ltl2dstar and
used in PRISM is LTL2BA [Gastin and Oddoux 2001]. The version of Safra’s construction
described in [Klein and Baier 2007], which includes a number of optimizations, has been
implemented in ltl2dstar [Klein 2005], and re-implemented in PRISM [Kwiatkowska
et al. 2011]. A comparison of LTL translators into deterministic ω-automata can be
found in [Blahoudek et al. 2013].

Our compositional construction shares the idea of recursive use of automata with
the construction that uses temporal testers. However, “testers are inherently non-
deterministic” [Pnueli and Zaks 2008], whereas all our automata are deterministic.

Safra’s construction can also be used as intermediate step to solve other translation
problems, and bypassing it by means of “safraless approaches” has been the subject of
several papers [Kupferman and Vardi 2005; Kupferman et al. 2006; Giampaolo et al.
2010].

Outline. The paper is organized as follows: After Section 2, which introduces basic
definitions about LTL and ω-automata, the next four sections present LTL-to-DGRA
constructions for increasingly general LTL fragments. As a warm-up, Section 3 considers
the case of G-free formulae. Section 4 considers the case of formulae FGϕ, where ϕ has
no occurrence of G. Loosely speaking, it gives the recipe to construct a single element of
the array of DRAs, Section 5 constructs a DGRA for an arbitrary formula FGϕ as an
array of DRAs. Section 6 shows how to construct the co-Büchi automaton and the full
parallel composition for an arbitrary formula. All four sections have the same structure.
First, we obtain a logical characterization of the words that satisfy a formula of the
corresponding fragment, and then derive the corresponding automaton from it.

The paper continues with Section 7, which describes some optimizations that reduce
the number of states of the final DGRA, and the size of its acceptance condition. Section
8 contains some remarks about the worst-case complexity of our construction. Finally,
Section 9 introduces Rabinizer, the tool implementing our construction, and presents a
number of experimental results on different test suites of LTL formulae.

As mentioned above, the correctness proof of our construction has been mechanized
using the Isabelle theorem prover. Section 10 shows how to access the mechanized
proofs, and the relation between this paper and the formal proof. In particular, in the
paper we sometimes omit cases in proofs by structural induction that do not provide
special insight.

Finally, Section 11 presents our conclusions. Some technical proofs are presented in
Appendix.

3

2. BASIC DEFINITIONS
We recall basic definitions of ω-automata and Linear Temporal Logic, and establish
some notations.

In this paper, N denotes the set of natural numbers including zero. We say that
a property holds for almost every n ∈ N if it holds for all but finitely many natural
numbers.

2.1. Alphabets and words
An alphabet is any finite set Σ. The elements of Σ are called letters. A word is an infinite
sequence of elements of Σ. The set of all words is denoted by Σω. A finite word is a finite
sequence of elements of Σ, and the set of all finite words is denoted by Σ∗.

The ith letter of a word w ∈ Σω is denoted by w[i], i.e. w = w[0]w[1] · · · . Given i, j ∈ N,
we denote by wij the finite word w[i]w[i+ 1] · · ·w[j − 1] if i < j, and the empty word if
j ≤ i. We denote by wi or sometimes wi∞ the suffix w[i]w[i+ 1] · · · .

A (finite or infinite) set of words is called a language.

2.2. Linear Temporal Logic
Linear Temporal Logic (LTL) extends propositional logic with temporal operators.

2.2.1. Syntax and semantics

Definition 2.1 (LTL Syntax). Let Ap be a finite set of atomic propositions. The for-
mulae of linear temporal logic (LTL) over Ap are given by the syntax

ϕ ::= | tt | ff | a | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ

where a ∈ Ap.
Formulae are interpreted on words over the alphabet 2Ap. That is, a letter is a subset

of Ap .

Definition 2.2 (LTL Semantics). The satisfaction relation |= between words and
formulae is inductively defined as follows:

w |= tt
w 6|= ff
w |= a iff a ∈ w[0]
w |= ¬ϕ iff w 6|= ϕ
w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ

w |= Xϕ iff w1 |= ϕ
w |= Fϕ iff ∃ k ∈ N : wk |= ϕ
w |= Gϕ iff ∀ k ∈ N : wk |= ϕ
w |= ϕUψ iff ∃ k ∈ N : wk |= ψ and

∀ 0 ≤ j < k : wj |= ϕ

Given two formulae φ, ψ, we say that φ entails ψ, denoted by φ |= ψ, if w |= φ implies
w |= ψ for every w ∈ (2Ap)ω. We say that φ and ψ are equivalent, denoted by φ ≡ ψ, if
φ |= ψ and ψ |= φ.

2.2.2. Negation normal-form. In LTL negations can be “pushed inwards”; for instance,
we have ¬FGa ≡ G¬Ga ≡ GF¬a. By pushing negations inwards until all negations
appear only in front of atomic propositions, we obtain the negation normal form:

Definition 2.3 (Negation normal form). A formula of LTL is in negation normal
form if it is given by the syntax:

ϕ ::=tt | ff | a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ

where a ∈ Ap.
PROPOSITION 2.4 (NORMAL FORM THEOREM). Every formula of LTL is equivalent

to a formula in negation normal form.

4

PROOF. Exhaustive application of the following well-known rewrite rules (which
replace a formula by an equivalent one) brings every formula in negation normal form:
¬Xϕ; X¬φ, ¬Fϕ; G¬φ, ¬Gϕ; F¬φ, ¬(ϕUψ) ; (¬ψU(¬ϕ ∧ ¬ψ)) ∨Gψ.

Observe that, due to the last rule, the formula obtained by exhaustive rewriting can
be exponentially longer than the original formula. However, if the formula is stored as
a dag instead of a tree, then the dag of the formula in negation normal form is only
linearly larger than the dag of the original formula.

In the rest of the paper we assume that formulae of LTL are in negation normal form,
and speak of “a formula” instead of “a formula in negation normal form”.

2.2.3. Propositional entailment, equivalence, and substitution. Loosely speaking, given two
formulae ϕ and ψ, we say that ϕ propositionally entails ψ if ϕ |= ψ can be proved using
only propositional reasoning. So, for instance, Ga propositionally implies Ga ∨Gb, but
Ga does not propositionally imply Fa.

Definition 2.5 (Propositional implication and equivalence). A formula of LTL is
proper if it is not a conjunction or a disjunction (i.e., if the root of its syntax tree
is not ∧ or ∨). The set of proper formulae of LTL over Ap is denoted by PF (Ap). A propo-
sitional assignment, or just an assignment, is a mapping A : PF (Ap) → {0, 1}. Given
ϕ ∈ PF (Ap), we write A |= ϕ iff A(ϕ) = 1, and extend the relation |=P to arbitrary
formulae by:

A |=P ϕ ∧ ψ iff A |=P ϕ and A |=P ψ
A |=P ϕ ∨ ψ iff A |=P ϕ or A |=P ψ

We say that ϕ propositionally entails ψ, denoted by ϕ |=P ψ, ifA |=P ϕ impliesA |=P ψ
for every assignment A. Finally, ϕ and ψ are propositionally equivalent, denoted by
ϕ ≡P ψ, if ϕ |=P ψ and ψ |=P ϕ. We denote by [ϕ]P the equivalence class of ϕ under the
equivalence relation ≡P . (Observe that ϕ ≡P ψ implies ϕ ≡ ψ holds.)

Definition 2.6 (Propositional substitution). Let ψ, χ be formulae, and let Ψ be a set
of proper LTL-formulae. The formula ψ[Ψ/χ]P is inductively defined as follows:

— If ψ = ψ1 ∧ ψ2 then ψ[Ψ/χ]P = ψ1[Ψ/χ]P ∧ ψ2[Ψ/χ]P .
— If ψ = ψ1 ∨ ψ2 then ψ[Ψ/χ]P = ψ1[Ψ/χ]P ∨ ψ2[Ψ/χ]P .
— If ψ is a proper formula and ψ ∈ Ψ then ψ[Ψ/χ]P = χ, else ψ[Ψ/χ]P = ψ.

2.2.4. The After Function af (ϕ,w). Given a formula ϕ and a finite word w, we define a
formula af (ϕ,w), read “ϕ after w”. Intuitively, if a word ww′ (where w is a finite word)
satisfies ϕ, then af (ϕ,w) is the formula that holds “after having read w”, that is, the
formula satisfied by w′. As shown in Proposition 2.10 below, the converse also holds: if
w′ satisfies af (ϕ,w), then ww′ satisfies ϕ.

Definition 2.7. Let ϕ be a formula and ν ∈ 2Ap. We define the formula af (ϕ, ν) as
follows:

af (tt, ν) = tt

af (ff , ν) = ff

af (a, ν) =

{
tt if a ∈ ν
ff if a /∈ ν

af (¬a, ν) =

{
ff if a ∈ ν
tt if a /∈ ν

af (ϕ ∧ ψ, ν) = af (ϕ, ν) ∧ af (ψ, ν)

af (ϕ ∨ ψ, ν) = af (ϕ, ν) ∨ af (ψ, ν)

af (Xϕ, ν) = ϕ

af (Gϕ, ν) = af (ϕ, ν) ∧Gϕ

af (Fϕ, ν) = af (ϕ, ν) ∨ Fϕ

af (ϕUψ, ν) = af (ψ, ν) ∨ (af (ϕ, ν) ∧ ϕUψ)

5

We extend the definition to finite words: af (ϕ, ε) = ϕ; and af (ϕ, νw) = af (af (ϕ, ν), w)
for every ν ∈ 2Ap and every finite word w. Finally, we say that ψ is reachable from ϕ if
ψ = af (ϕ,w) for some finite word w.

Example 2.8. Let Ap = {a, b, c} and ϕ = a ∨ (b U c). We have af (ϕ, {a}) = tt
af (ϕ, {b}) = (b U c), af (ϕ, {c}) = tt, and af (ϕ, ∅) = ff .

We collect a number of simple properties of af , proved in the Appendix.

LEMMA 2.9. For every formula ϕ and every finite word w ∈ (2Ap)∗:

(1) af (ϕ,w) is a boolean combination of proper subformulae of ϕ.
(2) If af (ϕ,w) = tt, then af (ϕ,ww′) = tt for every w′ ∈ (2Ap)∗, and analogously for ff .
(3) If ϕ1 ≡P ϕ2, then af (ϕ1, w) ≡P af (ϕ2, w).
(4) If ϕ has n proper subformulae, then the set of formulae reachable from ϕ has at most

22n

equivalence classes of formulae with respect to propositional equivalence.

Observe that, by Lemma 2.9(3), the function af can be lifted to equivalence classes of
formulae w.r.t. propositional equivalence. Abusing language, we also denote this lifted
function by af .

We now state the fundamental property of the After function, also proved in the
Appendix: a word ww′ satisfies a formula ϕ iff “after reading” w the “rest” of the word,
i.e., the word w′, satisfies af (ϕ,w).

PROPOSITION 2.10. Let ϕ be a formula, and let ww′ ∈ (2Ap)ω be an arbitrary word.
Then ww′ |= ϕ iff w′ |= af (ϕ,w).

2.3. Transition systems and ω-automata
A deterministic transition system (DTS) over an alphabet Σ is a tuple T = (Q,Σ, δ, q0)
where Q is a set of states, Σ is an alphabet, δ : Q× Σ→ Q is a transition function, and
q0 ∈ Q is the initial state. If δ(q, a) = q′ then we call the triple t = (q, a, q′) a transition,
and say that q, a, and q′ are the source, the letter, and the target of t. We denote by T
the set of transitions of T .

A run of T is an infinite sequence ρ = t0t1 · · · of transitions such that the source of t0
is the initial state q0, and for every i ≥ 0 the target of ti is equal to the source of ti+1. A
transition t occurs in ρ if t = ti for some i ≥ 0. A state q occurs in ρ if it is the source
or target of some ti. Given a word w = a0a1 · · · ∈ Σω, we denote by ρ(w) the unique run
t0t1t2 · · · of T such that for every i ≥ 0 the letter of ti is ai.

The product of two DTSs T1 = (Q1,Σ, δ1, q01) and T2 = (Q2,Σ, δ2, q02) is the DTS
T1 × T2 = (Q,Σ, δ, q0), where Q = Q1 × Q2, δ((q1, q2), a) = (δ1(q1, a)δ(q2, a) for every
q1 ∈ Q1, q2 ∈ Q2, a ∈ Σ, and q0 = (q01, q02).

2.3.1. Acceptance conditions and ω-automata. A state-based acceptance condition for T is
a positive boolean formula over the formal variables VQ = {Inf (S),Fin(S) | S ⊆ Q}.
Acceptance conditions are interpreted over runs. Given a run ρ of T and an acceptance
condition α, we consider the truth assignment that sets the variable Inf (S) to true iff ρ
visits (some state of) S infinitely often, and sets Fin(S) to true iff ρ visits (all states of)
S finitely often. The run ρ satisfies α if this truth-assignment makes α true. The size of
a condition α is its length as boolean formula.

A transition-based acceptance condition for T is defined exactly as a state-based
acceptance condition, but replacing the set VQ by the set VT = {Inf (U),Fin(U) | U ⊆ T}.
In this paper we use state-based or transition-based acceptance conditions, depending
on what is more convenient. It is well-known that a state-based conditions can be
transformed into an equivalent transition-based one (i.e., a condition satisfied by
the same runs). It suffices to replace each occurrence of Inf (S) by Inf (•S), where •S

6

denotes the set of transitions with target in S, and similarly for Fin(S). Conversely, a
transition-based condition can also be transformed into an equivalent state-based one
by replicating the states. Given a DTS T = (Q,Σ, δ, q0) with a set T of transitions we
construct the new DTS T ′ with states {q0} ∪ T , a transition (q0, a, t) for every transition
t = (q0, a, q) of T , and a transition (t, a, t′) for every pair t = (q1, a, q2) and t′ = (q2, b, q3)
of transitions of T . Then, the condition over the transitions of T becomes an equivalent
condition over the states of T ′.

A deterministic ω-automaton over Σ is a tuple A = (Q,Σ, δ, q0, α), where (Q,Σ, δ, q0)
is a deterministic transition system and α is an acceptance condition. A accepts a word
w ∈ Σ∗ if the run ρ(w) satisfies α. The language of A, denoted by L(A), is the set of
words accepted by A.

An acceptance condition α is a

— Büchi condition if α = Inf (S) for some S ⊆ Q.
— co-Büchi condition if α = Fin(S) for some S ⊆ Q.
— Rabin condition if α =

∨n
j=1(Fin(Fj) ∧ Inf (Ij)) for sets F1, I1, . . . , Fn, In ⊆ Q. The pair

Pj = (Fj , Ij) is called a Rabin pair.
— generalized Rabin condition if α =

∨n
j=1(Fin(Fj) ∧

∧mj

k=1 Inf (Ijk)) for sets
F1, . . . , Fn, I11, . . . , Inmn

⊆ Q.

Observe that Büchi and co-Büchi conditions are special cases of Rabin conditions.
Further, every generalized Rabin condition can be transformed into an equivalent
Rabin condition, which however may be exponentially longer. The generalized Rabin
condition arises naturally when considering intersection of Rabin automata. Observe
that we do not need to consider

∧`j
k=1 Fin(Fjk), but only Fin(Fj), because

∧nj

k=1 Fin(Fjk)

is equivalent to Fin(
⋃`j
k=1 Fjk).

A deterministic Büchi, co-Büchi, Rabin or generalized Rabin automaton is a determin-
istic ω-automaton with an acceptance condition of the corresponding kind. In the rest
of the paper we shorten deterministic Rabin automaton to DRA, and the generalized
version to DGRA.

The following results are well known.

PROPOSITION 2.11. Given DRAs R1 and R2 recognizing languages L1 and L2,
respectively, we can construct DRAs, denoted R1 ∪R2 and R1 ∩R2, recognizing L1 ∪ L2

and L1 ∩L2, respectively. Moreover, the transition system of both R1 ∪R2 and R1 ∩R2 is
the product of the transition systems of R1 and R2.

PROPOSITION 2.12. Let X be a finite set of indices, and let Ri = (Q,Σ, δ, q0, αi) be
a family of DRAs, one for every index i belonging to some finite set I of indices, all of
them with the same underlying transition system. Then R∪ = (Q,Σ, δ, q0,

∨
i∈I αi) is

a DRA recognizing
⋃
i∈X L(Ri), and R∩ = (Q,Σ, δ, q0,

∧
i∈X αi) is a generalized DRA

recognizing
⋂
i∈X L(Ri).

3. AUTOMATA FOR G-FREE FORMULAE
We present a translation of G-free formulae (i.e., formulae without any occurrence of the
G-operator) into a deterministic ω-automaton with a very simple acceptance condition,
which can be expressed both as a Büchi and a co-Büchi condition. The translation is by
no means novel, but it serves as a warm-up for the next sections, which consider more
general classes of formulae. Moreover, the section allows us to introduce the general
scheme we use to design translations: first, we give a logical characterization theorem
characterizing the words that satisfy a formula of the given class, and then we construct
an automaton which accepts iff the condition of the characterization holds.

7

THEOREM 3.1 (LOGICAL CHARACTERIZATION THEOREM I). Let ϕ be a G-free for-
mula and let w be a word. Then w |= ϕ iff there exists i > 0 such that af (ϕ,w0j) ≡P tt
for every j ≥ i.

PROOF. By Lemma 2.9(2) it suffices to show that w |= ϕ iff there exists i > 0 such
that af (ϕ,w0i) ≡P tt. (In the rest of this proof we use Lemma 2.9(2) without explicitly
mentioning it.)
(⇐): Assume there exists i > 0 such that af (ϕ,w0i) ≡P tt. Then wi |= af (ϕ,w0i). By
Proposition 2.10, we get w = w0iwi |= ϕ.
(⇒): Assume w |= ϕ. We proceed by structural induction on ϕ. We only consider two
representative cases.

— ϕ = a. Since w |= ϕ we have w = νw′ for some word w′ and for some ν ∈ Ap such
that a ∈ ν. By the definition of af we have af (a, ν) ≡P tt, and, since ν = w01, we get
af (ϕ,w01) ≡P tt.

— ϕ = ϕ1Uϕ2. By the semantics of LTL there is k ∈ N such that wk |= ϕ2 and w` |= ϕ1

for every 0 ≤ ` < k. By induction hypothesis there exists for every 0 ≤ ` < k an i ≥ `
such that af (ϕ1, w`i) ≡P tt and there exists an i ≥ k such that af (ϕ2, wki) ≡P tt. Let
j be the maximum of all those i’s. We prove af (ϕ1Uϕ2, w0j) ≡P tt via induction on k.
— k = 0.

af (ϕ1Uϕ2, w0j)
= af (ϕ2, w0j) ∨ (af (ϕ1, w0j) ∧ af (ϕ1Uϕ2, w1j)) (def. of af)
≡P tt ∨ af (ϕ1, w0j) ∧ af (ϕ1Uϕ2, w1j)) (af (ϕ2, wkj) ≡P tt)
≡P tt

— k > 0.

af (ϕ1Uϕ2, w0j)
= af (ϕ2, w0j) ∨ (af (ϕ1, w0j) ∧ af (ϕ1Uϕ2, w1j)) (def. of af)
≡P af (ϕ2, w0j) ∨ (tt ∧ af (ϕ1Uϕ2, w1j)) (af (ϕ1, w0j) ≡P tt)
≡P af (ϕ2, w0j) ∨ (tt ∧ tt) (ind. hyp.)
≡P tt

We derive from Theorem 3.1 a deterministic ω-automaton for a given G-free formula
ϕ. The states of the automaton are equivalence classes of formulae under proposi-
tional equivalence. The fundamental design idea is: after reading a finite word w, the
current state of the automaton must be af (ϕ,w0j). So we take the equivalence class
of af (ϕ, ε) = ϕ as initial state, and the function af itself as transition function. By
Theorem 3.1, a word satisfies ϕ iff its run in this automaton visits the state [tt]P . Since
we have af (tt, ν) = tt for every ν ∈ 2Ap, the run visits [tt]P iff it visits [tt]P infinitely
often, or if it visits all other states only finitely often. So we can take F = {[tt]P } as
Büchi condition.

