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Abstract. We present the first implementation of Newton’s method
for solving systems of equations over ω-continuous semirings (based on
[5,11]). For instance, such equation systems arise naturally in the analysis
of interprocedural programs or the provenance computation for Datalog.
Our implementation provides an attractive alternative for computing
their exact least solution in some cases where the ascending chain con-
dition is not met and hence, standard fixed-point iteration needs to be
combined with some over-approximation (e.g., widening techniques) to
terminate. We present a generic C++ library along with the main algo-
rithms and analyze their complexity. Furthermore, we describe our im-
plementation of the counting semiring based on semilinear sets. Finally,
we discuss motivating examples as well as performance benchmarks.

1 Introduction

Given a system composed of several components (e.g. the procedures of a re-
cursive program), the interaction of the components can be naturally described
by a system of equations where for every component we have a variable Xi and
an equation Xi = Fi(X) which is formulated over some algebraic structure.
The behavior of the complete system, or some particular aspect of it, can then
be obtained as a solution of this system of equations. Especially the problem of
finding the least or the greatest solution arises often in applications like program
analysis, formal languages, or database theory [5,7,11]

When the algebraic structure exhibits a complete partial order (with least
element 0), and F is continuous, then fixed-point iteration yields a monotonically
increasing sequence (ω-chain) 0, F (0), F (F (0)), . . . which converges to the least
solution. However, in order to guarantee termination in general, one either needs
to require that every ω-chain is eventually constant (ascending-chain condition)
or resort to over-approximation e.g. by using a widening operator.

Recently, Newton’s method – the standard method to approximate the roots
of nonlinear functions over the reals – was generalized to systems of equations
over so called ω-continuous semirings (see e.g. [5]). In this particular setting it
was shown that (1) Newton’s method starting from 0 always converges to the
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least solution (in contrast to the reals where it is usually non-trivial to find a
suitable initial approximation), (2) it converges at least as fast as the standard
fixed-point iteration, and (3) it converges within a finite number of iterations for
several interesting instances of ω-continuous semirings, e.g., commutative and
idempotent semirings, for which fixed-point iteration does not reach the fixed-
point in a finite number of steps. Thus, Newton’s method allows to compute
precise solutions of equation systems over many domains where the standard
fixed-point iteration does not terminate.

Contributions, Features We present here the first implementation of Newton’s
method for ω-continuous semirings; it is freely available from https://github.

com/mschlund/newton. Our library is implemented in C++ and leverages tem-
plates to offer a very flexible interface to instantiate Newton’s method for a con-
crete semiring. To this end, all algorithms and data structures (e.g. the generic
Newton solver, polynomials, matrices) are parametrized, for instance by the
semiring (in case of polynomials) or the method to solve linear equations (for
the generic Newton solver). Hence, the library can be easily extended (without
changing the main algorithms) by user-defined semirings, linear solvers, etc.—of
course, it also features a set of predefined ones and some generic constructions
like product and matrix semirings to build complex semirings from simpler ones.
To handle systems efficiently that are very large but sparse, our implementation
offers the option to preprocess systems by decomposing them into strongly con-
nected components (cf. [6,5]). The library can be accessed by its API, but also
includes a stand-alone solver together with a parser for equations over a number
of predefined semirings (e.g. the counting semiring, non-negative reals, commu-
tative regular expressions).

2 Preliminaries

We briefly recall some facts on semirings, for details see e.g. [3]. A semiring
〈S,+, ·, 0, 1〉 consists of a commutative, additively written monoid 〈S,+, 0〉 and
a (not necessarily commutative) monoid 〈S, ·, 1〉 written multiplicatively where
multiplication distributes over addition from both sides, and for all a ∈ S we have
0 ·a = a ·0 = 0. The semiring is commutative resp. idempotent if multiplication is
commutative (i.e. a ·b = b ·a) resp. addition is idempotent (i.e. a+a = a). In the
following we will only consider ω-continuous semirings: these come equipped with
a complete partial order v with 0 the least element, and both multiplication and
addition are continuous in both arguments. Further, the sum of any countable
sequence is well-defined and behaves as absolutely convergent series do over the
reals. In particular, the Kleene star is defined by a∗ :=

