
Regular Expressions for Provenance

Michael Luttenberger
TU München

luttenbe@model.in.tum.de

Maximilian Schlund
TU München

schlund@model.in.tum.de

Abstract
As noted by Green et al. several provenance analyses can be con-
sidered a special case of the general problem of computing formal
polynomials resp. power-series as solutions of an algebraic system.
Specific provenance is then obtained by means of evaluating the
formal polynomial under a suitable homomorphism.

Recently, we presented the idea of approximating the least so-
lution of such algebraic systems by means of unfolding the system
into a sequence of simpler algebraic systems. Similar ideas are at
the heart of the semi-naive evaluation algorithm for datalog.

We apply these results to provenance problems: Semi-naive
evaluation can be seen as a particular implementation of fixed point
iteration which can only be used to compute (finite) provenance
polynomials. Other unfolding schemes, e.g. based on Newton’s
method, allow us to compute a regular expression which yields a
finite representation of (possibly infinite) provenance power series
in the case of commutative and idempotent semirings. For specific
semirings (e.g. Why(X)) we can then, in a second step, transform
these regular expressions resp. power series into polynomials which
capture the provenance. Using techniques like subterm sharing
both the regular expressions and the polynomials can be succinctly
represented.

Keywords Provenance, Datalog, Semirings

1. Introduction
As noted e.g. by Green et al. in [6], several provenance analyses
can be seen as particular instances of the problem of solving al-
gebraic systems (systems of polynomial equations) over semirings.
These different analyses can be unified by considering the algebraic
system over the semiring N⟪A⊕⟫ of all formal power-series in the
commuting variables A and coefficients in N = N ∪ {∞}. W.r.t.
N⟪A⊕⟫ a least solution always exists which captures how the ele-
ments of A influence the solution, and it specializes to the results
of specific provanence analyses, like why-provenance, by means of
unique homomorphisms. Already in the 1960s Schützenberger ini-
tialized the study of algebraic systems in formal language theory
as generalization of the concept of context-free grammar, see e.g.
[1], but in contrast to provenance analyses one also considers the
setting where the elements of A do not commute, i.e. the monomi-
als of the formal power-series become words over A. This semiring

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
TaPP ’14, June 12–13, 2014, Cologne, Germany.
Copyright © 2014 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

is denoted by N⟪A∗⟫. For instance, the ambiguity of a context-
free grammar is the formal power-series where the coefficient of a
word w ∈ A∗ is the number of derivation trees yielding w, and this
power-series is the least solution of an algebraic system induced by
the context-free grammar. In particular, the problem studied in [6]
can be restated as the problem of computing the commutative ambi-
guity of a context-free grammar, i.e. the coefficient of a monomial
(commutative word) m over A is the number of derivation trees of
a certain context-free grammar which yield a word w ∈ A∗ that is
equivalent to m up to commutativity. We recall this connection in
the following section in greater detail.

Lately [4, 5, 7], we have used this close connection between
context-free grammars and algebraic systems in order to derive sev-
eral results on the computation of the least solution of an algebraic
system over specific semirings: these results allow to approximate
the (least) solution of an algebraic system at least as fast as algo-
rithms based on the classical fixed-point iteration (algorithms like
”Gauss-Seidel”, ”chaotic iteration using a work-list”, ”semi-naive
evaluation”) and at times even converge to the solution within a
finite number of steps while classical fixed-point iteration does not.

Contributions In this article, we provide the following insights:

• Exploiting the connection between context-free grammars, Dat-
alog programs, and algebraic systems we show how iteration
schemes based on grammar unfolding – like Newton’s method
– can be applied to provenance problems for recursive Datalog.

• Under various forms of idempotence, this allows us to compute
regular expressions which represent in a finite way the solution
of the provenance equations over a very general semiring.

• For specific provenance analyses, these regular expressions can
be converted to polynomials (without sacrificing their concise
representation using subterm sharing). We discuss this in detail
for the Why-provenance.

Missing proofs can be found in the appendix of the extended
version of this article available at http://www7.in.tum.de/

~schlund/tapp14-ext.pdf.