Definition 3.2. Let ϕ be a G-free formula. Let Reach(ϕ) denote the set of equivalence
classes of the formulae reachable from ϕ w.r.t. propositional equivalence. The transition
system of ϕ is the deterministic transition system T (ϕ) = (Q, 2Ap, q0, δ) where

-Q is the quotient of Reach(ϕ) under propositional equivalence.
(In other words, [ψ]P is a state of T (ϕ) iff af (ϕ,w) = ψ for some finite word w.)

- q0 = [ϕ]P , the equivalence class of ϕ.
- δ([ψ]P , ν) = [af (ψ, ν)]P for every [ψ]P ∈ Q and every ν ∈ 2Ap.
(I.e., there is a transition [ϕ]P

ν−→ [ψ]P iff af (ϕ, ν) = ψ.)

8

q1 : a ∨ (bU c)

q2 : bU c

q3 : tt q4 : ff

ābc̄

a+ āc āb̄c̄
bc̄

c b̄c̄

true true

Fig. 1: Büchi (or co-Büchi) automaton for a ∨ (b U c).

The Büchi automaton for ϕ is the tuple B(ϕ) = (Q, 2Ap, q0, δ, F), where F = {[tt]P }.
Observe that it can be also seen as a co-Büchi automaton with F = Q \ {[tt]P }.

Example 3.3. Figure 1 shows the automaton for the formula ϕ = a ∨ (b U c). We
assume Ap = {a, b, c}. The alphabet 2Ap contains 8 elements, and so every state has
8 outgoing transitions. To avoid cluttering the figure, we use a boolean-function-like
notation for transitions. For example, q2

c−→ q3 denotes that there is a transition from q2

to q3 for every subset of 2Ap containing c. So, actually, q2
c−→ q3 stands for four different

transitions. Similarly, q1
a+āc−→ q3 means that there is a transition from q1 to q3 for each

subset of 2Ap that either contains a, or does not contain a and contains c.

THEOREM 3.4. Let ϕ be a G-free formula. Then L(B(ϕ)) = L(ϕ)

PROOF. Immediate consequence of Theorem 3.1 and the definition of B(ϕ).

4. DRAS FOR SIMPLE FG-FORMULAE
We introduce the main building block of our paper: a procedure to construct a DRA for
formulae FGϕ where ϕ is G-free, i.e., contains no occurrence of G. (Notice that even
the formula FGa has no equivalent deterministic Büchi automaton.)

As in the previous section, we first characterize the words w satisfying a formula
FGϕ where ϕ is G-free, and then show how to construct a DRA that accepts iff the
condition of the characterization holds. However, in this section we divide this step into
two parts. We first introduce an auxiliary automata model, called Mojmir automata2,
and show how to construct a Mojmir automaton recognizing L(FGϕ). (Mojmir automata
are designed to make this construction intuitive and easy to grasp.) Then we show how
to transform Mojmir automata into equivalent DRAs.

4.1. Logical characterization
The logical characterization of the words satisfying FGϕ is an easy consequence of
Theorem 3.1.

THEOREM 4.1 (LOGICAL CHARACTERIZATION THEOREM II). Let FGϕ be a for-
mula such that ϕ is G-free. Then w |= FGϕ iff for almost every i ∈ N there exists
j ≥ i such that af (ϕ,wij) ≡P tt.

PROOF. By the semantics of LTL, w |= FGϕ iff wi |= ϕ for almost every i ∈ N.
By Theorem 3.1, w |= FGϕ iff for almost every i ∈ N there exists j ≥ i such that
af (ϕ,wij) ≡P tt.

2Named in honour of Mojmír Křetínský, father of one of the authors

9

q1

q2

• q4

ābc̄a+ āc āb̄c̄

bc̄
c b̄c̄

true true

q1

•

q3 q4

ābc̄a+ āc āb̄c̄

bc̄
c b̄c̄

true true

q1

•

q3 q4

ābc̄a+ āc āb̄c̄

bc̄
c b̄c̄

true true

•

q2

q3 q4

ābc̄a+ āc āb̄c̄

bc̄
c b̄c̄

true true

3

1, 2

0

ābc̄a+ āc āb̄c̄

bc̄

c b̄c̄

true true

Fig. 2: The top row shows the first four elements of the array of co-Büchi automata for
FG(a∨ (b U c)) after reading abc ābc̄ ābc̄. At the bottom, the corresponding configuration
of the Mojmir automaton.

4.2. Mojmir automata
By the definition of LTL, we have w |= FGϕ iff wi |= ϕ for all but finitely many i ≥ 0. Let
Aϕ be the deterministic co-Büchi automaton recognizing L(ϕ). From a mathematical
point of view, we can recognize L(FGϕ) with the help of an infinite array of copies of
Aϕ. The ith automaton reads wi, i.e., it skips the first (i− 1) letters of the input word,
and then starts reading. Therefore, the i-th automaton accepts iff wi |= ϕ. The array
accepts iff almost every array element accepts. Figure 2 shows the first four elements of
the array for the formula FG(a ∨ (b U c)). The figure shows the state of the elements
after reading (abc) (ābc̄) (ābc̄). For example, the automaton on the left has read all three
letters, and reached state q3, graphically displayed by putting a token on the state,
while the next one has only read the last two letters, and reached state q2. The last
automaton has not yet read any letter, and so it is currently in state q1.

We now observe that the complete array can be replaced by one single automaton
that handles all the tokens simultaneously. We call such an automaton a Mojmir au-
tomaton. The bottom part of Figure 2 shows the configuration of the Mojmir automaton
corresponding to the array at the top. After reading (abc) (ābc̄) (ābc̄), the automaton has
created four tokens, labelled with their birthdates. Intuitively, when the automaton
reads a letter it moves all tokens according to the transition function, and then puts a
fresh token in the initial state, labelled with the position of the letter. Initially there is

10

q1

q2

q3 q4

ābc̄a+ āc āb̄c̄

bc̄

c b̄c̄

true true

time
token 0 1 2 3 · · ·

0 q1 q3 q3 q3 · · ·
1 ⊥ q1 q2 q2 · · ·
2 ⊥ ⊥ q1 q2 · · ·
3 ⊥ ⊥ ⊥ q1 · · ·
4 ⊥ ⊥ ⊥ ⊥ · · ·
· · · · · · · · · · · · · · · · · ·

Fig. 3: Mojmir automaton for FG(a ∨ (b U c)), and matrix representation of
runw(token, time) for w = abc ābc̄ ābc̄ · · · .

a unique token at the initial state, labelled by 0. The automaton accepts if almost every
token eventually reaches an accepting state.

Definition 4.2. A Mojmir automaton is a tupleM = (Q,Σ, q0, δ, F), where (Q,Σ, q0, δ)
is a DTS and F ⊆ Q is a set of accepting states satisfying δ(F, ν) ⊆ F for every ν ∈ Σ,
i.e., states reachable from accepting states are also accepting.

The run ofM over a word w = w[0]w[1] · · · ∈ Σω is the infinite sequence

(q0
0) (q1

0 , q
1
1) (q2

0 , q
2
1 , q

2
2) (q3

0 , q
3
1 , q

3
2 , q

3
3) · · ·

where

qtime
token =

{
q0 if token = time,

δ
(
qtime−1
token , w[time − 1]

)
if token < time

The position of a token at a time in the run is given by the function runw : N× N→
Q ∪ {⊥}, defined as follows:

runw(token, time) =

{
qtime
token if token ≤ time

⊥ if token > time

For every time t ∈ N, we denote by conf w(t) the function defined by

token 7→ runw(token, t))

We call conf w(t) the configuration of the run of M on w at time t. The run of M
on w is accepting if for almost every token ∈ N there exists time ∈ N such that
runw(token, time) ∈ F .

Given a G-free formula ϕ, the Mojmir automaton equivalent to FGϕ has exactly the
same syntactic structure as the Büchi automaton for ϕ: only the notions of run and
acceptance are different.

Definition 4.3. Let ϕ be a G-free formula. The Mojmir automaton for FGϕ is
M(ϕ) = (Reach(ϕ), 2Ap, [ϕ]P , af , {[tt]P }).

Since M(ϕ) accepts iff almost every token eventually reaches an accepting state,
M(ϕ) accepts a word w iff w |= FGϕ, and so we have:

THEOREM 4.4. Let ϕ be a G-free formula. Then L(M(ϕ)) = L(FGϕ).

11

Example 4.5. Figure 3 shows the Mojmir automaton for FG(a ∨ (b U c)) and the
matrix representation of runw(token, time) for w = abc ābc̄ ābc̄ · · · . The configurations of
the run are given by the columns of the matrix. For instance, conf w(2) is the mapping
0 7→ q3, 1 7→ q2, 2 7→ q1,∀i ≥ 3 : i 7→ ⊥ given by the third column, indicating that after
two steps the tokens 0, 1, 2 are in states q3, q2, q1, respectively, and other tokens do not
exist yet.

In the rest of the section we show how to construct a deterministic Rabin automaton
equivalent to a given Mojmir automaton. In Section 4.3 we define an abstraction that
assigns to each configuration conf w(t) of a run an abstract object srw(t), called a state-
ranking. Since the run ofM on a word w is completely characterized by the sequence
of configurations conf w(0) conf w(1) conf w(2) · · · , the abstraction also abstracts a run
into the infinite sequence of state-rankings srw(0) srw(1) srw(2) · · · . Sections 4.4 and 4.5
show that the abstraction has the following properties:

(1) There is an easily computable function that given srw(t) and w[t + 1] returns
srw(t+ 1). (Lemma 4.11)

(2) A run is accepting iff its corresponding abstract run satisfies a certain Rabin
condition. (Definition 4.19)

Finally, Section 4.6 derives the deterministic Rabin automaton. As the reader can
expect, the automaton will have the state-rankings as states, the function of (1) as
transition function, and the condition of (2) as acceptance condition.

4.3. State-rankings
Intuitively, a state-ranking of a Mojmir automatonM is a ranking of the states ofM.
Our state-rankings are allowed to be partial, that is, to leave some states unranked.

Definition 4.6. LetM be a Mojmir automaton with n states. A state-ranking ofM
is a partial injective function sr : Q→ {1, . . . ,n}, such that if the image of sr contains i,
then it also contains j for every j < i. When sr(q) is undefined, we write sr(q) = ⊥. The
set of state-rankings ofM is denoted by SR.

The state-ranking srw(t) associated to conf w(t) is the result of performing a sequence
of abstraction steps, which we illustrate on an example. Consider a Mojmir automaton
M with states {q0, q1, q2, q3, q4, q5, q6}. Assume that, after the first 8 steps of its run on
some word,M has reached the following configuration, where for each state we give
the set of tokens currently at that state:

q0 q1 q2 q3 q4 q5 q6

({3, 8} {1, 2} ∅ {5, 7} {4} {6} {0})
(1)

Assume further that states q5, q6 are sinks, meaning that δ(q5, ν) = q5 and δ(q6, ν) =
q6 for every alphabet letter ν3. We start the abstraction process by discarding the
information about tokens in sinks. We use the symbol ⊥ to denote this, and obtain:

q0 q1 q2 q3 q4 q5 q6

({3, 8} {1, 2} ∅ {5, 7} {4} ⊥ ⊥)

We continue by keeping only the oldest token of each state (that is, the one with the
smallest number). If the state is not populated by any token, again we just write ⊥. We

3For technical reasons, we also decree that the initial state cannot be a sink.

12

obtain:
q0 q1 q2 q3 q4 q5 q6

(3 1 ⊥ 5 4 ⊥ ⊥)

We call tokens 3, 1, 5 and 4 the senior tokens of the configuration, or just the seniors.
Since a run has infinitely many tokens, the number of possible abstract configurations

of the automaton is still infinite. So we discard even more information. We throw away
the identities of the senior tokens, and keep only their relative seniority rank: the oldest
senior token has rank 1, the second oldest rank 2, etc. We obtain the state-ranking

q0 q1 q2 q3 q4 q5 q6

(2 1 ⊥ 4 3 ⊥ ⊥)

It is useful to think of the set of tokens at a state as the partners of a partnership
firm. The senior partner is the oldest token. The name of the firm is the rank of the
senior partner. For instance, the firm 2 at state q0 has tokens 3 and 8 as partners.

Let us formally define the rank rkw(τ, t) of token τ at time t, and the state-ranking
srw(t) at time t.

Definition 4.7. LetM = (Q,Σ, q0, δ, F) be a Mojmir automaton with n states. A state
q ∈ Q is a sink if q 6= q0 and δ(q, ν) = q for every ν ∈ Σ.

Let w ∈ Σω be a word, and consider the run ofM on w. Given two tokens τ, τ ′ ∈ N,
we say that τ is older than τ ′ if τ < τ ′. The senior of token τ at time t > τ is the oldest
token τ ′ such that runw(τ, t) = runw(τ ′, t). If a token is its own senior, then we call τ a
senior (at time t).

The rank of token τ at time t > τ , denoted by rkw(τ, t), is defined as follows:

— If runw(τ, t) is a sink, then rkw(τ, t) = ⊥ (we say that τ is unranked at time t).
— If runw(τ, t) is not a sink, then let s be the senior of token τ at time t. The rank

rkw(τ, t) is the number of senior tokens τ ′ such that runw(τ ′, t) is not a sink and
τ ′ ≤ s.

(Observe that runw(τ, t) = runw(τ ′, t) implies that τ and τ ′ have the same seniors,
and so that rkw(τ, t) = rkw(τ ′, t); so all tokens at the same state get the same rank.)

Finally, the state-ranking at time t, denoted by srw(t), is the mapping Q → N that
assigns to each state q ∈ Q its state-ranking srw(t, q) ∈ {1, . . . ,n}, defined as follows:

- If q is a sink, then srw(t, q) = ⊥.
- If q is not a sink and no token τ satisfies runw(τ, t) = q, then srw(t, q) = ⊥.
- If q is not a sink and some token τ satisfies runw(τ, t) = q, then srw(t, q) = rkw(τ, t).

Example 4.8. Consider for example token 7 in the configuration (1). The senior of 7
is 5. The seniors are 3, 1, 5, 4. Since all seniors are at least as old as 5, the rank of token
7 is 4. Since the configuration is the result of reading the first 8 letters of a word w, we
have rkw(7, 8) = 4.

While the birthdate of a token does not change along a run, its rank can change, and
for two different reasons. Assume the current rank of a token τ is 4. If the firm of rank,
say, 3, moves to a sink, then it “disappears”, and the rank of τ is upgraded to 3. If the
token’s firm merges with the firm of rank, say, 2, the rank of τ is upgraded to 2. In both
cases, we observe that, as long as the token does not reach a sink, its rank can only
improve (get older) along a run.

LEMMA 4.9. Let M = (Q,Σ, q0, δ, F) be a Mojmir automaton and let w ∈ Σω be a
word. For every token τ ∈ N:

13

- if rkw(τ, t) = ⊥ for some t ∈ N, then rkw(τ, t′) = ⊥ for every t′ ≥ t.
- if t ≤ t′ and rkw(τ, t), rkw(τ, t′) ∈ N, then rkw(τ, t) ≥ rkw(τ, t′).

PROOF. Follows easily from the definitions.

4.4. Computing the successor of a state-ranking
Recall that the run of a Mojmir automaton on a word w is completely determined by the
sequence of configurations conf w(0) conf w(1) conf w(2) · · · . To this sequence corresponds
a sequence srw(0) srw(1), srw(2) · · · of state-rankings. We show that srw(t + 1) can be
directly computed from srw(t) and the letter w[t+1]. More precisely, we define a function
nxt : SR× Σ→ SR and show that it satisfies nxt(srw(t), w[t+ 1]) = srw(t+ 1) for every
time t.

Let srw(t) be the state-ranking

q0 q1 q2 q3 q4 q5 q6

(2 1 ⊥ 4 3 ⊥ ⊥)

Assume w[t+ 1] = ν for some ν ∈ Σ, and assume further that

δ(q0, ν) = q5 δ(q1, ν) = q2 = δ(q3, ν) δ(q4, ν) = q3

We obtain srw(t+ 1) in four steps:

(i) Move all senior tokens according to δ.
The token of rank 2 at q0 moves to the sink q5 (recall that q5 and q6 are sinks) and
“disappears”. The tokens of ranks 1 and 4 move to state q2. The token of rank 3 at q4

moves to q3. We obtain:

q0 q1 q2 q3 q4 q5 q6

(⊥ ⊥ {1,4} 3 ⊥ ⊥ ⊥)

(ii) If a state holds more than one token, keep only the most senior token.
Only the token of rank 1 survives in q2. Intuitively, the firms with rank 1 and 4
merge, and 1 becomes the senior partner.

q0 q1 q2 q3 q4 q5 q6

(⊥ ⊥ 1 3 ⊥ ⊥ ⊥)

(iii) Recompute the seniority ranks of the remaining tokens.
The token of rank 3 is upgraded to rank 2.

q0 q1 q2 q3 q4 q5 q6

(⊥ ⊥ 1 2 ⊥ ⊥ ⊥)

(iv) If there is no token on the initial state, add one with the next lowest seniority rank.
We add a token to q0 of rank 3.

q0 q1 q2 q3 q4 q5 q6

(3 ⊥ 1 2 ⊥ ⊥ ⊥)

The corresponding formal definition is:

Definition 4.10. LetM = (Q,Σ, q0, δ, F) be a Mojmir automaton with n states and a
set S of sinks. Let sr be a state-ranking ofM, and let ν ∈ Σ. For every q ∈ Q, the set of
ranks of sr that move to q under ν, denoted by mvto(q), is given by:

mvto(q) =

{
{sr(q′) | sr(q′) 6= ⊥ ∧ δ(q′, ν) = q} if q 6= q0

{sr(q′) | sr(q′) 6= ⊥ ∧ δ(q′, ν) = q} ∪ {n} if q = q0

14

q1 : a ∨ (bU c)

q2 : bU c

q3 : tt q4 : ff

ābc̄

a+ c āb̄c̄
bc̄

c b̄c̄

true true

(1,⊥)

(2,1)

t1 : a+ c
t2 : āb̄c̄

t3 : ābc̄
t6 : c
t7 : ab̄c̄
t8 : āb̄c̄

t4 : abc̄
t5 : ābc̄

Fig. 4: A Mojmir automaton for a ∨ (b U c) and its corresponding DRA.

The state-ranking nxt(sr, ν) is defined with min(∅) =∞ by:

nxt(sr, ν, q) =

{
|{q′ ∈ Q \ S | min(mvto(q′)) ≤ min(mvto(q))}| if q /∈ S and mvto(q) 6= ∅
⊥ otherwise

We get the following lemma.

LEMMA 4.11. LetM be a Mojmir automaton and let w be a word. Then srw(t+ 1) =
nxt(srw(t), w[t+ 1]) for every t ≥ 0.

PROOF. (Sketch.) The key observation for the proof is that nxt(srw(t), w[t+ 1]) com-
putes for a state q the set of senior states q′ at time t+ 1 and then takes the cardinality
of this set as a value. This coincides with the definition of srw(t+ 1).

We already have all we need to define the states and transition function of the DRA
equivalent to a given Mojmir automaton (although not the acceptance condition). The
states of the Rabin automaton are the state-rankings, and the transition function is
given by nxt .