∑
i∈N a

i.
An algebraic system X = F (X) over a semiring 〈S,+, ·, 0, 1〉 is a system of

equations where the right-hand sides Fi are polynomials, i.e. finite terms con-
structed from +, ·, the semiring elements and the variables. Let n denote the
number of variables occurring in a given algebraic system. Then F induces a
continuous map over Sn, and the least solution of X = F (X) is the least fixed-
point µF of this map which is the limit of the sequence obtained by standard
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fixed-point iteration. As shown in [5], µF is also the limit of the sequence ν(k)

defined by

ν(k+1) = ν(k) +∆(k) with ∆(k) := JF |∗ν(k) · δ(k) and ν(0) := 0 (1)

where JF denotes the Jacobian of F (suitably generalized to the setting of semi-
rings) and δ(k) denotes any element satisfying ν(k) + δ(k) = F (ν(k)). This itera-
tion scheme is the generalization 3 of Newton’s method to algebraic systems over
ω-continuous semirings, and it usually converges much faster to µF then the
standard fixed-point iteration. In the next section, we present the implementa-
tion of this definition, i.e. how to compute δ(k) and ∆(k).

3 Algorithms and Data Structures

Once the semiring is fixed the central computational problems for implement-
ing Newton’s method (Eq. 1) are (1) the computation of δ(k), (2) the efficient
computation of the Kleene star of the Jacobian JF |ν(k) based on the Kleene star
provided by the underlying semiring, and (3) the efficient representation of the
semiring and its elements. We will discuss (1) and (2) in general in the following.
As (3) depends on the actual semiring, we will discuss these topics for the special
case of the counting semiring; we deem this semiring particularly interesting as
Newton’s method reaches µF within a finite number of steps.

3.1 Computing δ(k)

Recently, it was shown that δ(k) is computable for general (also non-commutative)
semirings since it corresponds to one part of an unfolding of the equation system
[11]. In the special case of idempotent semirings, one can set δ(k) := F (0) in ev-
ery iteration (and even simplify the whole definition to ν(k+1) = JF |∗ν(k)F (ν(0)))
as shown in [4]. If the semiring is commutative we can collect common terms and
express the j-th component of δ(k) succinctly using higher-order derivatives:

δ
(k)
j =

∑
‖i‖1≥2

1

i!

(
∂

∂Xi
Fj

) ∣∣∣
ν(k−1)

·Xi
∣∣
∆(k−1) .

Note that i ∈ Nn is a multi-index, so we sum over all derivatives of at least second
order evaluated at the previous Newton approximation. The crucial point when
implementing this equation is to avoid generating unnecessary multi-indices i
(those for which the derivative will be zero anyways) like a naive implementation
which generates (deg(Fj))

n many vectors. Note that the derivative is a linear

operator, so we only need to focus on the case where Fj = aXd1
1 · · ·Xdn

n is a
monomial of degree D =

∑
k dk. Any element from the set {(i1, . . . , in) ∈ Nn :

∀kik ≤ dk ∧ 2 ≤
∑
k ik ≤ D} constitutes a valid multi-index. This set contains

less than
∏
k(dk+1) ≤

(
1 + D

n

)n ≤ eD elements and can be enumerated without
repetition leading to an implementation in ≤ |Mj | · eD many steps where Mj

is the set of monomials of Fj .

3 Over R≥0 it coincides with the standard definition of Newton’s method.



3.2 Solving Linear Equation Systems

We have implemented two main variants of the Kleene star computation: one
is the well-known Floyd-Warshall algorithm [2] and another one is a recursive
divide-and-conquer algorithm [10,1]. This algorithm can be seen as an imple-
mentation of a star identity from [3]. We take a subdivision of our input matrix
M, and compute M∗ recursively:

M =

[
A B
C D

]
M∗ =

[
F αG∗

G∗β G∗

]
with

α = A∗B
β = CA∗

G = D + Cα
F = αG∗β + A∗

.

c a b d

∗

·

·

+

∗

·

Fig. 1: Succinctly repre-
senting a∗b(ca∗b+d)∗by
sharing subexpressions.

Both algorithms need Θ(n3) semiring operations
(which is optimal for general semirings if only + and ·
are allowed [8]), but create slightly different semiring
expressions during computation and thus the optimal
choice between them depends on the semiring in ques-
tion.

We also included the option to solve the system
only once symbolically and then in each iteration sub-
stitute the values ν(k−1) into this symbolic solution.
Symbolic solving can be understood as interpreting
the linear system over the free semiring and comput-
ing the Kleene star there. Of course, this does not
change the asymptotic complexity of the procedure,
but allows us to detect common subexpressions (see
Fig. 1 for an illustration) and thus greatly reduces the
number of semiring operations required to compute
the solution. Sharing can reduce this number by 70–

90% which is significant for semirings where each operation is expensive, e.g.,
for the counting semiring presented in Sec. 3.3.