2. Preliminaries
By N we denote the natural numbers including zero. The extended
natural numbers N = N ∪ {∞} include a greatest element ∞. A
semiring ⟨S,+, ⋅,0,1⟩ is an algebraic structure satisfying:

x + y = y + x x + 0 = x

x ⋅ 1 = 1 ⋅ x = x x ⋅ 0 = 0 ⋅ x = 0

x ⋅ (y + z) = x ⋅ y + x ⋅ z (x + y) ⋅ z = x ⋅ z + y ⋅ z

As usual we write xy for x ⋅ y. If xy = yx holds, the semiring is
called commutative; if 1 + 1 = 1, it is idempotent. We are mostly
concerned with the semirings N⟪A⊕⟫ and N⟪A∗⟫: Their elements
are the functions from the monomials (commuting words) resp.

http://www7.in.tum.de/~schlund/tapp14-ext.pdf
http://www7.in.tum.de/~schlund/tapp14-ext.pdf

words over A to N; addition is defined pointwise, multiplication
is defined via the Cauchy product. Due to the page limit, we will
forgo most other formal definitions and instead try to convey the
most important ideas in an extended example. For details on the
theory of semirings and algebraic systems we refer the reader to
[3].

Datalog, provenance, context-free grammars, and algebraic sys-
tems We recall the basic connection between Datalog evaluation,
provenance analysis, context-free grammars, and algebraic systems
by means of a simply example summarized in Fig. 1: We compute
the kinsman-relation K via the ancestor-relation A from an exten-
sional parent-relation P. We will assume for the rest of this section
that P(x, y) is true if and only if there is an edge from x to y in
the graph shown in Fig. 1. The program then computes e.g. that
”Clothar and Theuderich are kinsmen” (K(Chlothar,Theuderich)).
We obtain from this program a context-free grammar by replac-
ing ”∶ −” by ”→” and removing ”,” (Fig. 1, middle left). A pred-
icate symbol like P then gives rise to a family P(x, y) of non-
terminals. For every EDB fact, we introduce a unique identifier
A = {a, b, . . . , g} (as hinted in the graph show on the right of
Fig. 1) and add corresponding rewrite rules for the nonterminals
associated with the EDB predicates, thereby implicitly defining the
domain of the parameters x, y, z. We then have that the Datalog
program derives K(x, y) if and only if the nonterminal K(x, y) is
productive. Deciding whether a nonterminal is productive can be
restated as the problem of computing the least solution of the alge-
braic system depicted on the bottom left of Fig. 1 when interpreting
the system over the Boolean semiring ⟨B,∨,∧,0,1⟩: That is, addi-
tion becomes logical disjunction, multiplication becomes logical
conjunction, and we assign each identifier in A the value 1 (true).
The least solution of this system then assigns the value 1 to the
variable K(x, y) if and only if the nonterminal K(x, y) is produc-
tive. Thus, computing the semantics of the Datalog program w.r.t.
the given EDB means to compute the least solution of this alge-
braic system over the Boolean semiring. As all ascending chains
in the Boolean semiring eventually terminate, this can efficiently
be done using algorithms based on standard fixed-point iteration
f(0), f(f(0)), . . . (e.g. Gauss-Seidel, semi-naive evaluation, con-
stant propagation).

If we are interested in those EDB facts which are necessary
in order to deduce that ”Clothar and Theuderich are kinsmen”
we need to study how the bound variables of the algebraic sys-
tem depend on the free variables (induced by the EDB facts).
Using conventional fixed-point iteration (setting all bound vari-
ables to 0 initially) and simplifying obtained terms using only the
equalities holding in any semiring we obtain polynomials in (non-
commuting) variables A as solutions, e.g.:

K(Chlothar,Theuderich) = dg + cdcg + bcdbcg + abcdabcg.