Example 4.12. Figure 4 shows our running example on the left, and the states and
transitions of its corresponding Rabin automaton on the right. Since states q3 and q4

are sinks, state rankings only rank states q1 and q2. The initial state-ranking is (1,⊥).
The only other state-ranking reachable from it turns out to be (2,1).

4.5. Deciding acceptance of an abstract run
We define a Rabin acceptance condition that turns the transition system above into a
DRA equivalent to the Mojmir automaton. We start by classifying the tokens of a run of
the Mojmir automaton.

Definition 4.13. LetM = (Q,Σ, δ, q0, F) be a Mojmir automaton and let w be a word.
A token τ ∈ N of the run ofM on w

— squats if it never reaches a sink
(that is, if runw(τ, t) ∈ Q \ S for every t ∈ N);

— fails if it eventually reaches a non-accepting sink
(that is, if there exists t ∈ N such that runw(τ, t) ∈ S \ F);

— succeeds if it eventually reaches an accepting state, sink or non-sink
(that is, if there exists t ∈ N such that runw(τ, t) ∈ F).

15

Further, we say that a token succeeds at rank i if it has rank i immediately before
entering the set of accepting states, i.e., if there is t ∈ N such that runw(τ, t) /∈ F \ {q0},
runw(τ, t+ 1) ∈ F , and rkw(τ, t) = i.4

Observe that the three classes are not disjoint. More precisely, a token either fails,
succeeds, or squats in non-accepting states. By definition, a Mojmir automaton accepts
a word w if all but finitely many of the tokens generated during the run on w succeed
(recall that tokens that reach an accepting state stay within the set of accepting states).
So, given the abstract run ofM on w, our task is to find a Rabin condition equivalent
to “only finitely many tokens fail and only finitely many tokens squat in non-accepting
states”. The condition equivalent to “only finitely many tokens fail” is simple: since
a token fails when it moves into a non-accepting sink, we stipulate that transitions
moving tokens into non-accepting sinks can only occur finitely often.

Finding a condition equivalent to “only finitely many tokens squat in non-accepting
states” is a bit more involved. Observe that, since a squatter τ never reaches a sink, it
has a rank at every moment in time. So, if infinitely many tokens squat in non-accepting
states, then, since they are all confined within Q \ (S ∪ F), infinitely many firm merges
must take place in this set of states. This suggests the following definition:

Definition 4.14. LetM = (Q,Σ, δ, q0, F) be a Mojmir automaton and let w be a word.
Let τ, τ ′ ∈ N be two tokens such that τ < τ ′. We say that τ and τ ′ merge during the run
ofM on w if there is t ∈ N and a state q /∈ F such that runw(τ, t) = q = runw(τ ′, t), and
one of the two following conditions hold:

— τ ′ < t and runw(τ, t− 1) 6= runw(τ ′, t− 1).
(Both tokens already existed at time t− 1, and were at different states)

— τ ′ = t.
(Token τ ′ is created at time t.)

Further, we say that the tokens merge at rank i if rkw(τ, t) = i.

Notice the condition q /∈ F in the definition: we reserve the term “merge” for the merges
occurring in non-accepting states.

If two tokens merge at some time t, then from that moment on they follow the same
trajectory, and so we have:

LEMMA 4.15. LetM = (Q,Σ, δ, q0, F) be a Mojmir automaton and let w be a word.
Let τ, τ ′ ∈ N be two tokens that merge along the run ofM on w. Then either both τ and
τ ′ fail, or both succeed at the same rank, or both squat.

PROOF. By the definition of merge there is a time t0 such that runw(τ, t0) = q /∈ F
and runw(τ, t) = runw(τ ′, t) for all t ≥ t0. We proceed by case distinction and only
consider two cases.

— τ fails. This means that the token τ moves at some point to a non-accepting sink and
stays there forever. Let us call this time t′. Without loss of generality we assume
that the merge happens outside the sinks S and we have t′ > t0. Hence we have
runw(τ ′, t′) = runw(τ, t′) = qs and thus τ ′ also fails.

— τ succeeds at rank i. Thus the token τ moved at some time t′ > t0 from the non-
accepting states to the accepting states with rank i. Since τ and τ ′ already merged
and tokens that are in the same state have the same rank, also τ ′ succeeds with rank
i.

4observe that in the special case q0 ∈ F (all states are accepting), the first move of each token is considered
succeeding.

16

We can now formulate and prove the main theorem of the section, presenting con-
ditions equivalent to “only finitely many tokens fail” (condition (1)), and “only finitely
many tokens squat in non-accepting states” (condition (2)):

THEOREM 4.16. LetM = (Q,Σ, δ, q0, F) be a Mojmir automaton and let w be a word.
M accepts w if and only if the run ofM on w satisfies the following two conditions:

(1) Finitely many tokens fail.
(2) There is a rank i such that
(2.1) infinitely many tokens succeed at rank i, and
(2.2) finitely many pairs of tokens merge at rank older than i, i.e. with a rank j < i.

PROOF. (⇒): AssumeM accepts w. Then almost every token of the run ofM on w
succeeds. Therefore, since no token can succeed and fail, (1) holds.

Let i be the smallest rank satisfying (2.1) (since almost all tokens succeed and the
number of ranks are finite, such an i exists). We prove that i satisfies (2.2). Let Mi

be the set of pairs (τ, τ ′) of tokens such that τ < τ ′ and τ and τ ′ merge at rank older
than i. We prove that Mi is finite. By Lemma 4.15 either both τ and τ ′ succeed, or none
succeeds. Let Si be the set of pairs (τ, τ ′) ∈Mi such that both τ and τ ′ succeed. Since
M accepts w, almost every token succeeds, and so Mi \ Si is finite.

It remains to prove that Si is finite. By the definition of i, it suffices to prove that
for every (τ, τ ′) ∈ Si both τ and τ ′ succeed at a rank older than i. Let t0 be the time
at which τ and τ ′ merge. By the definition of a merge, at time t0 neither τ nor τ ′ have
reached the set of accepting states. Since τ and τ ′ merge at rank older than i and two
merged tokens always have the same rank, we have rkw(τ ′, t0) < i. Let t1 > t0 be the
time at which both tokens enter the set of accepting states. By Lemma 4.9(2), we have
rkw(τ, t1) < i and rkw(τ ′, t1) < i, and so both τ and τ ′ succeed at a rank older than i.

(⇐): If q0 ∈ F then by the definition of Mojmir automataM accepts every word, and
we are done. So assume q0 /∈ F .

By the definition of squatting, a token τ squats iff rkw(τ, t) ∈ N for every t ≥ τ .
By Lemma 4.9, the rank of τ can only get older, and so there is a time t such that
rkw(τ, t) = rkw(τ, t′) for every t′ ≥ t. We call this rank the stable rank of τ , denoted by
strkw(τ). The following lemma, proved in the Appendix, shows that all stable ranks are
old.

LEMMA 4.17. Let i be the rank of condition (2). If the rank of τ stabilizes, then
strkw(τ) < i.

We now use the lemma to prove the result by contradiction. Assume M does not
accept w. Then, infinitely many tokens do not succeed in the run ofM on w. Since by
(1) only finitely many tokens fail, infinitely many tokens squat in non-accepting states.
By Lemma 4.17, their stable ranks are all older than i. So there is a rank j < i such
that infinitely many tokens have stable rank j. Let τ be one of these tokens, and let t be
the time at which its rank stabilizes. All tokens born after t whose rank stabilize at j
eventually merge with τ . Therefore, infinitely many pairs (τ, τ ′) merge at rank i. But
this contradicts our assumption that (2.2) holds.

We conclude the section with a definition that will be important in Section 6.

Definition 4.18. LetM be a Mojmir automaton and let w be a word. We say thatM
accepts w at rank i ifM accepts w and the rank of condition (2) in Theorem 4.16 is i.

17

Note that a word can be accepted at several ranks. In Section 6.2 we will show that
the ranks at which the automaton M(ϕ) of a formula ϕ accepts a word carry useful
information.

4.6. From Mojmir automata to deterministic Rabin automata
From Theorem 4.16 we can easily derive a deterministic Rabin automaton equivalent
to a given Mojmir automaton. More precisely, we show how to construct an automaton
with a Rabin condition on transitions. Applying the construction of Section 2.3.1, this
automaton can be transformed into one with a Rabin condition on states.

Definition 4.19. LetM = (Q,Σ, i, δ, F) be a Mojmir automaton with a set S of sinks.
The deterministic Rabin automaton R(M) = (QR,Σ, q0R, δR, αR) is defined as follows:

—QR is the set SR of state-rankings ofM;
— q0R is the state-ranking satisfying q0R(q0) = 1 and q0R(q) = ⊥ for every q 6= q0;
— δR(sr, ν) = nxt(sr, ν) for every state-ranking sr and letter ν;
— αR =

∨|Q|
i=1 Pi, where the ith Rabin pair is Pi = (fail ∪merge(i), succeed(i)), and the

sets fail , merge(i), and succeed(i) are defined as follows. A transition (sr, ν, sr′) ∈ δR
belongs to
— fail if there exists q ∈ Q such that sr(q) ∈ N and δ(q, ν) ∈ S \ F .
— succeed(i) if there exists q /∈ F such that sr(q) = i and δ(q, ν) ∈ F , or q0 ∈ F and
sr(q0) = i.5

— merge(i) if
— there exists a state q ∈ Q \ F and distinct states q1, q2 ∈ Q such that δ(q1, ν) =
q = δ(q2, ν), sr(q1) < i, and sr(q2) 6= ⊥; or

— q0 /∈ F , and there exists a state q such that δ(q, ν) = q0 and sr(q) < i.6

R(M) accepts a word w at rank j if Pj is an accepting pair on the run of R(M) on w.

Example 4.20. Let us determine the accepting pairs of the DRA on the right of
Figure 4. We examine several representative cases.

— t1 moves tokens from q1 to the accepting sink q3. Since sr(q1) = 1, transition t1
belongs to succeed(1). Since we can safely ignore sinks (q3, q4) and states that are
empty (q2) for testing membership, we are done with t1.

— t2 takes tokens from the initial state and moves them to the non-accepting sink q4.
This matches the definition of fail , with sr(q1) ∈ N and δ(q1, āb̄c̄) = q4 ∈ S \ F . Hence
t2 ∈ fail .

— t3 moves tokens from q1 to q2. Since q2 is neither a sink nor an accepting state, t3
is not contained in fail or in any succeed set. Moreover, since sr(q2) = ⊥, it does not
belong to any merge set either.

— t8 moves tokens from q1 and q2 to the non-accepting sink q3. Hence t8 ∈ fail . Moreover,
the transition makes the firms from q1 and q2 to merge in q3 with rank sr(q1) = 1,
and so t8 is also contained in merge(2).

Altogether we obtain

fail = {t2, t7, t8}
merge(1) = ∅
merge(2) = {t5, t8}

succeed(1) = {t1, t6}
succeed(2) = {t4, t6, t7}

5If q0 is accepting then, by the definition of Mojmir automaton, all states reachable from q0 are accepting.
This condition covers the corner case in which no transition into an accepting state is possible, because all
states are accepting state.
6In this case there is a merge between the firm at q and the token newly created on state q0.

18

It is easy to see that the runs accepted by the pair P1 are those that take t2, t7, t8 only
finitely often, and visit (1,⊥) infinitely often. They are accepted at rank 1. The runs
accepted at rank 2 are those accepted by P2 but not by P1. They take t1, t2, t5, t6, t7, t8
finitely often, and so they are exactly the runs with a tω4 suffix.

LEMMA 4.21. Let M = (Q,Σ, i, δ, F) be a Mojmir automaton, and let R(M) be its
corresponding Rabin automaton. For every word w, the sequence conf w(0)conf w(1) · · · is
the run ofM on w iff srw(0)srw(1) · · · is the run of R(M) on w.

The Rabin condition of this automaton checks conditions (1) and (2) of Theorem
4.16. Consider a transition conf w(t)

a−→ conf w(t+ 1) between two configurations ofM
in which some token moves into a non-accepting sink. Then the transition srw(t)

a−→
srw(t+1) clearly belongs to the set fail , and vice versa. Similarly, transitions of succeed(i)
correspond to transitions ofM that make some token succeed at rank i, and transitions
of merge(i) correspond to transitions of M that merge two tokens at rank i. So we
obtain:

THEOREM 4.22. LetM be a Mojmir automaton, and let R(M) be its corresponding
Rabin automaton. Then L(M) = L(R(M)). Moreover, for every w ∈ L(M) bothM and
R(M) accept w at the same ranks.

5. DRAS FOR ARBITRARY FG-FORMULAE
We show how to translate formulae of the form FGϕ into DRAs. Thanks to the results of
Section 4, it suffices to translate them into Mojmir automata. We show that the Mojmir
automaton for a formula can be defined compositionally, as an intersection of Mojmir
automata. The next proposition shows that Mojmir automata are closed under union
and intersection (the proof can be found in the Appendix).

PROPOSITION 5.1. Let M1 = (Q1,Σ, q01, δ1, F1) and M2 = (Q2,Σ, q02, δ2, F2). Let
Q = Q1×Q2, let q0 = (q01, q02), and let δ : Q×Σ→ Q be the function given by δ(q1, q2, ν) =
(δ1(q1, ν), δ2(q2, ν)) Then the tuples

M1 ∩M2 =
(
Q,Σ, q0, δ, F1 × F2

)
M1 ∪M2 =

(
Q,Σ, q0, δ, (F1 ×Q2) ∪ (Q1 × F2)

)
are also Mojmir automata, and moreover L(M1 ∩M2) = L(M1) ∩ L(M2) and L(M1 ∪
M2) = L(M1) ∪ L(M2).

5.1. A compositional construction: Intuition
We present the intuition behind the construction by means of an example. Consider the
formula

ϕ = FG(Fa ∨ (G(a ∨ Fb) ∧ c)))
We use the abbreviations ψ2 = a ∨ Fb and ψ1 = Fa ∨ (Gψ2 ∧ c), and so we also refer to
the formula as FGψ1.

We cannot directly apply the construction of the last section because FGψ1 contains
the G-subformula Gψ2. However, since ψ2 does not contain any G-subformula, we
can construct a Mojmir automaton M(ψ2) for FGψ2. We use this fact to define the
automatonM(ψ1) as the union of two Mojmir automata: The first automaton recognizes
all words satisfying FGψ1 but not FGψ2 (and perhaps some other words satisfying
FGψ2), while the second recognizes all words satisfying FGψ1 and FGψ2 (and perhaps
some other words satisfying FGψ1). Consider for example the words

w1 = (ab̄c̄ āb̄c)ω w2 = (ābc)ω w3 = (āb̄c)ω

19

ψ1

tt

a

ā

true

Fig. 5: Mojmir automaton for words satisfying FGψ1 but not FGψ2.

ψ1

Fa

tt

āc̄

a+ c ā

a

true

⋂
ψ2

Fb

tt

ab

a+ b b̄

a

true

Fig. 6: The automataM(ψ1, {ψ2}) andM(ψ2).

We have w1 |= FGψ1 ∧ ¬FGψ2, w2 |= FGψ1 ∧FGψ2 and w3 6|= FGψ1. So both automata
will reject w3. Moreover, the first automaton will accept w1, and the second w2.

The first automaton, calledM(ψ1, ∅) in Section 5.2 below, is just the Mojmir automa-
ton for the formula FGψ1[Gψ2/ff], i.e., the result of substituting Gψ2 by ff in FGψ1. It
is easy to see that, since ψ1 is in negation normal form, FGψ1[Gψ2/ff] logically implies
FGψ1, and so every word accepted byM(ψ1, ∅) satisfies FGψ1. Moreover, observe that
if a word w does not satisfy FGψ2, then the formula Gψ2 is false for every suffix wi of
w, and so, intuitively, treating FGψ2 as false still allowsM(ϕ, ∅) to accept all words
FGψ1 but not FGψ2. The automatonM(ϕ, ∅) that treats Gψ2 as ff is shown in Figure 5.
To observe the effect of “treating Gψ2 as ff”, consider state ψ1 and the letter ābc. If
we used the function af as transition relation, then we would obtain the transition
ψ1

ābc−→ Fa ∨ (Gψ2 ∧ Fb). Instead, since Gψ2 is treated as ff , we get ψ1
ābc−→ Fa.

The second automaton is the intersection of two Mojmir automata. The first one
isM(ψ2), the Mojmir automaton for ψ2, which guarantees that the intersection only
accepts words satisfying FGψ2. The second one, which will be called M(ψ1, {ψ2}) in
Section 5.2, is intuitively in charge of checking that a word w satisfies FGψ1 assuming
that it satisfies FGψ2. Both automata are shown in Figure 6. We chooseM(ψ1, {ψ2}) as
the Mojmir automaton for FGψ1[Gψ2/tt]. At first sight, since FGψ2 and Gψ2 are not
equivalent, replacing Gψ2 by tt looks wrong. Let us see why it is correct. Since Gψ2

eventually holds, the assumption that Gψ2 is true can only be incorrect for a finite time,
or, in other words, for a finite number of tokens. Now we observe that the acceptance
condition of Mojmir automata is insensitive to the fate of a finite number of tokens: if
almost every token eventually reaches the accepting states, then after changing the
fate of a finite number of tokens this is still the case, and vice versa. So replacing Gψ2

by tt is correct after all.
Consider state ψ1 ofM(ψ1, {ψ2}). If we used the function af as transition relation,

then we would obtain the transition ψ1
āc−→ Fa ∨Gψ2. Since we handle Gψ2 as tt, we

get ψ1
āc−→ tt instead.

20

We have thus constructed an automaton for FG(Fa ∨ (G(a ∨ Fb) ∧ c)). To handle
formulae FGψ where ψ has multiple G-subformulae Gψ1, . . . ,Gψn, possibly nested
within each other, we generalize the procedure above, and construct an automaton
M(ϕ,G) for each subset G of G-subformulae. The automatonM(ϕ,G) accepts all words
w such that w |= ϕ and w |= FGψ for every Gψ ∈ G. The automaton is an intersection of
automata, one for each formula in G. The automaton for Gψi handles the G-subformulae
of ψi that belong to G as tt. Observe that circularity assumptions of the form “the
automaton for Gψ1 assumes that FGψ2 holds, and the automaton for Gψ2 assumes
that that FGψ1 holds” are not possible because no two formulae can be subformulae of
each other.

The final point is to address the state-explosion problem. In the construction above,
the final Mojmir automaton for a formula with G-subformulae Gψ1, . . . ,Gψn is the
union of 2n Mojmir automata, and has an unacceptably large number of states. Fortu-
nately, we can construct all these automata so that they have exactly the same states
and transitions, and only differ on their set of accepting states. The idea is to construct
M(ψ,G) using a different transition function. We replace af by another function afG
that behaves like af , except for G subformulae, where we set afG(Gψ, ν) = Gψ instead
of af (Gψ, ν) = Gψ ∧ af (ψ, ν). Intuitively, we leave the decision whether to handle Gψ
as tt or ff “open”. Then, for every set G we choose the accepting states appropriately:
SinceM(ϕ,G) assumes that all the formulae of G are true, we choose as accepting states
those whose corresponding formulae are propositionally implied by G.

In our example, bothM(ψ1, ∅) andM(ψ1, {ψ2}) are the intersection of the two au-
tomata of Figure 7; they differ only in the accepting states. In the case ofM(ψ1, ∅), the
left automaton treats Gψ2 as ff , and the right automaton is redundant; therefore, the
only accepting state of the left automaton is tt, and all states of the right automaton are
accepting. In the case ofM(ψ1, {ψ2}), the left automaton on the left treats Gψ2 as tt,
and the right automaton checks that Gψ2 holds; therefore, the accepting states of the
left automaton are Fa∨GFψ2 and , and the only accepting state of the right automaton
is tt.