3.3 Implementation of the Counting Semiring

The counting semiring C =
〈
2|Σ|,∪, ·, ∅, {0}

〉
, consisting of the Parikh images

of the formal languages over Σ, is a prime example of an ω-continuous semi-
ring which admits infinite ascending chains. It is known that Newton’s method
reaches µF on this semiring in at most n steps and that all ν(i) are rational
[4]. Thus, it suffices to give effective definitions of the operations on the rational
subsets Crat. Our implementation follows these definitions closely.

Operations A subset L ⊆ Nk is called linear, if L = v0 + Nv1 + · · · + Nvn for
vi ∈ Nk. A set S is called semilinear if it is a finite union of linear sets (i.e. a
finite sets of linear sets in our implementation). Let us denote the semilinear sets
of Nk by S. We represent linear sets L as pairs (v0, G) with v0 the offset and
G := {v1, . . . ,vn} the generators of L.



Crat is the (commutative, idempotent) semiring Crat := 〈S,∪, ·, ∅, {0}〉. Mul-
tiplication is defined by S1 · S2 := {L1 · L2 | L1 ∈ S1, L2 ∈ S2} where
(v,G) · (w,H) := (v + w,G ∪ H) for two linear sets. The Kleene star over
Crat can be computed inductively by: S∗ := if S = ∅ then {0} else L∗ · (S \
{L})∗ (where L ∈ S) having the star of a linear set L = (v, G) defined by
(v, G)∗ = {0} ∪ (v, {v} ∪ G). It should be clear that the space complexity of
the Kleene star for Crat is exponential. All these definitions can be regarded
as implementations of well-known identities that hold over any commutative,
idempotent semiring (cf. [3])

Optimizations Due to the complexity of · and (−)
∗

a practical implementation of
semilinear sets is challenging and usually requires exponential space (e.g. in the
number of Newton steps). Since explicit representations of the Parikh image of
a CFG can be exponential in the size of the grammar, some exponential blowup
is essentially unavoidable (cf. [9] for a detailed analysis). However, the represen-
tation of the Newton approximations exhibits a lot of redundancy, e.g., often
linear sets subsume each other and generators can be linearly combined (with
coefficients in N) from others. Therefore, we implemented several optimizations:
We use extensive sharing and store only one copy of each vector and linear set in
memory. Furthermore, we try to determine whether a generator can be combined
from other generators, and similarly try to simplify the linear sets. Despite the
fact that the latter two “simplification” steps require to solve an NP-complete
problem (essentially subset-sum [2]), our implementation based on memoization
performs very well since the vectors usually contain small numbers.

These simplifications are necessary to get concise solutions for most equation
systems and their impact is illustrated in Table 1 in Sec. 4.

Approximations Finally, we have developed two approaches to over-approximate
semilinear sets. These significantly improve the performance of the semilinear
sets and still yield valuable information in many cases. For a simple example,
both preserve finiteness and emptiness.

One of the ideas is to to “collapse” a semilinear set into a pair two sets — one
of offsets and the other one of generators. We call this structure a multilinear
set. The intuition behind it is that we can choose any of the offsets and then
use the generators as in the case of linear sets. This approximation is precise
if the generator sets attached at different offsets are the same. Otherwise this
approximation still keeps “asymptotic upper/lower” bounds on the relationship
of different components (i.e. when the offsets are negligible). Consider a semilin-
ear set consisting of two linear ones: (v1, {v2}) and (v′1, {v′2}), the corresponding
abstraction would be ({v1, v′1}, {v2, v′2}). Clearly (unless v2 = v′2) we add some
“spurious” points by additionally admitting, e.g., v1 + Nv′2.

Another idea is to divide every generator v by the greatest common divisor
of its elements to obtain a (shorter) vector ṽ. For a generator v the set Nv ⊆
Nk describes a one dimensional discrete “line with gaps”. Our approximation
corresponds to filling these gaps with more integer points but does not change
the direction of the generators, i.e. Nv ⊆ Nṽ ⊆ Qv ∩ Nk.