We deliberately have not assumed that the elements of A commute
to point out that these polynomials simply are the sum of all words
(non-commutative monomials) encoding the paths which connect
x and y to a common ancestor z in above graph; implicitly, every
word has the coefficient 1 in this example. Yet another way to de-
scribe this solution is that it is the sum of all words generated by the
associated context-free grammar. This in turn means that the solu-
tion of K(x, y) is the sum of all words for which there is a deriva-
tion tree w.r.t. above context-free grammar when taking K(x, y) as
the start symbol; the coefficient of a word counts the number of
distinct derivation trees yielding the word. Thus, what we actually
computed is the ambiguity function of the grammar. In our exam-
ple this grammar only generates a finite language and the gram-
mar itself is unambiguous – thus conventional fixed-point iteration
suffices for computing the solution; but in general the context-free
grammars resp. algebraic systems represent infinite languages and

are ambiguous; in this case, the solution will be a (formal) power-
series where words can take arbitrary coefficients in N and fixed-
point iteration does not suffice anymore (see Section 3).1 If we fur-
ther allow the elements of A to commute we can simplify words
to monomials (e.g. cdcg to c2dg) and we obtain the commutative
ambiguity of the grammar [7].2 In the following, we discuss how
to compute regular expressions which represent these power-series
under the restrictions that elements of A commute and (some form
of generalized) idempotence holds – which is the case for several
provenance analyses [6]:

In the case of why-provenance, we are only interested in those
EDB facts which are necessary for a derivation to exist, but we only
need to know whether an EDB fact is used at least once. Hence, we
would like to simplify a word like bcdbcg to bcdg. Algebraically
this amounts to the identities xy = yx and x2 = x x, y ∈ A∗:

K(Chlothar,Theuderich) = dg + c2dg + b2c2dg + a2b2c2dg

= dg + cdg + bcdg + abcdg

To further reduce the polynomials to those monomials which en-
code the minimal sets of EDB facts required to deduce K(x, y)
we can further add the equality 1 + x = 1 (obtaining the PosBool
semiring):3

K(Chlothar,Theuderich) = dg(1 + c + bc + abc) = dg

As mentioned above, we propose to represent the solution of an al-
gebraic system (up to commutativity and idempotence) as a regular
expression when the actual solution is not a polynomial. Still, mod-
ulo the additional equalities underlying specific provenance anal-
yses these power-series might reduce to polynomials. Hence, we
will also discuss how we can efficiently reduce these regular ex-
pressions to polynomials modulo the additional equalities.

3. Solving algebraic systems: Newton’s method
for Datalog programs

We assume in the following that elements of A commute. As
sketched in the preceding section, provenance analyses resp. se-
mantics for Datalog programs can be reduced to the problem of
solving algebraic systems in the most generic way, namely over the
semiring N⟪A⊕⟫ of formal power-series. While in our example of
Section 2 the solution of the algebraic system is only a polynomial,
in general this is of course not true. Just consider the example in
Fig. 2 taken from [6]: The program depicted there computes the
transitive closure T of an extensional edge relation E. Here we
assume w.l.o.g. that we already know the resulting IDB facts, i.e
which variables of the algebraic system are productive, and thus re-
duce the algebraic system to these variables. In contrast to the pre-
ceding example, fixed-point iteration now does not terminate within
a finite number of steps, e.g. consider the equation V = r + V 2.
Here, fixed-point iteration yields the sequence

0, r, r + r2, r + r2 + 2r3 + r4, . . . →
∞
∑
n=0

Cnr
n+1

which converges to the generating series of binary trees whose co-
efficients are the Catalan numbers Cn, i.e. the number of binary
trees which have exactly n + 1 leaves. In fact, the h-th approxi-
mation generated by the fixed-point iteration can be characterized

1 Only if the grammar allows for cyclic derivations which do not produce
any letters, a coefficient can be∞.
2 Unambiguity resp. finite commutative ambiguity can be enforced by ex-
tending every rule of the grammar by a terminal uniquely identifying the
rule (resulting in a proper grammar resp. proper algebraic system).
3 I.e. 1 is the greatest element. Semirings satisfying this property have been
called 1-bounded in [4]. In [2] also the term absorptive is used.