5.2. Logical Characterization
In order to formalize the notion of “handling a subformula Gψ as tt” we introduce the
following definition:

Definition 5.2. Let ϕ be a formula and ν ∈ 2Ap. The formula afG(ϕ, ν) is inductively
defined as af (ϕ, ν), with only this difference:

afG(Gϕ, ν) = Gϕ (instead of af (Gϕ, ν) = af (ϕ, ν) ∧Gϕ).

We define ReachG(ϕ) = {[afG(ϕ,w)]P | w ∈ (2Ap)∗}.

Example 5.3. Let ϕ = ψU¬a, where ψ = G(a ∧X¬a). We have

afG(ϕ, {a}) = afG(ψ, {a}) ∧ ϕ ≡p ψ ∧ ϕ
af (ϕ, {a}) = af (ψ, {a}) ∧ ϕ ≡p ¬a ∧ ψ ∧ ϕ

The logical characterization theorem will be an easy corollary of Lemma 5.5 below.
Given an arbitrary formula ϕ and a word w, the lemma characterizes the set of G-
subformulae of ϕ that eventually hold at a word w, i.e., the subformulae Gψ such that
w |= FGψ. If ϕ is of the form FGψ, then clearly w |= ϕ iff the subformula Gψ belongs to
this set.

Definition 5.4. Given a formula ϕ, we denote by G(ϕ) the set of G-subformulae of ϕ,
i.e., the subformulae of ϕ of the form Gψ.

21

ψ1

Fa ∨Gψ2 Fa

tt

āc ac

aā

a

ā

a

true

⋂
ψ2

Fb

tt

ab

a+ b b̄

a

true

ψ1

Fa ∨Gψ2 Fa

tt

āc ac

aā

a

ā

a

true

⋂
ψ2

Fb

tt

ab

a+ b b̄

a

true

Fig. 7: Intersections with the same structure equivalent toM(ψ1, ∅) andM(ψ1, {ψ2}) ∩
M(φ2).

Given a word w, we say that Gψ ∈ G(ϕ) is eventually true in w if w |= FGψ. We
denote the set of eventually true G-subformulae of ϕ by Gw(ϕ).

A set of G ⊆ G(ϕ) is closed for w if G |=P afG(ψ,wij) holds for almost all i ∈ N, almost
all j ≥ i, and for every Gψ ∈ G.

The following lemma shows that eventually true G-subformulae can be characterized
using the closed sets.

LEMMA 5.5. Let ϕ be a formula and let w be a word.

— Every set G ⊆ G(ϕ) closed for w is included in Gw(ϕ).
— Gw(ϕ) is closed for w.

THEOREM 5.6 (LOGICAL CHARACTERIZATION THEOREM III). For every LTL for-
mula FGϕ and every word w: w |= FGϕ iff there exists a closed set G ⊆ G(FGϕ)
containing Gϕ.

PROOF. (⇒): Assume w |= FGϕ. Then ϕ ∈ Gw(FGϕ) and by Lemma 5.5(2) Gw(FGϕ)
is closed. So we can take G = Gw(ϕ).
(⇐): Assume some G ⊆ G(FGϕ) containing Gϕ is closed. By Lemma 5.5(1) we have
Gϕ ∈ Gw(FGϕ), and so, by the definition of Gw(FGϕ), we get w |= FGϕ.

Let us see that the theorem indeed generalizes Theorem 3.1. If ϕ is a G-free formula,
then G(FGϕ) = {Gϕ}. So the only possible choice for G is G = {Gϕ} and the only

22

ϕ ϕ ∧Gψ

tt Gψ

ā

a

ā

true

a

true

ψ ¬a

ff tt

ā

a

ā

true

a

true

Fig. 8: Transition systems of the Mojmir automata for ϕ = (Gψ)U¬a and for ψ =
a ∧X¬a.

possible ψ is ψ = ϕ. Further, we have

G |=P afG(ψ,wij)

iff Gψ |=P afG(ψ,wij)

iff ∅ |=P afG(ψ,wij) (Gψ does not occur in afG(ψ,wij)
iff afG(ψ,wij) ≡P tt

iff af (ψ,wij) ≡P tt (af (ψ,wij) = afG(ψ,wij since ϕ is G-free)

So for a G-free formula ϕ the theorem states that w |= FGϕ iff af (ϕ,wij) ≡P tt for
almost every i ∈ N and almost every j ≥ i.

Let us construct a Mojmir automaton for FGϕ from Theorem 5.6. The key is the
following simple fact:

afG(ϕ,wij) ≡P tt holds for almost every i ∈ N and almost every j ≥ i (*)
iff

for almost every i ∈ N there exists j ≥ i such that afG(ϕ,wij) ≡P tt (**)

For the proof, notice first that (*) implies (**); for the other direction recall that if
afG(ϕ,wij) ≡P tt then afG(ϕ,wij′) ≡P tt for every j′ ≥ j.

Now, we observe that (**) has the form of the acceptance condition of a Mojmir
automaton. Intuitively, we can reshape it into “for every token i ∈ N there exists a time
j ∈ N such that afG(ϕ,wij) ≡P tt”. So we define:

Definition 5.7. Let ϕ be a formula and let G ⊆ G(ϕ). The Mojmir automaton of ϕ
with respect to G isM(ϕ,G) = (ReachG(ϕ), ϕ, afG, FG), where FG is the set of formulae
ψ ∈ ReachG(ϕ) such that G |=P ψ.

As we announced earlier, only the set of accepting states of M(ϕ,G) depends on G.
The following lemma, proved in the Appendix, shows thatM(ϕ,G) is indeed a Mojmir
automaton, i.e., that states reachable from accepting states are also accepting.

LEMMA 5.8. Let ϕ be a formula and let G ⊆ G(ϕ). For every ψ ∈ ReachG(ϕ) and
every ν ∈ 2Ap, if G |=P ψ then G |=P afG(ψ, ν).

Example 5.9. Let ϕ = (Gψ)U¬a, where ψ = a∧X¬a. We have G(ϕ) = {Gψ}, and so
two automataM(ϕ, ∅) andM(ϕ, {Gψ}), whose common transition system is shown in
Figure 8. We have one single automatonM(ψ, ∅), shown on the right of the figure. A
formula ψ′ is an accepting state ofM(ψ, ∅) if tt |=p ψ

′; and so the only accepting state of
this automaton is tt. The same holds forM(ϕ, ∅). On the other hand, ψ′ is an accepting
state ofM(ϕ, {Gψ}) if Gψ |= ψ′, and so both Gψ and tt are accepting states.

As a corollary of Lemma 5.5 and Definition 5.7 we obtain:

COROLLARY 5.10. Let ϕ be a formula, w a word, and G ⊆ G(ϕ).

— If for every Gψ ∈ G we have w ∈ L(M(ψ,G)), then for every Gψ ∈ G we have w |= FGψ.

23

— If for every Gψ ∈ G we have w |= FGψ, then for every Gψ ∈ Gw(ϕ) we have w ∈
L(M(ψ,Gw(ϕ))).

Moreover, as a particular case:

THEOREM 5.11. Let FGϕ be a formula and let w be a word. Then w |= FGϕ iff there
is G ⊆ G(FGϕ) containing Gϕ such that w ∈ L(M(ψ,G)) for every Gψ ∈ G.

5.3. The Product Automaton
Theorem 5.11 allows us to construct a generalized Rabin automaton for an arbitrary
FG-formula FGϕ.

Definition 5.12. Let ϕ = FGχ be a FG-formula, and let G(ϕ) be the set of G-
subformulae of ϕ. For every formula Gψ ∈ G(ϕ), let R(ψ,G) = (Qψ, q0ψ, δψ,Acc

G
ψ) be

the Rabin automaton obtained by applying Definition 4.19 to the Mojmir automaton
M(ψ,G). (Recall that Qψ, q0ψ, and δψ do not depend on G.)

We define the generalized Rabin automaton automaton R(ϕ) as

R(ϕ) =

 ∏
Gψ∈G(ϕ)

Qψ, 2Ap,
∏

Gψ∈G(ϕ)

q0ψ,
∏

Gψ∈G(ϕ)

δψ, Acc


where the accepting condition Acc, which expresses “some G ⊆ G(ϕ) containing Gψ is
closed”, is given by

Acc :=
∨

{G⊆G(ϕ)|Gχ∈G}

∧
Gψ∈G

AccGψ

Since each AccGψ is a Rabin condition, Acc is a generalized Rabin condition. R(ϕ)
can be transformed into an equivalent Rabin automaton using the construction of
Section 2.3.1. Notice however that, as shown in [Chatterjee et al. 2013], for many
applications it is better to keep the generalized Rabin condition.

THEOREM 5.13. Let ϕ be a FG-formula and let w be a word. Then w |= ϕ iff
w ∈ L(R(ϕ)).

PROOF. Assume ϕ = FGχ. By the definition of its accepting condition, R(ϕ) accepts
a word w iff there is a set G ⊆ G(ϕ) containing Gχ such that R(ψ,G) accepts w for every
Gψ ∈ G. By Theorem 4.22, this is the case iffM(ψ,G) accepts w for every Gψ ∈ G. By
Theorem 5.11 this is the case iff w |= ϕ.

6. DRAS FOR ARBITRARY FORMULAE
In order to explain the last step of our procedure, let Ap = {a, b, c} be a set of atomic
propositions, and consider the formula ϕ = b ∨XGψ over Ap, where ψ = a ∨X(bUc).
Following the ideas of the previous section, we try to construct an automaton for ϕ as
the union of

(i) an automatonM(ϕ, ∅) accepting all words satisfying ϕ but not FGψ (plus possibly
other words satisfying ϕ), and

(ii) an automatonM(ϕ, {ψ}) accepting all words satisfying ϕ and FGψ (plus possibly
other words satisfying ϕ).

By the same argument we gave in the previous section, for M(ϕ, ∅) we can take a
Mojmir automaton accepting the words satisfying ϕ[Gψ/ff] = b ∨ Xff ≡ b. We now
try to constructM(ϕ, {ψ}) as the intersection of two Mojmir automata:M(ψ), which

24

q0 : ϕ

q2 : Gψ

q3 : Gψ ∧ bUc q4 : ff

q1 : tt

b̄

b

a

āac

ā(b+ c) + abc̄

b̄c̄

true

true

p0 : ψ

p1 : bUc

p2 : ffp3 : tt

ā

a

b̄c̄c

bc̄

truetrue

Fig. 9: Automata B(ϕ) andM(ψ) for ϕ = b ∨XGψ and ψ = a ∨X(bUc).

guarantees that the intersection only accepts words satisfying FGψ, and an automaton
that accepts the words satisfying ϕ under the assumption that they satisfy FGψ. The
automatonM(ψ) is shown on the right of Figure 9. But what can the other automaton
be?

We consider the following idea. As transition system of the automaton we take T (ϕ)
(see Definition 3.2). This guarantees that the state reached after reading a finite word
w0i is af (ϕ,w0i). Further, we choose a co-Büchi accepting condition stating that the
states ϕ′ ∈ Reach(ϕ) that occur infinitely often in the run satisfy Gψ |=P ϕ

′. Then, an
accepting run on a word w gets eventually trapped in states satisfying Gψ |=P ϕ

′. So,
since Gψ eventually holds, for a sufficiently large i we have wi |= af (ϕ,w0i), and so by
Proposition 2.10 we have w |= ϕ.

Unfortunately, while this reasoning is sound, it is not complete. In our example,
this idea leads to the automaton B(ϕ) shown on the left of Figure 9. Since we have
Gψ |=P tt and Gψ |=P Gψ, the accepting states of B(ϕ) are q1 and q2. Consider the
word w = āb̄c̄ (ābc)ω. We have w |= ϕ, but the run for w starts at q0, moves to q2, and
then moves to q3 and stays there forever. So w is rejected. The point is that neither
G = ∅ nor G = {Gψ} satisfy G |=P q3.

In the rest of the section we show that this second idea is, however, nearly correct. We
construct a correct automaton with the same states and transitions as the one above,
but with a modified accepting condition. For this we first interpret this failed attempt
in logical terms.

6.1. Logical characterization theorem
Our failed attempt amounts to, given a word w, checking if there is a closed set G
satisfying G |=P af (ϕ,w0j) for almost every j ∈ N. The following proposition summarizes
our observation that this condition does not characterize the words satisfying ϕ.

PROPOSITION 6.1. Let ϕ be a formula and w a word. If there exists a set G ⊆ G(ϕ)
such that (1) G is closed and (2) G |=P af (ϕ,w0j) for almost every j ∈ N, then w |= ϕ.
However, the converse does not hold.

PROOF. Assume such a G exists. Since G is closed, by Lemma 5.5(b) we have w |=
FGψ for every Gψ ∈ G, and so there exists an index i ∈ N such that wj |= G for every
j ≥ i. By (2), we have G |=P af (ϕ,w0j) for some j ≥ i and hence wj |= af (ϕ,w0j). Finally,
by Proposition 2.10, w |= ϕ.

The converse does not hold due to the previous example where neither G = ∅ nor
G = {Gψ} satisfy G |=P af (ϕ,w0i).

25

In the rest of the section we weaken condition (2) of Proposition 6.1 so that the
converse also holds, thus yielding a logical characterization theorem that generalizes
Theorem 5.6. More precisely, our goal is to find an adequate formula F(G, w0j) such that
after replacing condition (2) by

(2*) G ∧ F(G, w0j) |=P af (ϕ,w0j) for almost every j ∈ N.

both Proposition 6.1 and its converse hold. Observe that we replace G by the stronger
formula G ∧ F(G, w0j), which makes the propositional implication easier to satisfy.

6.1.1. A first candidate for F(G, w0j). The formula F(G, w0j) should satisfy wj |= F(G, w0j)
for almost every j ∈ N, because then we can still prove that (1) and (2*) imply w |= ϕ
using the same proof as in Proposition 6.1. So we search for a formula satisfying this
condition.

Let us examine the closure condition in more detail. Given Gψ ∈ G, it states that
G |=P afG(ψ,wij) holds for almost all i ∈ N and for almost all j ≥ i. So there is a
smallest index i such that G |=P afG(ψ,wij) holds for almost every j ≥ i. We give it a
name, and define a first candidate for F(G, w0j).

Definition 6.2. Let ϕ be a formula and let w be a word. Let G ⊆ G(ϕ) be closed
and let Gψ ∈ G. The threshold thrw(ψ,G) of ψ in G is the smallest index i such that
G |=P afG(ψ,wjk) holds for every j ≥ i and almost all k ≥ j. Further, we define

F1(ψ,G, w0j) =

j∧
i=thrw(ψ,G)

afG(ψ,wij)

F1(G, w0j) =
∧

Gψ∈G

F1(ψ,G, w0j)

Recall that wij = ε if i ≥ j by definition. Since afG(ψ, ε) = ψ, we can also define

F1(ψ,G, w0j) =

{
ψ if j = 0

ψ ∧
∧j−1
i=thrw(ψ,G) afG(ψ,wij) if j > 0

Example 6.3. Consider the formula ϕ = b ∨ XGψ and ψ = a ∨ X(bUc) and let
G = {Gψ}. For w = (abc)ω we have afG(ψ,wij) = tt for every 0 ≤ i < j. So G is closed
for w. Further we have thrw(ψ,G) = 0, and so F1(ψ,G, w0j) = ψ for every j ≥ 0.

For w = (abc)ω we have afG(ψ,wi(i+1)) = bUc for every i ≥ 0, and afG(ψ,wij) = tt for
every j > i+ 1 ≥ 1. So G is closed for w. Further we have thrw(ψ,G) = 0, and so

F1(ψ,G, w0j) =

{
ψ if j = 0
ψ ∧ bUc if j > 0

For w = abc(abc)ω we have afG(ψ,w0j) = bUc for all j > 0 and afG(ψ,wij) = tt for
all other pairs j > i. So G is closed for w. Further we have thrw(ψ,G) = 1, because
Gψ 6|=P afG(ψ,w0j) = bUc for all j > 0. So F1(ψ,G, w0j) = ψ for every j ≥ 0.

Let us prove that our first candidate indeed satisfies wj |= G ∧ F1(G, w0j) for almost
every j.

LEMMA 6.4. Let ϕ, w, G and Gψ as in Definition 6.2. Then wj |= G ∧ F1(G, w0j) for
almost every j ∈ N

PROOF. By the semantics of LTL, there exists an index k such that for every Gψ ∈
G(ϕ) either wk |= Gψ or wk 6|= FGψ holds. We say that G(ϕ) stabilizes at k. By Theorem
5.6, we further have wk |= G. So wj |= G for every j ≥ k. We now show that wj |=

26

afG(ψ,wij) holds for every j ≥ k, every Gψ ∈ G, and every i ≥ thrw(ψ,G), which
concludes the proof. We consider two cases. If G |=P afG(ψ,wij) holds, then the claim
follows from wk |= G. If G 6|=P afG(ψ,wij) then, since i ≥ thrw(ψ,G), there exists j′ > j
such that G |=P afG(ψ,wij′). Since j′ ≥ k, we have wj′ |= G, and so wj′ |= afG(ψ,wij′) =
afG(afG(ψ,wij), wjj′). It remains to show that wj′ |= afG(afG(ψ,wij), wjj′) implies
wj |= afG(ψ,wij). The proof is by structural induction on the structure of ψ. All cases
are identical to those of Proposition 2.10, with the exception of ψ = Gψ′. If ψ = Gψ′

we have afG(afG(ψ,wij), wjj′) = afG(ψ,wij) = Gψ′, and so we have to prove that
wj′ |= Gψ′ implies wj |= Gψ. Since j′ > j, this does not seem at first to be the case, but
recall that we have j′ > j ≥ k by hypothesis; since G(ϕ) stabilizes at k, the two suffixes
wj′ and wj satisfy the same formulae of G(ϕ), and we are done.

Unfortunately, our first candidate is not good enough for a logical characterization:
we can find a formula ϕ and a word w such that w |= ϕ but no set G satisfies conditions
(1) and (2*).

Example 6.5. Let ϕ = Gψ, where ψ = Xa ∨Gb, and w = aω. We have w |= ϕ. The
only non-empty set closed for w is G = {ϕ}. However, for this G condition (2*) does not
hold. Indeed, we have

afG(ψ,wij) = a ∨Gb for every j = i+ 1
afG(ψ,wij) = tt for every j > i+ 1
af (ϕ,w0j) = ϕ ∧ a for every j > i ≥ 1

and so (2*) holds only if ϕ ∧ (a ∨Gb) |=P ϕ ∧ a, which is not the case.

6.1.2. A second (and correct) candidate. Observe that, intuitively, if both (1) and (2*) hold,
then w satisfies ϕ even if it does not satisfy any of the formulae of G = G(ϕ) \ G. Using
this, we show that Lemma 6.4 still holds if we strengthen F1(G, w0i) by, loosely speaking,
replacing occurrences of formulae of G by ff . Let us define this formula F(G, w0i), our
final candidate.

Definition 6.6. Let ϕ, w, G, and Gψ as in Definition 6.2, and let G = G(ϕ) \ G. We
define

F(ψ,G, w0j) = F1(ψ,G, w0j)[G/ff]P

F(G, w0i) =
∧

Gψ∈G

F(ψ,G, w0i)

Example 6.7. In Example 6.5 we have G = {ϕ}, hence G = {Gb}. So F(ψ,w0i) =
(a ∨Gb)[{Gb}/ff]P = a, and now condition (2*) holds.

For the three words of Example 6.3 we have G = G(ϕ), and so F(ψ,w0i) = F1(ψ,w0i).