4 Experiments

One of the potential applications for counting analyses is to analyze the use of
certain resources in a program. For instance, a reentrant lock should be released
the same number of times that it has been acquired. Below is a simple example
of a recursive program that will obey these rules.

proc AcquireRelease
Lock ! ( ) ;
i f
: : t rue => AcquireRelease ( )
: : t rue => sk ip
f i ;
Re lease ( )

end

proc Release
i f
: : t rue => Unlock ! ( )
: : t rue => Release ( )
f i

end

proc main
AcquireRelease ( )

end

However, it is using the stack to ensure that it acquires and releases the lock the
same number of times. Even though the stack is unbounded, our solver can verify
that — the result of counting the Lock and Unlock actions is: {(〈1, 1〉, {〈1, 1〉})}.
In other words, the behavior is characterized by a linear set with offset 〈1, 1〉
(there is at least one Lock and one Unlock action) and generator 〈1, 1〉 (the
number of those actions can be arbitrarily large, but equal in number).

Next we show the behavior of our implementation on two sets of examples
over different semirings. We compiled the tool using gcc 4.7 with optimizations
(-O2) and ran it on a machine with an Intel 2.7 GHz CPU and 8 GB RAM.

For the first benchmark we computed the Parikh images of all 1,932 gram-
mars provided with the tool cfg-analyzer from http://www2.tcs.ifi.lmu.de/

~mlange/cfganalyzer/. We simply interpret the grammars as equation systems
over the counting semiring and solve them. The grammars are quite simple—at
most three terminal, and less than ten nonterminal symbols. We used a timeout

> 15s (timeout) (0.01s, 5s) ≤ 0.01s

Exact

{
sl-sets, w/o simp 55 35 1842

sl-sets, simp 0 30 1902

Approx.

{
ml-sets, w/o simp 2 0 1930

ml-sets, simp 0 0 1932

Table 1: Parikh image computation for the cfg-analyzer benchmarks; Number of
instances solved in the respective times for semi- resp. multilinear sets with and
without the optimizations from Sec.3.3.

of 15 seconds, but for most examples computation took only a few milliseconds
(see Tab. 1). In all but the timeout-cases, memory usage was negligible (less
than 1MB). Since the Parikh image can be viewed as an overapproximation,
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this could be used as an (incomplete) method to check for non-equivalence of
context-free grammars in some cases.

The second benchmark studies a problem that is important in natural lan-
guage processing and the study of branching processes. The task is to compute
the extinction probabilities for stochastic context-free grammars, i.e. the proba-
bility for each non-terminal to derive the empty word [6]. To solve this problem
we just have to change the semiring in our implementation. This setting also
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Fig. 2: Approximating the solution (doing 10 Newton steps) of n quadratic equa-
tions over R≥0 with ε
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)
monomials in each equation. Left: Average solving time

(taken over 5 runs) in milliseconds. Right: Numbers from the left divided by n3.

allows us to demonstrate the scalability of our generic algorithms and to show
that our implementation faithfully implements all algorithms with a running
time that matches the theoretical analysis. To this end, we randomly generated
quadratic equations over [0, 1] and record the running time needed to solve the
equations. 4 As we are only interested how the performance varies with the size
of the system we fixed the number of Newton iterations to 10. Each equation has
ε
(
n
2

)
monomials and we vary the “density” ε from 0.1 to 0.5—note that these

systems are rather dense and large (e.g. the textual description of the system
with 100 variables and density 0.5 needs 7.6 MB). For these systems we expect
a cubic runtime which is well supported by the data (cf. Fig. 2).

5 Conclusions and Future Work

In this paper we have presented the first implementation of the Newton’s method
generalized to ω-continuous semirings [5]. We have briefly described the main

4 These benchmarks are available at https://github.com/mschlund/newton/tree/

master/c/test/grammars/float-random.

https://github.com/mschlund/newton/tree/master/c/test/grammars/float-random
https://github.com/mschlund/newton/tree/master/c/test/grammars/float-random


algorithms behind our library as well as the implementation of the counting
semiring based on semilinear sets. One of our goals was to make the library
generic and flexible—new semirings can be defined and used without changing
the main algorithms. Furthermore, we have implemented and discussed various
optimizations such as common subexpression elimination during Kleene star
computation or simplification of semilinear sets. We have provided motivating
applications and discussed initial benchmarks of our library.

Concerning future work, computing the Kleene star for matrices is a problem
well suited for parallelization [1] and a generic parallel implementation for general
semirings would be useful but does not exist yet to the best of our knowledge.
Furthermore, there are well-known symbolic representations of semilinear sets
described in the literature, e.g., NDDs or Presburger formulae which we plan to
integrate into our library. The main challenge there is to compute the Kleene star
efficiently which has not yet been addressed for these representations. Finally,
we plan on using our library to solve more involved program analysis problems
like pointer may-alias analysis.
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