K(x, y) ∶ −A(z, x),A(z, y) K(x, y) ∶ −A(x, y) K(x, y) ∶ −A(y, x)
A(x, y) ∶ −A(x, z),A(z, y) A(x, y) ∶ −P(x, y)

K(x, y) → A(z, x),A(z, y) K(x, y) → A(x, y) K(x, y) → A(y, x)
A(x, y) → A(x, z),A(z, y) A(x, y) → P(x, y)
P(Chlodio,Merowech)→ a . . . P(Chlodwig,Chlothar)→ g

K(x, y) = ∑z A(z, x)A(z, y) +A(x, y) +A(y, x)
A(x, y) = ∑z A(x, z)A(z, y) + P(x, y)
P(Chlodio,Merowech) = a . . . P(Chlodwig,Chlothar) = g

Chlodio

Merowech

Childerich

Chlodwig

Theuderich Chlodomer Childebert Chlothar

a

b

c

d
e f

g

Figure 1. Left : A Datalog program (top), its associated context-free grammar (middle), and algebraic system (bottom). Right : The graph
underlying the EDB instance used in the example.

T (x, y) = E(x, y) + T (x, z)T (z, y)

T <1(x, y) = T =0(x, y) = E(x, y)
T <h(x, y) = T =h−1(x, y) + T <h−1(x, y)
T =h(x, y) = T =h−1(x, y)T <h−1(x, y) + T <h(x, y)T =h−1(x, y)

T <1(x, y) = T =0(x, y) = E(x, y)
T (x, y)<d = T =d−1(x, y) + T <d−1(x, y)
T (x, y)=d = T <d(x, z)T =d(z, y) + T =d(x, z)T <d(z, y)

+T =d−1(x, z)T =d−1(z, y)

a b m
a c n
c b p
b d q
d d r

a b X
a c Y
c b Z
b d U
d d V
a d W

X =m + Y Z U = q +UV

Y = n V = r + V 2

Z = p W =XU +WV

V <1 = V =0 = r

V <d = V <d−1 + V =d−1

V =d = (V =d−1)2 + V =dV <d + V <dV =d

comm.= (V =d−1)2 + 2 ⋅ V =dV <d

Kleene star= (2 ⋅ V <d)∗ ⋅ (V =d−1)2

Figure 2. From left to right: Datalog program (represented as parametrized algebraic system) computing the transitive closure T of E, its
unfolding w.r.t. height as done by the semi-naive evalution, and its unfolding w.r.t. dimension as done by Newton’s method; EDB facts tagged
with free variables A = {m,n, p, q, r}, and IDB facts computed by the program with abbrevations (X ∶= T (a, b)); algebraic system reduced
to the productive (non-zero) variables, and Newton’s method applied to V = r + V 2.

as the sum where the coefficient of rn+1 is exactly the number
of derivation trees yielding rn+1 but whose height is less than h.
Thus any algorithm based on the conventional fixed-point iteration
(Gauss-Seidl, semi-naive, work list, ...) can only produce finite ap-
proximations of ∑n≥0Cnr

n+1.
In [5] we have shown that we can suitably generalize Newton’s

method, whose approximations of the least solution can be repre-
sented by means of rational expressions (i.e. regular expressions
with cofficients in N); in [7] we discuss its rate of convergence and
how to determine those monomials in the least solution whose co-
efficient is equal to a given k ∈ N. While conventional fixed-point
iteration is connected to the height of derivation trees, Newton’s
method is connected to the Strahler number (dimension) [5, 9] of a
derivation tree. Using this connection, we can rewrite above Data-
log program to a linear program (presented for succinctness as an
algebraic system) as show in Fig. 2 (middle left). Like semi-naive
evaluation, Newton’s method also ensures that all derivations are
considered (in the limit) exactly once; but while semi-naive evalu-
ation can be understood as unfolding the Datalog program (gram-
mar, algebraic system) w.r.t. the height of the derivation trees4 New-
ton’s method unravels the Datalog program w.r.t. the dimension d.
On the bottom right of Fig. 2 we have applied Newton’s method to
V ∶= T (d, d) and used the Kleene star x∗ = ∑∞

k=0 x
k to get rid of

the linear recursion w.r.t. the variable V =d thereby obtaining again
a recursion-free (acyclic) algebraic system which now can be eas-

4 The auxiliary IDB predicates introduced by semi-naive evaluation parti-
tion the derivations w.r.t. height exactly h resp. at most h.

ily solved bottom-up. Most notably, it can be shown that modulo
idempotence (1 + 1 = 1) resp. some generalization of it (there is
some k ∈ N s.t. k + 1 = k) the number of productive variables of
the algebraic system bounds the dimension d up to which we need
to unravel the program. For instance modulo 1 + 1 = 1:

V <2 = V <1 + V =1 = V <1 + (2V =0)∗(V =0)2

= r + (2r)∗r2 1+1=1= rr∗ 1+1=1=
∞
∑
k=0

Cnr
n+1.