LEMMA 6.8. Let ϕ, w, G and Gψ be as in Definition 6.2. Then wj |= G ∧F(G, w0i) for
almost every j ∈ N.

PROOF. The proof is analogous to the proof of Lemma 6.4 and additionally relies on
the following equivalence, which can proven by a straightforward induction on ψ.

G |=P afG(ψ[G/ff]P , w0i) iff G |=P afG(ψ,w0i)[G/ff]P

We show that the new candidate indeed yields a logical characterization theorem.

THEOREM 6.9 (LOGICAL CHARACTERIZATION THEOREM IV). Let ϕ be a formula
and w a word. Then w |= ϕ iff there exists G ⊆ G(ϕ) satisfying (1) G is closed for w, and
(2*) G ∧ F(G, w0i) |=P af (ϕ,w0i) for almost every i ∈ N.

27

PROOF. (⇐) By (1) and (2*), we have wj |= G ∧ F(G, w0i) and G ∧ F(G, w0j) |=P

af (ϕ,w0j) for almost every j ∈ N, which implies wj |= af (ϕ,w0j) for almost every j ∈ N,
and therefore w |= ϕ.

(⇒) Assume w |= ϕ. Let Gw be the set of all formulae Gψ ∈ Gϕ such that w |= FGψ.
Then by Lemma 5.5, Gw satisfies (1). For (2*), we first consider the special case in which
thrw(ψ,G) = 0 holds for all Gψ ∈ Gw, that is, we not only have w |= FGψ but even
w |= Gψ for every ψ ∈ Gw. Then, by the same reasoning as in the proof of Theorem 5.6,
we obtain that Gϕ |=P afG(ϕ,w0j) holds for almost all j ∈ N. So, after unfolding the
definition of F(Gϕ, w0j), it remains to show that for almost all j ∈ N:

afG(ϕ,w0j)[Gw/ff]P ∧
∧

Gψ∈Gw

(
Gψ ∧

j∧
i=0

afG(ψ,wij)[Gw/ff]P

)
|=P af (ϕ,w0j)

which is proven by a straightforward induction on ϕ. We consider only two sample
cases:

- ϕ = a. Since ϕ = a does not have any G-subformulae, the conjunction over all Gw on
the left hand side is simply tt and also the propositional substitution has no effect.
After simplification we obtain afG(a,w0j) |=P af (a,w0j) which is true.

- ϕ = Gϕ′. In the case Gϕ′ 6∈ Gw, the left-hand side is propositionally equal to ff and
hence the claim holds. Thus assume Gϕ′ ∈ Gw. Let us now examine the right-hand
side:

af (Gϕ′, w0i) = Gϕ′ ∧
j∧

0=i

af (ϕ′, wij)

Since Gϕ′ ∈ Gw, the first conjunct is implied by the left-hand side. Let now
af (ϕ′, wij) be an arbitrary conjunct of the right-hand side. Then there is a matching
afG(ϕ′, wij)[Gw/ff]P on the left-hand side. We now apply the induction hypothesis on
this pair and obtain that af (ϕ′, wij) is propositionally entailed by the whole left-hand
side. Applying this idea to all conjuncts yields the claim.

Let us now consider the general case. Let k be the maximum of thrw(ψ,G) for elements
of Gw. Then we have wk |= Gψ for every ψ ∈ Gw. Let ϕ′ = af (ϕ,w0k). By Proposition
2.10, we have wk |= ϕ′, and we can apply the reasoning above to obtain: for almost
every i ∈ N: G ∧Fwk

(G, w0ki) |=P af (ϕ′, wki). Since F(G, w0(k+i)) contains all conjuncts of
Fwk

(G, wki), after unfolding the definitions we finally obtain G ∧ F(G, w0i) |=P af (ϕ,w0i)
for almost every i ∈ N.

6.2. From the logical characterization to automata
As in the previous section, we transform the logical characterization into an automaton.
For this, we show that F(G, w0i) is closely related to the ranks at which the automata
M(ψ,G) accept the word w. Loosely speaking, the fact that these automata accept tells
us that the formulae of G eventually hold, and the ranks at which they accept allows
us to determine the formula F(G, w0i) for sufficiently large i. We need a preliminary
definition.

Definition 6.10. Let M be a Mojmir automaton with set of states QM, and let
sr : QM → N be a state-ranking that assigns to each state q ∈ QM a rank sr(q). For
every k ∈ N, we define

S(sr , k) = {q ∈ QM | sr(q) ≥ k}
In words: S(sr , k) is the set of states that have rank at least k in the state-ranking sr .

28

Example 6.11. For a state-ranking
q0 q1 q2 q3 q4 q5 q6

(2 1 ⊥ 4 3 ⊥ ⊥)

we have for example S(sr , 1) = {q0, q1, q3, q4}, and S(sr , 3) = {q3, q4}. For the bottom
state of the DRA in Figure 4 (which is a state-ranking of the Mojmir automaton on the
left of the figure) we get S(sr , 1) = {a ∨ (bUc), bUc} and S(sr , 2) = {a ∨ (bUc)}.

We can now state the theorem. Recall that the Mojmir automaton M(ψ,G) was
defined in Definition 5.7, and that the states of its corresponding Rabin automaton
R(ψ,G) are state-rankings for the states of the MojmirM(ψ,G).

THEOREM 6.12. Let G ⊆ G(ϕ) be closed for w, and let Gψ ∈ G. For every i ≥ 0, let
sr(i) be the state of R(ψ,G) reached after w0i (in other words, sr(i) = δψ(q0ψ, w0i), where
δψ is the transition function of R(ψ,G)). Finally, let r be the smallest rank at which
R(ψ,G) accepts w. Then

G ∧ F(ψ,G, w0i) ≡P G ∧ S(sr(i), r) for almost every i ∈ N.
Before proving the theorem, let us consider an example.

Example 6.13. Figure 10 shows the transition system T (ϕ), the Mojmir automaton
M(ψ), and the DRA R(ψ) for the formula ϕ = b ∨XGψ with ψ = a ∨ bUc (cf. Figure 9).
The state (i, j) of R(ψ) indicates that ψ has rank i and bUc has rank j. We have

fail = {t3, t8}
merge(1) = ∅
merge(2) = {t6}

succeed(1) = {t1, t5, t7}
succeed(2) = {t4, t7, t8}

We examine again the three words of Example 6.3.
Let w = aω. The run of R(ψ) on w is tω1 , and so R(ψ) accepts w at rank 1. Recall that
F(ψ,G, w0i) = ψ for every i ≥ 0. So we have

G ∧ F(G, w0i) = Gψ ∧ ψ for almost every i ∈ N
Further, since S(sr(i), 1) is the conjunction of the states q ofM(ψ) such that sr(w0i, q) ≥
1, and the run of R(ψ) on w only visits (1,⊥), we have sr(i) = (1,⊥) for every i ≥ 0, and
so S(sr(i), 1) = q1 = ψ. We get

G ∧ S(sr(i), 1) = Gψ ∧ ψ for almost every i ∈ N
which is indeed propositionally equivalent to G ∧ F(G, w0i).

Let now w = cω. The run of R(ψ) on w is t2tω5 , and so R(ψ) accepts w at rank 1. But
now we have F(ψ,G, w0i) ≡P ψ ∧ (bUc) for every i ≥ 2, and so

G ∧ F(G, w0i) = Gψ ∧ ψ ∧ (bUc) for almost every i ∈ N
Since the run of R(ψ) on w gets trapped in state (2,1), we have S(sr(i), 1) = ψ ∧ bUc
for almost every i ≥ 2, and so

G ∧ S(sr(i), 1) = Gψ ∧ ψ ∧ (bUc) for almost every i ∈ N

Finally, let w = ābc abc̄ω. The run of R(ψ) on w is t2tω4 , and so R(ψ) accepts w at rank
2 and not at rank 1. We have F(ψ,G, w0i) = ψ for every i ≥ 1, and so

G ∧ F(G, w0i) = Gψ ∧ ψ for almost every i ∈ N
Further, since the run of R(ψ) on w gets trapped in state (2,1), we have S(sr(i), 2) = ψ
for almost every i ≥ 0, and so

G ∧ S(sr(i), 2) = Gψ ∧ ψ for almost every i ∈ N

29

q0 : ϕ

q2 : Gψ

q3 : Gψ ∧ bUc q4 : ff

q1 : tt

b̄

b

a

āac

ā(b+ c) + abc̄

b̄c̄

true

true

p0 : ψ

p1 : bUc

p2 : ffp3 : tt

ā

a

b̄c̄c

bc̄

truetrue

sr0 : (1,⊥)

sr1 : (2,1)

t1 : a

t2 : ā t7 : act8 : ab̄c̄

t4 : abc̄ t5 : āc

t3 : āb̄c̄ t6 : ābc̄

Fig. 10: Transition system T (ϕ) and automataM(ψ), and R(ψ) for ϕ = b ∨XGψ and
ψ = a ∨X(bUc).

Before proving the theorem we have a closer look at the succeeding tokens of a Mojmir
automaton. Assume that a Mojmir automaton accepts a word, and we are given the
rank at which the word is accepted. The following lemma (proved in the Appendix)
shows that from some moment on whether a token succeeds or not depends only on its
birthdate, its current rank, and its current state. Most importantly, all young enough
tokens will succeed.

LEMMA 6.14. Let M(ψ,G) be the Mojmir automaton for a formula ψ. Assume
M(ψ,G) accepts a word w at the smallest accepting rank r. For almost every t ∈ N
and for every token τ of the run ofM(ψ,G) on w, the token succeeds iff

(1) τ > t, or
(2) srw(t, runw(τ, t)) ≥ r, or
(3) runw(τ, t) ∈ F .

The proof of the Theorem is based on the crucial insight that each afG(ψ,wτt) pre-
cisely corresponds to the state that token τ occupies at time t.

PROOF OF THEOREM 6.12. Consider the run of M(ψ,G) on the word w. Let t be
large enough so that

— every token τ succeeds iff one of the three conditions of Lemma 6.14 holds, and
— all tokens τ < thrw(ψ,G) that succeed have already reached the set of accepting

states ofM(ψ,G).

Let m ≥ t. We prove G ∧ F(ψ,G, w0m) ≡P G ∧ S(sr(m), r).

(⇒): G ∧ F(ψ,G, w0m) |=P G ∧ S(sr(m), r).
By definition we have S(sr(m), r) = {q ∈ QM(ψ,G) | srw(m, q) ≥ r}, and so it suffices to

show that G |=P q or F(ψ,G, w0m) |=P q holds for every q ∈ S(sr(m), r). Assume G 6|=P q.
We prove F(ψ,G, w0m) |=P q.

We position ourselves at time m: when we talk about the rank or the state of a token
we mean its rank or state at time m. Since srw(m, q) ≥ r, in particular the state q is
ranked, and so every token on state q has rank srw(m, q). Let τ be any of these tokens.
By our choice of t, and since t ≤ m, all tokens with rank greater than or equal to r
succeed. So τ succeeds. Moreover, since G 6|=P q, the state q is not an accepting state
ofM(ψ,G), and so τ has not succeeded yet. So τ will eventually reach the accepting
states of M(ψ,G) in the future. Moreover, by our choice of t, all tokens born before

30

thrw(ψ,G) have already reached the accepting states. So we have τ ≥ thrw(ψ,G), and
so, by the definition of F(ψ,G, w0m), we get F(ψ,G, w0m) |=P afG(ψ,wτm) (notice that
τ < m because we assume that token τ was already born at time t). By the definition
of the transition system ofM(ψ,G), the equivalence class [afG(ψ,wτm)]P is precisely
the state of M(ψ,G) reached by token τ at time m, that is, q = [afG(ψ,wτm)]P . So
F(ψ,G, w0m) |=P q.

(⇐): G ∧ S(sr(m), r) |=P G ∧ F(ψ,G, w0m).
By the definition of F it suffices to show that the left-hand-side implies afG(ψ,wim)

for every thrw(ψ,G) ≤ i ≤ m. Without loss of generality we assume G 6|= afG(ψ,wim).
Consider the token created at time i. Since it is created after time thrw(ψ,G), it will
eventually reach the accepting states by the definition of the threshold and succeed.
Furthermore, since i ≤ m, one of the three conditions of Lemma 6.14 with t = m and
τ = i holds. Since i cannot satisfy conditions (1) or (3) (G 6|= afG(ψ,wim)), it must satisfy
condition (2). So the rank of the state runw(i,m) at time m is at least r, and so it belongs
to S(sr(m), r). But the state runw(i,m) is the state reached by token i at time m, and so
it is equal to [afG(ψ,wim)]P . So G ∧ S(sr(m), r) |=P afG(ψ,wim).

6.3. The automaton A(ϕ): Informal definition
Let us first recall the structure of the DGRA R(FGψ) for a FG-formula. It is the
union of DGRAs R(G), one for each subset G ⊆ G(ϕ) containing Gψ. Given a set
G = {Gψ1, . . . ,Gψn} of G-subformulae, R(G) accepts all words w satisfying ϕ and
FGψ1, . . . ,FGψn. It is defined as the intersection of the DRAs R(ψ1,G), . . . ,R(ψn,G),
which have all the same transition systems (i.e., the same states, transitions, and initial
state), but differ on their accepting conditions. Recall that each R(ψi,G) can accept at
different ranks (as many as the number of accepting pairs in R(ψi,G)).

Given an arbitrary formula ϕ, we also define its DGRA A(ϕ) as a union of
DGRAs. However, the union now contains an element R(G,~r) for every set G =
{Gψ1, . . . ,Gψn} ⊆ G(ϕ), and for each possible vector ~r = (r1, . . . , rn) of accepting
ranks of R(ψ1,G), . . . ,R(ψn,G). For example, if n = 2 and R(ψ1,G) and R(ψ2,G) have 3
and 2 accepting pairs, respectively, then instead of one single DGRA R(G) we have six
DGRAs R(G, (1,1)), . . . ,R(G, (3,2)).

The transition system of R(G,~r) is the product of the transition system T (ϕ) and
the transition system of R(G). Recall that T (ϕ) has Reach(ϕ) as set of states, and af
as transition function. Since, in turn, the transition system of R(G) is the product of
the transition systems of R(ψ1,G), . . . ,R(ψn,G), a state of R(G) is a tuple (sr1, . . . , srn),
where sr i is a state-ranking of the formulae of ReachG(ψi), and a state of R(G,~r) is a
tuple (χ, sr1, . . . , srn)), where χ ∈ Reach(ϕ).

It remains to describe the accepting condition of R(G,~r). We say that R(G) accepts at
rank-vector ~r = (r1, . . . , rn) if each R(ψi,G) accepts at rank ri. Our goal is to design the
accepting condition as a conjunction of two conditions guaranteeing that:

(i) G is closed (which implies that R(G) accepts), and moreover R(G) accepts at rank-
vector ~r, and

(ii)R(G,~r) eventually stays within states (χ, sr1, . . . , srn) satisfying

G ∧ S(sr1, r1) ∧ · · · ∧ S(srn, rn) |=P χ

In particular, (i) checks condition (1) of the logical characterization theorem, Theorem
6.9. Let us now see that (ii) checks condition (2*). By definition, the formula χ reached
after reading a finite prefix w0i of a word w is the formula af (ϕ,w0i). Therefore, (ii) is
equivalent to

G ∧ S(sr1(w0i, r1)) ∧ · · · ∧ S(srn(w0i, rn)) |=P af (ϕ,w0i) for almost every i ∈ N

31

which by Theorem 6.12 is equivalent to

G ∧ F(ψ,G, w0i) |=P af (ϕ,w0i) for almost every i ∈ N

and so to condition (2*) of the logical characterization theorem.
We still have to express (i) and (ii) as generalized Rabin conditions. Condition (i) is a

conjunction of conditions expressing that R(ψi,G) accepts at rank ri for every 1 ≤ i ≤ n.
Let P1 ∨ · · · ∨ Pn be the accepting condition of R(ψi,G). Recall that R(ψi,G) accepts at
rank ri if it accepts with the Rabin pair Pri . Pri ∨ Pri+1 ∨ · · · ∨ Pn. Further, condition (ii)
is a co-Büchi condition, which is a special case of a Rabin condition. So the conjunction
of (i) and (ii) is a conjunction of Rabin conditions, and so a generalized Rabin condition.

Observe that condition (i) can be decomposed into a conjunction of conditions, each of
which concerns only one of the automata in the product. On the contrary, condition (ii)
involves all components of the product, and cannot be decomposed.

As in the case of FG-formulae, it remains to deal with the state-explosion problem.
Recall that, when we introduced the automata R(ψ,G), we observed that they can all
be constructed so that they all have the same transition system, and therefore the
intersection R(G) has the same transition system as well. Since R(G) and R(G,~r) have
the same transition system, the same happens now.

6.4. The automaton A(ϕ): Formal definition
We conclude the section by giving a precise definition of the automaton A(ϕ).

Definition 6.15. Let ϕ be an arbitrary formula, and let G(ϕ) = {Gψ1, . . . ,Gψn}
be the set of G-subformulae of ϕ. For every formula Gψi ∈ G(ϕ), let R(ψi,G) =

(Qi, 2
Ap, q0i, δi,Acc

G
i) be the DRA obtained by applying Definition 4.19 to the Mojmir

automatonM(ψi,G). Recall that a state of Qi is a state-ranking of the states ofM(ψi,G).
We use sr i to denote a state-ranking of Qi.

The DGRA A(ϕ) = (Qϕ, 2
Ap, q0ϕ, δϕ,Accϕ) is defined as follows:

-Qϕ = Reach(ϕ)×Q1 × · · · ×Qn.
- q0ϕ = (ϕ, q01, . . . , q0n).
- δϕ((χ, sr1, . . . , srn), a) = (af (χ, a), δ1(sr1, a), . . . , δn(srn, a)).
- Accϕ is a disjunction containing a disjunct AccG~r for each pair (G,~r), where G ⊆ G(ϕ)
and ~r is a mapping assigning to each ψ ∈ G a rank, i.e., a number between 1 and the
number of Rabin pairs of R(ψ,G); each AccG~r is then of the form

M G~r ∧
∧

Gψ∈G

AccG~r (ψ)

where AccG~r (ψ) denotes the Rabin pair of R(ψ,G) with number ~r(ψ), and M G~r says
that transitions taken infinitely often by A(ϕ) must lead into the following set:

{(χ, sr1, . . . , srn) ∈ Qϕ | G ∧
∧

Gψi∈G

S(sr i,~r(ψi)) |=P χ} .

Observe that M Gr can be phrased as a co-Büchi condition on transitions. Therefore,
the whole condition Accϕ is a generalized Rabin condition.

Example 6.16. Recall Example 6.13 illustrated in Figure 10. The states of A(ϕ) are
pairs (χ, sr), where χ is a state of T (ϕ) (on the left of the figure) and sr is a state of
R(ψ) (on the right). Rank vectors have only one component, and so we write r instead
of ~r. Since R(ψ) has two Rabin pairs, we have r = 1 or r = 2.

32

For G = ∅ we have Acc∅r = M∅r , and, independently of r, condition M∅r requests
that A(ϕ) eventually stays in states (χ, sr) satisfying tt |= χ, and so in the set
{ (q1, sr0) , (q1, sr1) }.

For G = {ψ} we have Accψr = Mψ
r ∧Acc

ψ
r . Condition Accψr states thatR(ψ) must accept

using the pair P (r). Let us now examine Mψ
1 and Mψ

2 , starting with the latter.
Mψ

2 requests thatA(ϕ) eventually stays in states (χ, sr) satisfying Gψ∧S(sr ,2) |=P χ.
Since S(sr0,2) = tt and S(sr1,2) = ψ (see the Mojmir automaton in the middle of the
figure), A(ϕ) must eventually stays in states (χ, sr0) satisfying Gψ |=P χ or states
(χ, sr1) satisfying Gψ ∧ ψ |=P χ, and so in the states {q1, q2} × {sr0, sr1}.
Mψ

1 requests thatA(ϕ) eventually stays in states (χ, sr) satisfying Gψ∧S(sr ,1) |=P χ.
Since S(sr1,1) = {p0, p1} = ψ ∧ (bUc), we have Gψ ∧S(sr1,1) |=P χ for χ = Gψ ∧ (bUc),
the formula of state q3. So A(ϕ) must eventually stay in the set ({q1, q2} × {sr0, sr1}) ∪
{(q3, sr1)}.

We now proceed to our final result.

THEOREM 6.17. For any LTL formula ϕ, L(A(ϕ)) = L(ϕ).

PROOF. (⇒) By Theorem 6.9 we only need to prove that if A(ϕ) accepts w with
G ⊆ G(ϕ) and rank vector~r, then (1) G is closed for w and (2*) G∧F(G, w0i) |=P af (ϕ,w0i)
holds for almost every i ∈ N. By construction A(ϕ) only accepts with closed G’s and thus
(1) holds. For (2*) we observe that A(ϕ) also accepts w with the rank vector ~r∗ that
maps every element of G to the smallest accepting rank for w. So we obtain from M G~r∗ :

G ∧
∧

Gψi∈G

S(sr i,~r
∗(ψi)) |=P af (ϕ,w0i)

By Theorem 6.12 we have G ∧ S(sr i,~r) |=P G ∧ F(G, w0i) for almost every i ∈ N, and
so we conclude that property (2*) holds.
(⇐): Let G ⊆ G(ϕ) be a set satisfying the conditions of Theorem 6.9, and let ~r be the rank
vector that maps every element of G to the corresponding smallest accepting rank. We
now prove thatA(ϕ) accepts w with AccG~r . Since G is closed for w, the Rabin pairs AccG~r (ψ)

are accepting for all Gψ ∈ G. Hence it remains to show that also M G~r is accepting. For
this we use the other direction of Theorem 6.12, i.e., that G ∧ F(G, w0i) |=P G ∧ S(sr i,~r)
for almost every i ∈ N.

7. OPTIMIZATIONS
The construction described in the previous sections can be optimized in a number of
ways. In fact, we have already presented an important optimization: the fact that sink
states are not ranked. It is possible to handle sinks just as any other state, but this
leads to much larger Rabin automata. Even the toy examples of the paper would then
be too large to be drawn.

We describe further optimizations reducing the number of the states or the size of the
accepting condition of the automata. Some, but not all, have been mechanically proven.

7.1. Reducing the state space
The first obvious reduction is to construct only the states reachable from the initial
states. Further, we merge equivalent states in several ways. Interestingly, this happens
based on the formulae that label the states, and not on the graph structure of the
automaton, as is the case for, e.g., simulation-based reductions.

(1) Unfolding formulae.
Let the one-step unfolding Unf of a formula be inductively defined by the following

33

rules:
Unf(a) = a

Unf(¬a) = ¬a
Unf(ϕ ∧ ψ) = Unf(ϕ) ∧ Unf(ψ)
Unf(ϕ ∨ ψ) = Unf(ϕ) ∨ Unf(ψ)

Unf(Xϕ) = Xϕ
Unf(Fϕ) = Unf(ϕ) ∨ Fϕ
Unf(Gϕ) = Unf(ϕ) ∧Gϕ

Unf(ϕUψ) = Unf(ψ) ∨ (Unf(ϕ) ∧ (ϕUψ))

The optimization consists of always using unfolded formulae as states. Note that
af (Unf(ϕ), ·) = af (ϕ, ·) since af is Unf followed by plugging in the valuation read.
Therefore, the only change in the transition system of the automaton is to merge
states labelled by ϕ1 6= ϕ2 such that Unf(ϕ1) = Unf(ϕ2). This is an efficient way to
under-approximate LTL equivalence by propositional equivalence, which is also
easier to check (PSPACE vs. NP), e.g. using BDDs. As a simple example, the
optimized automaton for FGa has one state, instead of two states, as illustrated in
Fig. 11.

FGa FGa ∨Ga FGa ∨ (Ga ∧ a)

a

ā a

ā

tt

Fig. 11: Original and optimized co-Büchi automata for FGa

(2) Different initial states for DRAs.
Since no finite prefix influences acceptance of Rabin automata for FG-formulae,
introducing arbitrary initial states for them does not change the accepted language.
Therefore, instead of using “transient” states, which cannot be visited once left, we
try to use states that are reachable even after reading some prefixes. For instance,
consider the formula GF((a ∧XXa) ∨ (¬a ∧XX¬a)). The automaton corresponds
to a buffer keeping track of several last letters read. Without the optimization, we
start with an empty buffer; such an initial state of the Rabin automaton has only a
single token in the initial state of the Mojmir automaton. Then we read a letter and
move to a buffer filled with either a or ā. In the next step, we move to a buffer with
two letters and from that point switch only among the two-letter buffers. The total
size is thus 20 + 21 + 22 = 7. However, if we start with an already full buffer (filled
with whatever letters), the acceptance is not affected, but the reachable state space
is only of size 22 = 4.

aa aā

āa āā

a

ā

ε

a
ā

a āāa

ā
a

a

ā

a

ā

a

ā

Fig. 12: A co-Büchi automaton for GF((a ∧XXa) ∨ (¬a ∧XX¬a)) and the optimized
automaton inside the grey area (with an arbitrary initial state)

34

(3) Irrelevant DRAs.
Recall that a state of our parallel composition is an array of formulae, one corre-
sponding to the current state of the co-Büchi automaton, and the others to the
states of the DRAs. We say that a DRA is irrelevant at a state if its correspond-
ing G-formula either does not appear inside the current formula of the co-Büchi
automaton, or it only appears in conjunction with another formula without any
occurrence of G. For instance, after reading a in a ∧ Fb ∧ FGc ∨ ¬a ∧ FGd, the
co-Büchi automaton reaches the state Fb∧FGc, where the DRA for the formula d is
irrelevant. Consider now Fb ∧ FGc. At this state the DRA for c is irrelevant, due to
the conjunction with Fb. Intuitively, the co-Büchi automaton waits for a b, and only
after that it is important to monitor the satisfaction of FGc. Indeed, postponing
the monitoring by finite time does not affect acceptance, similarly to the previous
optimization. Moreover, if b never holds, then it is unnecessary to check satisfaction
of FGc.

7.2. Reducing the acceptance condition
All disjuncts of a generalized Rabin condition are of the form (F,

∧
k∈K Ik), which we

call a generalized pair. We consider a transition-based condition and denote the set of
all transitions by T . We remove generalized pairs that cannot be satisfied, as well those
whose satisfaction implies satisfaction of another pair. In order to detect such pairs,
we first simplify them. The optimizations are performed to exhaustion in the following
order.

(1) Remove every generalized pair (F, I) such that F = T .
Such pairs never accept, since the whole T cannot be avoided.

(2) Replace every generalized pair (F, I ∧ I) such that I ∪ F = T by (F, I).
If F is visited only finitely often then T \ F ⊆ I is visited infinitely often.

(3) Replace every generalized pair (F,
∧
k∈K Ik) by (F,

∧
k∈K Ik \ F).

Visiting F infinitely often excludes acceptance.
(4) Remove every generalized pair (F, I ∧ ∅).

The empty set cannot be visited (infinitely often).
(5) Replace every generalized pair (F, I ∧ I ∧ J) such that I ⊆ J by (F, I ∧ I).

If I is visited infinitely often then so is J .
(6) Remove every generalized pair (F,

∧
k∈K Ik) for which there exists (F ′,

∧
k′∈K′ I

′
k′)

such that F ′ ⊆ F , and for each k′ ∈ K ′ there is k ∈ K such that Ik ⊆ I ′k′ .
A run accepted by the unprimed pair is also accepted by the primed pair.

For example, consider the formula (GF(a∧Xb)∨FG(b∨X¬a))∧(GF(b∧Xc)∨FG(!c∨
Xa)) ∧ (GF(b ∧XXa) ∨ FG(¬c ∨X¬b)). We start with 4568 pairs and after each phase
we are left with 4052, 3715, 1997, 131, 122, and finally 12 pairs, respectively.

8. COMPLEXITY BOUNDS
Before discussing the implementation of our construction and experimental results
we briefly discuss the worst-case complexity and compare it with that of Safra-based
constructions.

Recall first that the smallest DRA for an LTL formula of length n may have Θ(22n

)
states. This is the case even for the fragment of LTL containing only conjunction,
disjunction and the F operator [Alur and Torre 2004, Theorem 3.8]. Indeed, this paper
shows that all DRAs for the formula

F

n∧
i=1

(ai ∨ Fbi)

35

have a double exponential number of states (in n).
Our construction almost matches this lower bound. Given a formula ϕ, the set of

states of our co-Büchi automaton is Reach(ϕ), and the set of states of our DRAs are
ReachG(ψ) for subformulae ψ of ϕ. By Lemma 2.9, if ϕ has n proper subformulae then
both Reach(ϕ) and ReachG(ψ) have size at most 22n

, and so the number of states of their
product is at most

(22n

)n = 22n+log n

Further, each pair corresponds to DRAs accepting at one of less than 2n ranks, or not
accepting at all. Altogether, there are at most (2n)n = 2n

2

pairs.
The upper bound in the number of states essentially coincides with those for LTL-

to-DRA translations based on Safra’s construction. These translations first transform
ϕ into a NBA of size O(2n), and then apply Safra’s construction, which runs in mO(m)

time and space, for an automaton of size m [Safra 1988]. The overall complexity is thus

2n·O(2n) = 2O(2n+log n)

The number of Rabin pairs of Safra-based translations is at most O(m) = O(2n). We
leave the question whether a modification of our construction can match this bound (or
whether our 2n

2

upper bound is tight) open.
Consider now the LTL fragment with syntax

λ ::= λ ∧ λ | λ ∨ λ | GFa | FGa

where a ∈ Ap (or more generally, a is a boolean combination of Ap). This fragment con-
tains many interesting fairness formulae, like those of the family

∧n
i=1 (GF ai → GFbi).

Our construction yields DGRAs with only one single state, provided we use the un-
folding optimization presented in Section 7. Indeed, a simple induction shows that for
every formula ϕ in the fragment and for every ν ∈ 2Ap, we have Unf(af (ϕ, ν)) ≡P Unf(ϕ).
Therefore, if we take Unf(ϕ) as the initial state, the co-Büchi automaton only has one
reachable state. By a similar argument, replacing af by afG, the Mojmir automaton
M(ψ) for a G-subformula Gψ also has one single state, and the same holds for its
corresponding Rabin automaton. Since every component of the parallel composition
only has one state, the same holds for the parallel composition itself. Note that without
the unfolding optimization the co-Büchi automaton for

∧n
i=1 FGai would have 2n states.

9. IMPLEMENTATION AND EXPERIMENTAL RESULTS
9.1. Implementation
The construction is implemented in a tool Rabinizer 3, which was reported on
in [Komárková and Křetínský 2014]. It is written in Java and uses JavaBDD to work
with formulae as Boolean functions. Furthermore, in order to optimize the construc-
tion time, we have implemented a new version 3.1 of the tool.7 It uses BDDs also for
labelling edges in automata and explores the state space in this more symbolic way
rather than examining successors for each valuation separately.

The implementation allows to choose between the mechanically proved construc-
tion and switching on any subset of the described optimizations. Furthermore, apart
from producing the resulting transition-based generalized Rabin automata, it can also
convert the result to state-based automata as well as degeneralize them into Rabin
automata.

7http://www7.in.tum.de/~kretinsk/rabinizer3.html

36

Finally, there is a choice of output formats: dot format, useful for graphical represen-
tation, e.g. by dotty or Graphviz; and the HOA (Hanoi omega-automata) format, the
new standard [Babiak et al. 2015], nowadays implemented by other translators as well
as PRISM. This allows for linking Rabinizer to PRISM, resulting in a significantly faster
probabilistic LTL model checker, see [Chatterjee et al. 2013; Komárková and Křetínský
2014].

9.2. Experimental results
We compare the performance of the following tools and methods:

(L*) ltl2dstar [Klein 2005] implements and optimizes [Klein and Baier 2007] Safra’s
construction [Safra 1988]. It uses LTL2BA [Gastin and Oddoux 2001] to obtain the
non-deterministic Büchi automata (NBA) first. Other translators to NBA may also
be used, such as Spot [Duret-Lutz 2013] or LTL3BA [Babiak et al. 2012] and in
some cases may yield better results (see [Blahoudek et al. 2013] for comparison
thereof), but LTL2BA is recommended by ltl2dstar and is used this way in PRISM
[Kwiatkowska et al. 2011].

(R1/2) Rabinizer [Gaiser et al. 2012] and Rabinizer 2 [Křetínský and Ledesma-Garza
2013] implement a direct construction based on [Křetínský and Esparza 2012] for
fragments LTL(F,G) and LTL\GU

8, respectively. The latter tool is applied here only
on formulae not in LTL(F,G).

(L3) LTL3DRA [Babiak et al. 2013] implements a construction via alternating automata,
which is “inspired by [Křetínský and Esparza 2012]” (quoted from [Babiak et al.
2013]) and performs several optimizations.

(R3) Rabinizer 3.1 performs our new construction. Unless specified otherwise we em-
ploy the previously described optimizations. Notice that we produce a state space
with a logical structure, which permits many further optimizations; for instance,
one could incorporate the suspension optimization of LTL3BA [Babiak et al. 2013].

For L* and R1/2 we produce DRAs (although Rabinizer 2 can also produce DGRAs) with
state-based acceptance conditions. For L3 and R3 we produce DGRAs with transition-
based acceptance conditions (tDGRAs), which can be directly used for probabilistic
model checking without any blow-up [Chatterjee et al. 2013]. Inapplicability of a tool
to a formula is denoted in tables by −. All automata in this section were constructed
within a few seconds, with the exception of the larger automata generated by ltl2dstar:
it took several minutes for automata over ten thousand states and hours for hundreds
of thousands of states. The automaton for

∧3
i=1(GFai → GFbi) took even more than a

day and “?” denotes a time-out after one day.
Table I shows formulae of the LTL(F,G) fragment. The upper part comes from BEEM

(BEnchmarks for Explicit Model checkers)[Pelánek 2007], the lower one from [Somenzi
and Bloem 2000] on which ltl2dstar was originally tested [Klein and Baier 2006].
There are overlaps between the two sets. Note that the formula (FFa∧G¬a)∨ (GG¬a∧
Fa) is a contradiction. All the formulae were used already in [Křetínský and Esparza
2012; Babiak et al. 2013]. Although more general, our method usually achieves the
same results as the optimized LTL3DRA, outperforming the first two approaches.

Table II shows formulae of LTL\GU used in [Křetínský and Ledesma-Garza 2013].
The first part comes mostly from the same sources and [Etessami and Holzmann 2000].
The second part is considered in [Křetínský and Ledesma-Garza 2013] in order to
demonstrate the difficulties of the standard approach to handle

8LTL\GU was introduced in [Křetínský and Ledesma-Garza 2013] and disallows occurrences of U in the
scope of G.

37

Table I: Experimental results on LTL(F,G)-fragment

Formula L* R1 L3 R3
G(a ∨ Fb) 4 4 2 2
FGa ∨ FGb ∨GFc 8 8 1 1
F(a ∨ b) 2 2 2 2
GF(a ∨ b) 2 2 1 1
G(a ∨ b ∨ c) 3 2 2 2
G(a ∨ F(b ∨ c)) 4 4 2 2
Fa ∨Gb 4 3 3 3
G(a ∨ F(b ∧ c)) 4 4 2 2
(FGa ∨GFb) 4 4 1 1
GF(a ∨ b) ∧GF(b ∨ c) 7 3 1 1
(FFa ∧G¬a) ∨ (GG¬a ∧ Fa) 1 0 1 2
(GFa) ∧ FGb 3 3 1 1
(GFa ∧ FGb) ∨ (FG¬a ∧GF¬b) 5 4 1 1
FGa ∧GFa 2 2 1 1
G(Fa ∧ Fb) 5 3 1 3
Fa ∧ F¬a 4 4 4 4
(G(b ∨GFa) ∧G(c ∨GF¬a)) ∨Gb ∨Gc 13 18 4 4
(G(b ∨ FGa) ∧G(c ∨ FG¬a)) ∨Gb ∨Gc 14 6 4 4
(F(b ∧ FGa) ∨ F(c ∧ FG¬a)) ∧ Fb ∧ Fc 7 5 4 4
(F(b ∧GFa) ∨ F(c ∧GF¬a)) ∧ Fb ∧ Fc 7 5 4 4

(1) many X operators inside the scope of other temporal operators, especially U, where
the DRAs are already quite complex, and

(2) conjunctions of liveness properties where the efficiency of generalized Rabin accep-
tance condition may be fully exploited.

Table II: Experimental results on LTL\GU -fragment

Formula L* R2 L3 R3
(Fp)U(Gq) 4 3 2 2
(Gp)Uq 5 5 5 5
(p ∨ q)Up ∨Gq 4 3 3 3
G(!p ∨ Fq) ∧ ((Xp)Uq ∨X((!p∨!q)U!p ∨G(!p∨!q))) 19 8 − 5
G(q ∨XGp) ∧G(r ∨XG!p) 5 14 4 4
(X(Gr ∨ rU(r ∧ sUp)))U(Gr ∨ rU(r ∧ s)) 18 9 8 8
pU(q ∧X(r ∧ (F(s ∧X(F(t ∧X(F(u ∧XFv)))))))) 9 13 13 13
(GF(a ∧XXb) ∨ FGb) ∧ FG(c ∨ (Xa ∧XXb)) 353 73 − 12
GF(XXXa ∧XXXXb) ∧GF(b ∨Xc) ∧GF(c ∧XXa) 2 127 169 − 16
(GFa ∨ FGb) ∧ (GFc ∨ FG(d ∨Xe)) 18 176 80 − 2
(GF(a ∧XXc) ∨ FGb) ∧ (GFc ∨ FG(d ∨Xa ∧XXb)) ? 142 − 12
aUb ∧ (GFa ∨ FGb) ∧ (GFc ∨ FGd)∨ 640 771 210 8 7

∨aUc ∧ (GFa ∨ FGd) ∧ (GFc ∨ FGb)

Table III contains formulae of the general LTL. The first part contains two randomly
picked formulae illustrating the same two phenomena as in the previous table now
on general LTL formulae. The second part contains two examples of formulae from a
network monitoring project LIBEROUTER9. The third part contains five more complex
formulae from SPEC PATTERN [Dwyer et al. 1999]10 and express the following “after Q
until R” properties:

9https://www.liberouter.org/
10Spec Patterns: Property Pattern Mappings for LTL. http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

38

ϕ35 : G(!q ∨ (Gp ∨ (!pU(r ∨ (s∧!p ∧X(!pUt))))))
ϕ40 : G(!q ∨ (((!s ∨ r) ∨X(G(!t ∨ r)∨!rU(r ∧ (!t ∨ r))))U(r ∨ p) ∨G((!s ∨XG!t))))
ϕ45 : G(!q ∨ (!s ∨ X(G!t∨!rU(r∧!t)) ∨ X(!rU(r ∧ Fp)))U(r ∨ G(!s ∨ X(G!t∨!rU(r∧!t)) ∨

X(!rU(t ∧ Fp)))))
ϕ50 : G(!q ∨ (!p ∨ (!rU(s∧!r ∧X(!rUt))))U(r ∨G(!p ∨ (s ∧XFt))))
ϕ55 : G(!q ∨ (!p ∨ (!rU(s∧!r∧!z ∧X((!r∧!z)Ut))))U(r ∨G(!p ∨ (s∧!z ∧X(!zUt)))))

Here we also compare unoptimized and optimized versions of our construction.