Note that modulo (2 + 1 = 2) only V <3 would have given us the
complete solution. We therefore propose to use Newton’s method
for actually solving the algebraic system over N⟪A⊕⟫ modulo
some form of idempotence by means of rational expressions. In the
following section, we describe in more detail how this can be done
in general, how the rational expressions can be succinctly stored
using subterm-sharing, and reduce them to polynomials when ad-
ditional equalities hold w.r.t. a specific provenance analysis.

4. Representing Solutions by Regular Expression
Newton’s method as described in Section 3 produces a linear (alge-
braic) system X=d = A ⋅X=d + b for each “stage” d. A is a matrix
containing only variables of lower index (X=d−1 or X<d) or semir-
ing values. Inductively, we can assume that lower index variables
are already represented as regular expressions.

We can solve such a linear system by computing X = A∗b,
where the Kleene star for the matrix A can be computed via a
modified Floyd-Warshall algorithm or via a recursive divide-and-

conquer approach (cf. [3]): both algorithms reduce the Kleene star
of a matrix to the Kleene star on the underlying semiring, thus
yielding rational expressions. In the preceding section, we have
already seen that modulo 1 + 1 = 1 the solution of V = r + V 2 is
V = rr∗ = ∑∞

k=0 r
k+1. This leads to the final solution of the system

over the commutative, idempotent semiring freely generated by A:

X =m + np Y = n

Z = p U = qr∗

V = rr∗ W = (m + np)qr∗

c a b d

∗

⋅

⋅

+

∗

⋅

Figure 3.
Representing
a∗b(ca∗b+d)∗.

Concise Representation Since all semir-
ing operations involve either terminals or
previously computed expressions, we can
store them concisely using a shared pointer
structure. This sharing of common subex-
pressions is a standard technique from com-
piler construction and was also implemented
in our tool described in [8]. The shared
structure can also be seen as a general-
ized provenance circuit [2] having addi-
tional Kleene star nodes.

Complexity For algebraic systems with n
variables over a commutative idempotent
semiring we have shown that the n+1-st un-
folding X<n+1 is already equal to the least
fixed-point. In each stage of the unfolding a

system of n linear equations is to be solved which requires O(n3)
semiring operations (e.g. using Floyd-Warshall). Hence, the com-
plexity of the solution procedure in terms of semiring operations is
bounded byO(n4). Since every semiring operation corresponds to
a node (of type +, ⋅,∗ or terminal symbol) in the shared structure de-
scribed above, the space needed to store these regular expressions
is also bounded by O(n4).

4.1 Simplifying Representations over Special Semirings
General Commutative Idempotent Semirings So far, we have
shown how to compute regular expressions that compactly rep-
resent provenance information. These expressions may contain
Kleene stars which could be applied to complicated terms (i.e. not
only to alphabet symbols),

x = b(ab∗ + c)∗.
In many cases we may want to eliminate these stars to get “polyno-
mial expressions” (i.e. involving only + and ⋅), which is not possible
in general if the semiring admits infinite ascending chains. How-
ever, one can transform rational expressions into a finite sum of
“linear” expressions, where stars are only applied to monomials. In
this form it is usually trivial to eliminate the stars over a more spe-
cialized semiring. The transformation uses well-known identities
which hold over every commutative, idempotent semiring (cf. [3]):

(x + y)∗ = x∗ ⋅ y∗ (xy∗)∗ = 1 + xx∗y∗ (x∗)∗ = x∗

Applying these to our example yields x = b(ab∗+c)∗ = b(ab∗)∗c∗ =
b(1 + aa∗b∗)c∗. Over semirings satisfying x∗ = 1 + x (see below),
this expression simplifies to x = b(1 + ab(1 + a)(1 + b))(1 + c).