Table III: Experimental results on general LTL

Formula L* R1/2 L3 R3-unopt. R3-opt.
FG((a ∧XXb ∧GFb)U(G(XX!c ∨XX(a ∧ b)))) 2 053 − − 9 3
G(F!a ∧ F(b ∧X!c) ∧GF(aUd)) ∧GF((Xd)U(b ∨Gc)) 283 − − 25 7
G(((!p1)) ∧ (p2U((!p2)U((!p3) ∨ p4)))) 7 − − 6 4
G(((p1) ∧X!p1) ∨X(p1U(((!p2) ∧ p1)∧ 8 − − 12 9

X(p2 ∧ p1 ∧ (p1U(((!p2) ∧ p1) ∧X(p2 ∧ p1)))))))
ϕ35 : 2 cause-1 effect precedence chain 6 − − 9 6
ϕ40 : 1 cause-2 effect precedence chain 314 − − 16 16
ϕ45 : 2 stimulus-1 response chain 1450 − − 81 68
ϕ50 : 1 stimulus-2 response chain 28 − − 36 21
ϕ55 : 1-2 response chain constrained by a single proposition 28 − − 36 21

9.3. Advantages and limits of the approach
In this section, we focus on formulae with extremely complex acceptance conditions. This
is caused by combinations of “infinitary” behaviour, whose satisfaction does not depend
on any finite prefix of the word. A typical example is the “fairness”-fragment given by λ
of Section 8. In this case, our DGRA have only one state. While DRA need to remember
the last letter read, the transition-based acceptance together with the generalized
acceptance condition allow transition-based DGRA not to remember anything. Such
formulae are the most difficult for our as well as the traditional determinization
approach.

In Table IV, the first two parts were used in [Křetínský and Esparza 2012; Babiak
et al. 2013] and the third part in [Babiak et al. 2013]. The first part focuses on properties
with fairness-like constraints.

Table IV: Experimental results on “fairness”-fragment given by λ of Section 8

Formula L* R1 L3 R3-unopt. R3-opt.
(FGa ∨GFb) 4 4 1 4 1
(FGa ∨GFb) ∧ (FGc ∨GFd) 11 324 18 1 16 1∧3

i=1(FGai ∨GFbi) 1 304 706 462 1 64 1
GF(Fa ∨GFb ∨ FG(a ∨ b)) 14 4 1 3 1
FG(Fa ∨GFb ∨ FG(a ∨ b)) 145 4 1 4 1
FG(Fa ∨GFb ∨ FG(a ∨ b) ∨ FGb) 181 4 1 4 1
(GFa ∨ FGb) 4 4 1 4 1
(GFa ∨ FGb) ∧ (GFb ∨ FGc) 572 11 1 9 1
(GFa ∨ FGb) ∧ (GFb ∨ FGc) ∧ (GFc ∨ FGd) 290 046 52 1 17 1
(GFa ∨ FGb) ∧ (GFb ∨ FGc) ∧ (GFc ∨ FGd) ∧ (GFd ∨ FGh) ? 1288 1 33 1

Table V shows it is very beneficial to use the generalized Rabin acceptance. Further-
more, using transition-based acceptance even more states are saved.

39

Table V: Experimental comparisons of acceptance conditions. We display number
of states and acceptance pairs for ltl2dstar and Rabinizer 3 producing different
types of automata, all with the same number of pairs. Here ψ1 = FG(((a ∧ XXb) ∧
GFb)UG(XX!c ∨ XX(a ∧ b))) and ψ2 = G(!q ∨ (((!s ∨ r) ∨ X(G(!t ∨ r)∨!rU(r ∧ (!t ∨
r))))U(r ∨ p) ∨G((!s ∨XG!t)))), the latter being ϕ40 “1 cause-2 effect precedence chain”
of SPEC PATTERNS

Formula ltl2dstar Rabinizer 3
DRA states pairs DRA st. DGRA st. tDGRA st. pairs

FGa ∨GFb 4 2 4 4 1 2
(FGa ∨GFb) ∧ (FGc ∨GFd) 11324 8 21 16 1 4∧3

i=1(GFai → GFbi) 1 304 706 10 511 64 1 8∧3
i=1(GFai → GFai+1) 153 558 8 58 17 1 8

ψ1 40 4 4 4 3 1
ψ2 314 7 21 21 16 4

However, when the the automata are used for model checking, transition-based
acceptance does not improve the results so much. Indeed, although state-based DGRA
are larger than their transition-based counterpart tDGRA, the respective product is
not much larger (often not at all), see Table VI. For instance, consider the case when
the only extra information that DGRA carries in states, compared to tDGRA, is the
labelling of the last transition taken. Then this information is absorbed in the product,
as the system’s states carry their labelling anyway. Therefore, in this relatively frequent
case for simpler formulae (like the one in Table VI), there is no difference in sizes of
products with DGRA and tDGRA.

Table VI: Model checking Pnueli-Zuck mutex protocol with 5 processes (altogether
m = 308 800 states) from the benchmark set [Kwiatkowska et al. 2011] for the property
that either all processes 1-4 enter the critical section infinitely often, or process 5 asks
to enter it only finitely often

L* DRA R3 DRA R3 DGRA R3 tDGRA
Automaton size (and nr. of pairs) 196 (5) 11 (2) 33 (2) 1 (2)
Product size 13 826 588 1 100 608 308 800 308 800
“Effective” size of automaton = Product size/m 44.78 3.56 1 1

Further, notice that the DGRA in Table VI is larger than the DRA obtained by
degeneralization of tDGRA and subsequent transformation to a state-based automaton.
However, the product with the DGRA is of the size of the original system, while for
DRA it is larger! This demonstrates the superiority of generalized Rabin automata over
standard Rabin automata with respect to the product size and thus also computation
time, which is superlinear in the size.

Finally, Table VII compares the running times for the discussed fairness-fragment.

10. FORMALIZATION IN ISABELLE
We have mechanically verified the proof of correctness of our construction using the
Isabelle theorem prover11, which provides a rich library of formalised mathematics
and convenient support for proof development. A detailed introduction can be found in

11https://isabelle.in.tum.de/

40

Table VII: Running times for constructing an automaton and its acceptance condition for
fairness constraints

∧k
i=1(FGai ∨GFbi) for different k. Times are given in seconds with

time-out (blank space) after one hour. The experiments were run on an Intel Core i7
with 8 GB memory. Here we also compare to Rabinizer 3 of [Komárková and Křetínský
2014], denoted by R3.0, where all transitions are handled separately, as opposed to a
symbolic encoding into edges of Rabinizer 3.1, denoted by R3.1

k L* R1 L3 R3.0 R3.1-unopt. R3.1-opt.
1 0.15 0.10 0.01 0.04 0.12 0.12
2 4.3 0.19 0.01 0.08 0.29 0.14
3 5.7 0.03 0.38 2.1 0.24
4 0.19 3.8 22 0.54
5 1.9 105 640 1.2
6 25 4.1
7 350 17
8 86
9 670
10

[Nipkow et al. 2002]. Similar work was pioneered by the CAVA project12, which already
verified a range of automata-theoretic algorithms [Esparza et al. 2013]. In fact some
of the theories developed in the context of CAVA project are also reused in our work.
The formalization was carried out by one of us, and constituted his Master’s thesis. The
formal proof can be found at [Sickert 2015], and consists of around 11000 lines.

10.1. Relation between formalisation and the content of this paper
The formalization is split into several “theories”. A theory is just a collection of defini-
tions and results, which can reuse results from other theories. Our theories are listed
in Table VIII.

Table VIII: Important theories and their content.
LTL.thy Syntax and semantics of LTL.
af.thy The af and afG functions and their properties.
Logical_Characterization.thy The logical characterization theorems.
Mojmir.thy Mojmir automata.
Rabin.thy (Generalised) Rabin automata.
Mojmir_Rabin.thy Translation from Mojmir to Rabin automata.
LTL_Rabin.thy Translation from LTL to tGDRA.
LTL_Rabin_Unfold_Opt.thy Unfold optimisation of the general translation.

For the main definitions, lemmas, and theorems of this paper, Table IX shows their
corresponding name and location in the formalized theories. With the help of this table,
interested readers can establish the correspondence between our results and their
formal versions. For example, we reproduce here Theorem 5.6 next to the formal version
in the mechanized proof:

THEOREM 10.1 (LOGICAL CHARACTERIZATION THEOREM III). For every LTL for-
mula FGϕ and every word w: w |= FGϕ iff there exists a closed set G ⊆ G(FGϕ)
containing Gϕ.

12https://cava.in.tum.de/

41

1 theorem ltl_FG_logical_characterization:
2 "w |= FGϕ ←→ (∃G ⊆ G(FGϕ). Gϕ ∈ G ∧ closed G w)"
3 (is "?lhs ←→ ?rhs")
4 proof
5 assume ?lhs
6 hence "Gϕ ∈ GFG(FGϕ) w" and "GFG(FGϕ) w ⊆ G(FGϕ)"
7 unfolding GFG_alt_def by auto
8 thus ?rhs
9 using closed_GFG by metis

10 qed (blast intro: closed_FG)

Note that there are several differences between the formulation of the theorem in the
paper and in the formalized theories.

— Unbounded variables such as w and ϕ are implicitly universally quantified.
— The type system automatically deduces the types of w, which is an ω-word, and
ϕ, which is an LTL formula, using the signature of the operator |=. Thus the type
annotations are omitted.

— Since we cannot use the whole range of mathematical symbols and notation due to
technical constraints, alternative notation is used. In this instance G is replaced by
G, and Gw(ϕ) by GFG ϕ w.

The theorem declaration is then followed by the proof body, which is written in the
proof language Isar. In every proof step facts are established using the keywords have,
hence, show, and thus. These claims then have to be proven using a proof method, such
as blast, metis, and auto. Furthermore, we can pass additional facts to these methods
using parameters such as intro, dest or via the using keyword. All remaining proof
goals, in this case that the right hand side implies the left, are proven with the method
behind qed. A detailed explanation of the language is given in [Wenzel 2007], while the
whole specification can be found [Wenzel 2014].

Note that some definitions and claims, like for instance Proposition 2.4 and Theorem
4.1, have no counterpart in the formalisation, as they only illustrate different aspects of
the construction, but are not an essential part of it. In the first case, we directly define
LTL in negation normal form and do not include a translation method, while in the
second case the theorem is just a special case of Theorem 5.6 and thus left out.

10.2. Merits of the Mechanization
While the effort invested in the mechanization of the proof has been very considerable
(about 8 person-months of a master student who had taken an introductory course
on Isabelle), it has helped to identify several bugs in the construction we presented
in [Esparza and Křetínský 2014], the conference paper preceding this one. All but
one concerned corner cases that were arguably not very relevant. For example, the
translation from a Mojmir to a Rabin automaton was incorrect for the case in which the
Mojmir automaton has one single state, which is at the same time an accepting state.
However, one bug was more serious. Lemma C of our conference paper was wrong, due to
a mistake in the proof. The proof was carried out by induction over the structure of LTL
formulae. Since our attempts at mechanizing the proof obviously failed, we repeatedly
tried to correct the argument by nesting induction proofs. This process eventually lead
to the smallest to us known formula for which the lemma fails: G(Xa ∨GXb). Observe
that the formula is already long enough to have a good chance of surviving random
testing. Moreover, testing can only be performed with respect to another tool producing
DRAs from formulae, which could itself have a bug, and the test requires to check
equivalence of deterministic Rabin automata, which is a complicated task. Finally, we

42

Table IX: Location of definitions, lemmas and theorems.
Def. 2.2 LTL.thy ltl_semantics
Def. 2.5 LTL.thy ltl_prop_entailment
Def. 2.7 af.thy af_letter, af
Lem. 2.9 af.thy af_nested_propos, af_simps,

af_respectfulness
Prop. 2.10 af.thy af_ltl_continuation
Thm. 3.1 Logical_Characterization.thy ltl_implies_provable
Lem. 4.9 Mojmir.thy rank_None_Suc, rank_monotonic
Lem. 4.11 Mojmir.thy state_rank_step
Lem. 4.15 Mojmir.thy token_succeeds_run_merge,

token_squats_run_merge
Lem. 4.16 Mojmir.thy mojmir_accept_iff_token_set_accept
Lem. 4.17 Mojmir.thy stable_rank_bounded
Thm. 4.22 Mojmir_Rabin.thy mojmir_accept_iff_rabin_accept
Def. 5.2 af.thy af_G_letter, afG
Lem. 5.5 Logical_Characterization.thy closed_GFG, closed_FG
Thm. 5.6 Logical_Characterization.thy ltl_FG_logical_characterization
Lem. 5.8 af.thy afG_sat_core
Thm. 5.13 LTL_Rabin.thy ltl_FG_to_generalised_rabin_correct
Lem. 6.8 Logical_Characterization.thy almost_all_suffixes_model_F
Thm. 6.9 Logical_Characterization.thy ltl_logical_characterization
Thm. 6.12 LTL_Rabin.thy F_eq_S
Lem. 6.14 Mojmir.thy token_accepting_rank
Thm. 6.17 LTL_Rabin.thy ltl_to_generalised_rabin_correct

do not know of any reasonable way of certifying an LTL to DRA translation, that is, of
making the tool produce a certificate of correctness that can be checked by independent
means.

After these experiences, we consider automata-theoretic constructions used in model-
checking tools an area in which mechanized proofs are highly desirable, if not necessary.
Many of the constructions are very clever and involved. Moreover, while they often
rely on relatively simple intuitions, their correctness proofs often involve detailed case
analyses. Since the constructions become part of model-checkers, which for the most
part are used to find bugs in other systems, bugs in the construction itself can have a
multiplying effect. Finally, as mentioned above, there is no simple way to test the tools,
since there is no independent way of checking that the output of the construction is
correct.

11. CONCLUSIONS
We have presented the first direct translation from LTL formulae to deterministic Rabin
automata able to handle arbitrary formulae. The construction generalizes previous ones
for LTL fragments [Křetínský and Esparza 2012; Křetínský and Ledesma-Garza 2013].
A mechanized proof also discovered a bug in the original construction [Esparza and
Křetínský 2014]. Given ϕ, we compute (1) a transition system for ϕ, automata for each
G-subformula of ϕ, and their parallel composition, and (2) the acceptance condition:
we first guess a set of G-subformulae that are true (this yields the accepting states of
automata for G-subformulae), and then guess the ranks (this yields the information for
a co-Büchi acceptance condition of the whole product).

The compositional approach opens the door to many possible optimizations. Since
the automata for G-subformulae are typically very small, we can aggressively try to

43

optimize them, knowing that each reduced state in one potentially leads to large savings
in the final number of states of the product. So far we have only implemented a few
simple optimizations, and we think there is still much room for improvement.

We have conducted a detailed experimental comparison. Our construction outper-
forms two-step approaches that first translate the formula into a Büchi automaton and
then apply Safra’s construction. Moreover, despite handling full LTL, it is at least as
efficient as previous constructions for fragments. Finally, we produce a (often much
smaller) generalized Rabin automaton, which can be directly used for verification,
without further translation into a standard Rabin automaton.

REFERENCES
Rajeev Alur and Salvatore La Torre. 2004. Deterministic generators and games for LTL fragments. ACM

Trans. Comput. Log. 5, 1 (2004), 1–25.
Tomáš Babiak, Thomas Badie, Alexandre Duret-Lutz, Mojmír Křetínský, and Jan Strejček. 2013. Composi-

tional Approach to Suspension and Other Improvements to LTL Translation. In SPIN. 81–98.
Tomáš Babiak, František Blahoudek, Alexandre Duret-Lutz, Joachim Klein, Jan Křetínský, David Müller,

David Parker, and Jan Strejček. 2015. The Hanoi Omega-Automata Format. In CAV. To appear.
Tomáš Babiak, František Blahoudek, Mojmír Křetínský, and Jan Strejček. 2013. Effective Translation of LTL

to Deterministic Rabin Automata: Beyond the (F, G)-Fragment. In ATVA. 24–39.
Tomáš Babiak, Mojmír Křetínský, Vojtěch Rehák, and Jan Strejček. 2012. LTL to Büchi Automata Translation:

Fast and More Deterministic. In TACAS. 95–109.
Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT Press. I–XVII, 1–975 pages.
František Blahoudek, Mojmír Křetínský, and Jan Strejček. 2013. Comparison of LTL to Deterministic Rabin

Automata Translators. In LPAR. 164–172.
Krishnendu Chatterjee, Andreas Gaiser, and Jan Křetínský. 2013. Automata with Generalized Rabin Pairs

for Probabilistic Model Checking and LTL Synthesis. In CAV. 559–575.
Costas Courcoubetis and Mihalis Yannakakis. 1988. Verifying Temporal Properties of Finite-State Probabilis-

tic Programs. In FOCS. 338–345.
Jean-Michel Couvreur. 1999. On-the-Fly Verification of Linear Temporal Logic. In World Congress on Formal

Methods. 253–271.
Marco Daniele, Fausto Giunchiglia, and Moshe Y. Vardi. 1999. Improved Automata Generation for Linear

Temporal Logic. In CAV. 249–260.
Alexandre Duret-Lutz. 2013. Manipulating LTL Formulas Using Spot 1.0. In ATVA. 442–445.
Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1999. Patterns in Property Specifications for

Finite-State Verification. In ICSE. 411–420.
Javier Esparza and Jan Křetínský. 2014. From LTL to Deterministic Automata: A Safraless Compositional

Approach. In CAV. 192–208.
Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf, and Jan-Georg Smaus.

2013. A Fully Verified Executable LTL Model Checker. In CAV. 463–478.
Kousha Etessami and Gerard J. Holzmann. 2000. Optimizing Büchi Automata. In CONCUR. 153–167.
Carsten Fritz. 2003. Constructing Büchi Automata from Linear Temporal Logic Using Simulation Relations

for Alternating Büchi Automata. In CIAA. 35–48.
Andreas Gaiser, Jan Křetínský, and Javier Esparza. 2012. Rabinizer: Small Deterministic Automata for

LTL(F,G). In ATVA. 72–76.
Paul Gastin and Denis Oddoux. 2001. Fast LTL to Büchi Automata Translation. In CAV (LNCS), Vol. 2102.

Springer, 53–65. Tool accessible at http://www.lsv.ens-cachan.fr/∼gastin/ltl2ba/.
Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. 1995. Simple on-the-fly automatic verification of

linear temporal logic. In Protocol Specification, Testing and Verification XV, Proceedings of the Fifteenth
IFIP WG6.1 International Symposium on Protocol Specification, Testing and Verification. 3–18.

Barbara Di Giampaolo, Gilles Geeraerts, Jean-François Raskin, and Nathalie Sznajder. 2010. Safraless
Procedures for Timed Specifications. In FORMATS. 2–22.

Dimitra Giannakopoulou and Flavio Lerda. 2002. From States to Transitions: Improving Translation of LTL
Formulae to Büchi Automata. In FORTE. 308–326.

Joachim Klein. 2005. Linear time logic and deterministic omega-automata. Master’s thesis. Rheinische
Friedrich-Wilhelms Universität Bonn. The tool ltl2dstar - LTL to deterministic Streett and Rabin
automata is available at http://www.ltl2dstar.de/.

44

Joachim Klein and Christel Baier. 2006. Experiments with deterministic ω-automata for formulas of linear
temporal logic. Theor. Comput. Sci. 363, 2 (2006), 182–195.