This transformation can be carried out over every commutative
idempotent semiring, but the resulting “semi-linear” expression
may become exponentially larger in the worst case. In special cases,
like why-provenance, eliminating the star-expressions can be done
more efficiently in polynomial time.

Polynomial-time Star Elimination for k-Closed Semirings A
semiring is k-closed ([3]) if x∗ = ∑k

i=0 x
i. For any such semiring,

we can use the truncation x∗ = ∑k
i=0 x

i to eliminate Kleene stars.

In the case of why-provenance the additional identity x ⋅ x = x
for all x ∈ A leads to a k-closed semiring: one immediately obtains
from this identity that also x∗ = 1 + x holds for all x ∈ A. This, in
turn, allows to prove for all elements of the semiring that

x∗ = 1 + xN(x)

where N(x) is the number of alphabet symbols occuring in x.
Thus, modulo x ⋅ x = x ∀x ∈ A the semiring becomes ∣A∣-closed.
For our example this yields x = b(ab∗ + c)∗ = b(1+a(1+ b)+ c)3.
Note that by sharing subexpressions, we can represent the power
xN of any regular expression by introducing at most O(logN)
new multiplication nodes. Hence, we can obtain polynomial5 sized
representations of why-provenance.

Note that if we had required x2 = x for all semiring elements
(idempotent multiplication) we would have obtained a different
semiring, which might lose some explanations, as e.g. (a+b)2 now
simplifies to a + b, loosing the explanation ab.

5. Discussion
We have shown how to compute finite, concise regular expressions
representing formal power series solutions to algebraic equations
over commutative, idempotent semirings and how these relate to
provenance for Datalog. We have sketched how to specialize these
expressions (by eliminating Kleene stars and simplifying expres-
sions) to semirings satisfying additional axioms like Why or Pos-
Bool.

Going beyond idempotence, our results on k-collapsed semir-
ings [7] (where k = k + 1 holds) allow us to approximate prove-
nance with bag-semantics (e.g. Trio). For special semirings (star-
distributive, lossy, 1-bounded) [4] there exist improved unfold-
ings that produce even simpler solutions; e.g. idempotent mul-
tiplication yields a star-distributive semiring. We only note that
star-distributive subsume tropical semirings like ⟨Z,min,+,0,∞⟩,
hence these results allow to solve algebraic system over these
semirings, thereby answering an open question of [6].

References
[1] N. Chomsky and M. Schützenberger. Computer Programming and

Formal Systems, chapter The Algebraic Theory of Context-Free Lan-
guages, pages 118 – 161. North Holland, 1963.

[2] D. Deutch, T. Milo, S. Roy, and V. Tannen. Circuits for datalog
provenance. In ICDT, pages 201–212, 2014.

[3] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata.
Springer, 2009.

[4] J. Esparza, S. Kiefer, and M. Luttenberger. Derivation tree analysis for
accelerated fixed-point computation. In DLT, pages 301–313, 2008.

[5] J. Esparza, S. Kiefer, and M. Luttenberger. Newtonian program analy-
sis. J. ACM, 57(6):33, 2010.

[6] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings.
In PODS, pages 31–40, 2007.

[7] M. Luttenberger and M. Schlund. Convergence of Newton’s Method
over Commutative Semirings. In LATA, volume 7810 of LNCS, pages
407–418, 2013.

[8] M. Schlund, M. Terepeta, and M. Luttenberger. Putting Newton into
Practice: A Solver for Polynomial Equations over Semirings. In LPAR
2013, volume 8312 of LNCS, pages 727–734, 2013.

[9] A. N. Strahler. Hypsometric (area-altitude) analysis of erosional topol-
ogy. Geol. Soc. Am. Bull., 63(11):1117–1142, 1952.

5 Polynomial in the size of the equation system, which is determined by the
EDB.

	Introduction
	Preliminaries
	Solving algebraic systems: Newton's method for Datalog programs
	Representing Solutions by Regular Expression
	Simplifying Representations over Special Semirings

	Discussion