Joachim Klein and Christel Baier. 2007. On-the-Fly Stuttering in the Construction of Deterministic ω-
Automata. In CIAA (LNCS), Vol. 4783. Springer, 51–61.

Zuzana Komárková and Jan Křetínský. 2014. Rabinizer 3: Safraless Translation of LTL to Small Deterministic
Automata. In ATVA. 235–241.

Jan Křetínský and Ruslán Ledesma-Garza. 2013. Rabinizer 2: Small Deterministic Automata for LTL\GU.
In ATVA. 446–450.

Orna Kupferman. 2012. Recent Challenges and Ideas in Temporal Synthesis. In SOFSEM (LNCS), Vol. 7147.
Springer, 88–98.

Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. 2006. Safraless Compositional Synthesis. In CAV.
31–44.

Orna Kupferman and Moshe Y. Vardi. 2005. Safraless Decision Procedures. In FOCS. 531–542.
Jan Křetínský and Javier Esparza. 2012. Deterministic Automata for the (F,G)-Fragment of LTL. In CAV.

7–22.
Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of Probabilistic

Real-time Systems. In CAV. 585–591.
Tobias Nipkow, Lawrence C. Paulson, and Makarius Wenzel. 2002. Isabelle/HOL: A Proof Assistant for

Higher-Order Logic. Springer.
Radek Pelánek. 2007. BEEM: Benchmarks for Explicit Model Checkers. In Proc. of SPIN Workshop (LNCS),

Vol. 4595. Springer, 263–267.
Nir Piterman. 2006. From Nondeterministic Büchi and Streett Automata to Deterministic Parity Automata.

In LICS. 255–264.
Amir Pnueli and Aleksandr Zaks. 2008. On the Merits of Temporal Testers. In 25 Years of Model Checking -

History, Achievements, Perspectives. 172–195.
Shmuel Safra. 1988. On the Complexity of ω-Automata. In FOCS. IEEE Computer Society, 319–327.
Sven Schewe. 2009. Tighter Bounds for the Determinisation of Büchi Automata. In FOSSACS. 167–181.
Salomon Sickert. 2015. Converting Linear Temporal Logic to Deterministic (Generalised) Rabin Automata.

Archive of Formal Proofs (Sept. 2015). http://afp.sf.net/entries/LTL_to_DRA.shtml, Formal proof develop-
ment.

Fabio Somenzi and Roderick Bloem. 2000. Efficient Büchi Automata from LTL Formulae. In CAV (LNCS), Vol.
1855. Springer, 248–263.

Moshe Y. Vardi. 1999. Probabilistic Linear-Time Model Checking: An Overview of the Automata-Theoretic
Approach. In Formal Methods for Real-Time and Probabilistic Systems, 5th International AMAST
Workshop. 265–276.

Moshe Y. Vardi and Pierre Wolper. 1986. An Automata-Theoretic Approach to Automatic Program Verification
(Preliminary Report). In LICS. 332–344.

Moshe Y. Vardi and Pierre Wolper. 1994. Reasoning About Infinite Computations. Inf. Comput. 115, 1 (1994),
1–37.

Makarius Wenzel. 2007. Isabelle/Isar—a generic framework for human-readable proof documents. From
Insight to Proof—Festschrift in Honour of Andrzej Trybulec 10, 23 (2007), 277–298.

Makarius Wenzel. 2014. The Isabelle/Isar Reference Manual. (2014). https://isabelle.in.tum.de/doc/isar-ref.pdf
[Online; accessed 19-May-2015].

45

A. TECHNICAL PROOFS

Lemma 2.9. For every formula ϕ and every finite word w ∈ (2Ap)∗:

(1) af (ϕ,w) is a boolean combination of proper subformulae of ϕ.
(2) If af (ϕ,w) = tt, then af (ϕ,ww′) = tt for every w′ ∈ (2Ap)∗, and analogously for ff .
(3) If ϕ1 ≡P ϕ2, then af (ϕ1, w) ≡P af (ϕ2, w).
(4) If ϕ has n proper subformulae, then the set of formulae reachable from ϕ has at most

22n

equivalence classes of formulae with respect to propositional equivalence.

PROOF. (1) By structural induction on ϕ.
(2) Follows immediately from af (tt, ν) = tt and af (ff , ν) = ff .
(3) By (1) every formula ϕ is a positive boolean combination of proper formulae. Since
af distributes over ∧ and ∨, the formula af (ϕ, ν) is obtained by applying a simultaneous
substitution to the proper formulae. (For example, a proper formula Gψ is substituted
by af (ψ, ν) ∧Gψ.) Let ϕ[S] be the result of the substitution.

Consider two equivalent formulae ϕ1 ≡P ϕ2. Since we apply the same substitution to
both sides, the substitution lemma of propositional logic guarantees ϕ1[S] ≡P ϕ2[S]. So
af (ϕ1, ν) ≡P af (ϕ2, ν) for a letter ν. The general case af (ϕ1, w) ≡P af (ϕ2, w) follows by
induction on the length of w.
(4) Follows from (1) and the fact that there are 22n

equivalence classes of boolean
formulae with n variables.

Proposition 2.10. Let ϕ be a formula, and let ww′ ∈ (2Ap)ω be an arbitrary word. Then
ww′ |= ϕ iff w′ |= af (ϕ,w).

PROOF. First we prove the property when w is a single letter ν:

νw′ |= ϕ iff w′ |= af (ϕ, ν) (2)

We prove (2) by structural induction on ϕ. We only consider two representative cases.

- ϕ = a. Then

νw′ |= a

hence a ∈ ν
hence af (a, ν) = tt

hence w′ |= af (a, ν)

νw′ 6|= a

hence a /∈ ν (semantics of LTL)
hence af (a, ν) = ff (def. of af)
hence w′ 6|= af (a, ν)

- ϕ = Fϕ′. Then

νw′ |= Fϕ′

iff νw′ |= (XFϕ′) ∨ ϕ′ (Fϕ′ ≡ XFϕ′ ∨ ϕ′)
iff

(
w′ |= Fϕ′

)
∨
(
νw′ |= ϕ′

)
(semantics of LTL)

iff
(
w′ |= Fϕ′

)
∨
(
w′ |= af (ϕ′, ν)

)
(ind. hyp.)

iff w′ |= Fϕ′ ∨ af (ϕ′, ν) (def. of af)
iff w′ |= af (Fϕ′, ν) (def. of af)

Now we prove the property for every word w by induction on the length of w. If w = ε
then af (ϕ,w) = ϕ, and so ww′ |= ϕ iff w′ |= ϕ iff w′ |= af (ϕ,w). If w = νw′′ for some
ν ∈ 2Ap, then we have

46

w′ |= af (ϕ,w)
iff w′ |= af (ϕ, νw′′)
iff w′ |= af (af (ϕ, ν), w′′) (def. of af)
iff w′′w′ |= af (ϕ, ν) (ind. hyp.)
iff νw′′w′ |= ϕ (2)
iff ww′ |= ϕ

Lemma 4.17. Let i be the rank of condition (2) in Theorem 4.16. If the rank of τ
stabilizes, then strkw(τ) < i.

PROOF. We first prove the following two claims, where i is the rank of condition (2):

(a) If τ succeeds at rank i, then strkw(τ) < i.
Since τ has rank i when it reaches the accepting states, we clearly have strkw(τ) ≤ i.
We show strkw(τ) < i. Assume the contrary. With the previous observation, we have
strkw(τ) = i. Let t be some time at which τ has already entered the accepting states,
and its rank has stabilized. By (2.1), some token τ ′ born after time t (i.e., τ ′ > t)
also succeeds at rank i. Let t′ ≥ t be the time immediately before τ ′ enters the
accepting states. Then we have rkw(τ, t′) = i, because at time t′ token τ has already
stabilized, and rkw(τ ′, t′) = i by definition. But at time t′ token τ is in some accepting
state, while τ ′ is not. So we have two tokens in different states with the same rank,
contradicting the definition of rank.

(b) If rkw(τ, t) ≤ rkw(τ ′, t) = strkw(τ ′) ∈ N, then rkw(τ, t) = strkw(τ).
(If a token has reached its stable rank at some time t, then so have all tokens of older
rank.)
Assume rkw(τ, t) 6= strkw(τ). Then at some time t′ > t the rank of τ either becomes
⊥ (because τ reaches a sink) or improves (because τ ’s firm merges with a firm of
older rank). In both cases, the rank of rkw(τ ′, t) also improves (because the rank of τ
becomes vacant), contradicting the assumption that at time t token τ has already
reached its stable rank.

Assume now that the rank of τ stabilizes but strkw(τ) ≥ i. By (2.1), some token τ ′

born after the rank of τ stabilizes succeeds at rank i. Since q0 /∈ F , this token eventually
enters the accepting states. Let t be the time immediately before τ ′ enters the accepting
states. We have rkw(τ ′, t) = i. Since strkw(τ) ≥ i, we have rkw(τ, t) ≥ i = rkw(τ ′, t). By
(b) (with the roles of τ and τ reversed), we get rkw(τ ′, t) = strkw(τ ′), and so strkw(τ ′) = i.
But, since τ ′ succeeds at rank i, this contradicts (a).

Proposition 5.1. Let M1 = (Q1,Σ, q01, δ1, F1) and M2 = (Q2,Σ, q02, δ2, F2). Let Q =
Q1 ×Q2, let q0 = (q01, q02), and let δ : Q× Σ→ Q be the function given by δ(q1, q2, ν) =
(δ1(q1, ν), δ2(q2, ν)) Then the tuples

M1 ∩M2 =
(
Q,Σ, q0, δ, F1 × F2

)
M1 ∪M2 =

(
Q,Σ, q0, δ, (F1 ×Q2) ∪ (Q1 × F2)

)
are also Mojmir automata, and moreover L(M1∩M2) = L(K1)∩L(K2) and L(M1∪M2) =
L(K1) ∪ L(K2).

PROOF. We have to show that states reachable from an accepting state ofM1 ∩M2

orM1∪M2 are again accepting. If (q1, q2) is an accepting state ofM1∩M2 orM1∪M2,
then by definition δ((q1, q2), ν) = (δ1(q1, ν), δ2(q2, ν)).

47

- If (q1, q2) ∈ F1 × F2, then, sinceM1 andM2 areM automata, we have δ1(q1, ν) ∈ F1

and δ2(q2, ν) ∈ F2, and so δ((q1, q2), ν) ∈ F1 × F2.
- If (q1, q2) ∈ (F1 ×Q2) ∪ (Q1 × F2), then, sinceM1 andM2 areM automata, we have
δ(q1, ν) ∈ F1 or δ(q2, ν) ∈ F2, and so δ((q1, q2), ν) ∈ (F1 ×Q2) ∪ (Q1 × F2).

We now prove L(M1 ∩M2) = L(K1) ∩ L(K2) and L(M1 ∪M2) = L(K1) ∪ L(K2). Since
M1∩M2 andM1∪M2 only differ in their accepting states, they have the same function
runw(τ, t) describing the position of token τ at time t. Moreover, by the definition of q0

and δ we easily get

runw(τ, t) =
(
run1w(τ, t), run2w(τ, t)

)
where run1 and run2 are the corresponding functions forM1 andM2. So we have

(a) Token τ of M1 ∩M2 eventually reaches F1 × F2 iff the token τ of M1 eventually
reaches F1 and the token τ ofM2 eventually reaches F2.

(b) Token τ ofM1 ∪M2 eventually reaches (F1 ×Q2) ∪ (Q1 × F2) iff the token τ ofM1

eventually reaches F1, or the token τ ofM2 eventually reach F2.

By (a), almost every token of M1 ∩M2 eventually reaches F1 × F2 iff almost every
token ofM1 eventually reaches F1, and almost every token ofM2 eventually reaches
F2. So L(M1 ∩M2) = L(K1) ∩ L(K2). By (b), almost every token ofM1 ∩M2 eventually
reaches (F1 × Q2) ∪ (Q1 × F2) iff almost every token ofM1 eventually reaches F1, or
almost every token ofM2 eventually reaches F2. So L(M1 ∪M2) = L(K1) ∪ L(K2)

Lemma 5.5. Let ϕ be a formula and let w be a word.

(a) Every set G ⊆ Gϕ closed for w is included in Gw(ϕ).
(b) Gw(ϕ) is closed for w.

PROOF. (a): Given G ⊆ Gϕ, we inductively assign to every Gψ ∈ G an index as
follows. If ψ has no G-subformulae, then Gψ has index 0; if ψ has G-subformulae, then
its index is the maximum of the indices of its subformulae plus 1.

Assume G ⊆ G(ϕ) is closed for w, and let Gψ ∈ G. We prove w |= FGψ by induction
on the index n of Gψ.

— n = 0. Since G is closed, we have G |=P afG(ψ,wij) for almost every i ∈ N and
almost every j ≥ i. Let j > i be such that G |=P afG(ψ,wij) holds. Since ψ has
no G-subformulae (because n = 0), the formulae of G occur neither in ψ nor, by
the definition of afG, in afG(ψ,wij). So we get ∅ |=P afG(ψ,wij), which implies
afG(ψ,wij) ≡P tt. Moreover, since ψ has no subformulae and afG and af only differ
on G-formulae, we have afG(ψ,wij) = af (ψ,wij). So we finally obtain af (ψ,wij) ≡P tt
for almost every i ∈ N and almost every j ≥ i. Apply now Theorem 4.1.

— n > 0. Let G′ be the set of formulae of G that are subformulae of ψ. For every Gψ′ ∈ G′
the index of Gψ′ is at most n− 1 and so, by induction hypothesis, we have w |= FGψ′.
So there exists k1 such that wi |= G′ for every i ≥ k1.
Moreover, since G is closed, we have G |=P afG(ψ,wij) for almost every i ∈ N and
almost every j ≥ i. Further, since the formulae of G \ G′ do not appear in any
afG(ψ,wij), there exists k2 such that G′ |=P afG(ψ,wij) for every i ≥ k2 and almost
every j ≥ i.
Taking k = max{k1, k2}, we obtain:
(i)wi |= G′ for every i ≥ k, and

(ii) G′ |=P afG(ψ,wij) for every i ≥ k and almost every j ≥ i.

48

We show that (i) and (ii) imply wi |= ψ for almost every i ≥ k. We proceed by an
structural induction on ψ, very similar to the one in the proof of Proposition 2.10,
except for the case ψ = Gψ′. We omit some cases, and only sketch the proof of others.
— ψ = a. Let i ≥ k such that (i) holds. By (ii) we have G′ |=P afG(a,wij) for almost

every j ≥ i, and so afG(a,wij) = tt for almost every j ≥ i. But afG(a,wij) = tt
implies wi(i+1) = a, and so wi |= a.

— ψ = ψ1 ∧ ψ2 and ψ = ψ1 ∨ ψ2. Both cases follow immediately from the induction
hypothesis.

— ψ = Gψ′. By the definition of afG, we have afG(ψ,wij) = Gψ′ = ψ for every j ≥ i.
So, by (ii), we have G′ |=P ψ which, together with (i), implies wi |= ψ for every
i ≥ k.

(b): We first prove a preliminary result: if w |= ϕ, then Gw(ϕ) |= afG(ϕ,w0i) for almost
every i ∈ N. The proof is very similar to that of Theorem 3.1. It suffices to say that we
proceed by structural induction on ϕ, using the same arguments as in Theorem 3.1,
with two minor adjustments:

— afG(ϕ,w0i) ≡P tt is replaced by Gw(ϕ) |= afG(ϕ,w0i).
— The G-case, i.e., ϕ = Gϕ′, is proved differently. It follows immediately from the fact

that, since w |= Gϕ′ by assumption, we have Gϕ′ ∈ Gw(Gϕ′).

Now we proceed to prove (b), also by structural induction on ϕ. If ϕ is not a G-formula,
then the result follows either directly from the definitions or directly from the induction
hypothesis. So consider the case ϕ = Gϕ′. By definition we have Gw(ϕ′) ⊆ Gw(ϕ), and
by induction hypothesis Gw(ϕ′) is closed. If w 6|= FGϕ′ then Gw(ϕ′) = Gw(ϕ), and so
Gw(ϕ) is closed. If w |= FGϕ′ then Gw(ϕ) = Gw(ϕ′) ∪ {Gϕ′}. Since Gw(ϕ′) is closed, we
have Gw(ϕ′) |=P afG(ψ,wij) for almost every i ∈ N, almost every j ≥ i, and for every
Gψ ∈ Gw(ϕ′). So it suffices to show Gw(ϕ) |=P afG(ϕ′, wij) for almost all every i ∈ N and
almost every j ≥ i. Since w |= FGϕ′, we have wi |= ϕ′ for almost all i ∈ N. Applying the
preliminary result above to every wi, we obtain Gw(ϕ′) |=P afG(ϕ′, wij) for almost every
i ∈ N and almost every j ≥ i, and we are done.

Lemma 5.8. Let ϕ be a formula and let G ⊆ G(ϕ). For every ψ ∈ ReachG(ϕ) and every
ν ∈ 2Ap, if G |=P ψ then G |=P afG(ψ, ν).

PROOF. We proceed by induction on the structure of ψ. Since G |=P ψ, by the defi-
nition of propositional implication, the formula ψ must be either tt, a conjunction, a
disjunction, or a G-formula. If ψ = tt then afG(ψ, ν) = tt and we are done. If ψ = ψ1∧ψ2

then afG(ψ, ν) = afG(ψ1, ν) ∧ afG(ψ2, ν) and G |=P afG(ψ, ν) follows immediately from
the induction hypothesis. The case ψ = ψ1 ∨ ψ2 is analogous. Finally, if ψ = Gψ′ for
some formula ψ′ then afG(Gψ′) = Gψ′, and we are done.

Lemma 6.14. LetM(ψ,G) be the Mojmir automaton for a formula ψ. AssumeM(ψ,G)
accepts a word w at the smallest accepting rank r. For almost every t ∈ N and for every
token τ of the run ofM(ψ,G) on w, the token succeeds iff

(1) τ > t, or
(2) srw(runw(τ, t), t) ≥ r, or
(3) runw(τ, t) ∈ F .

PROOF. Consider the accepting run of M(ψ,G) on w. Let k′ be large enough such
that at time t′ ≥ k′: all tokens τ born after k′ eventually succeed; the finitely many
tokens that fail have already reached a sink; and the finitely many tokens that succeed

49

with rank smaller than r have already already reached an accepting state. Notice that
such a k′ only exists for the smallest accepting rank, since infinitely many tokens enter
the accepting states with this rank and for all larger accepting ranks this constant does
not exist. Furthermore let k ≥ k′ be large enough so that all squatting tokens born
before or at time k′ have already reached their stable rank at time k. We show that the
lemma holds for every t ≥ k.

Let τ be an arbitrary token.

- Assume τ succeeds. We show that if (1) and (3) do not hold, then (2) holds. By (3), τ
has not yet reached the accepting states. By our choice of k′, by the time τ enters
the accepting states it will have rank r or larger. Since the rank of a token can
only decrease, its current rank is also equal to the accepting rank r or larger. So
srw(runw(τ, t), t) ≥ r.

- Assume (1), (2), or (3) hold. If (3) holds, then τ succeeds by the definition of success.
If (1) holds, then τ succeeds by our choice of k′. Assume now that (2) holds. We show
that (2) neither fails nor squats outside the accepting states, and so necessarily
succeeds. Since τ has a rank at time t, it is not in a sink, and so, by our choice of k′,
the token does not fail. To show that τ does not squat outside the accepting states,
we recall part (c) in the proof of Theorem 4.16: the stable rank of a token is bounded
from above by accepting ranks, thus also by the smallest. So, by (2), the rank of τ
has not stabilized yet, and therefore, by our choice of k, it does not squat outside the
accepting states.

50

