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Abstract. We answer two open questions by (Gruber, Holzer, Kutrib,
2009) on the state-complexity of representing sub- or superword closures
of context-free grammars (CFGs): (1) We prove a (tight) upper bound of
2O(n) on the size of nondeterministic finite automata (NFAs) representing
the subword closure of a CFG of size n. (2) We present a family of
CFGs for which the minimal deterministic finite automata representing

their subword closure matches the upper-bound of 22O(n)

following from
(1). Furthermore, we prove that the inequivalence problem for NFAs
representing sub- or superword-closed languages is only NP-complete as
opposed to PSPACE-complete for general NFAs. Finally, we extend our
results into an approximation method to attack inequivalence problems
for CFGs.

1 Introduction

Given a (finite) word w = w1w2 . . . wn over some alphabet Σ, we say that u is a
(scattered) subword or subsequence of w if u can be obtained from w by erasing
some letters of w. We denote the fact that u is a subword of w by u4w, and
alternatively say that w is a superword of u. As shown by Higman [11] in 1952
4 is a well-quasi-order on Σ∗, implying that every language L ⊆ Σ∗ has a finite
set of 4-minimal elements. This proves that both the subword (also: downward)
closure ∇L := {u ∈ Σ∗ | ∃w ∈ L : u4w} and the superword (also: upward)
closure ∆L := {w ∈ Σ∗ | ∃u ∈ L | u4w} are regular for any language L. While
in general, we cannot effectively construct a finite automaton accepting ∇L resp.
∆L, for specific classes of languages effective constructions are known.

It is well-known that this is the case when L is given as a context-free gram-
mar (CFG). This was first shown by van Leeuwen [13] in 1978. Later, Courcelle
gave an alternative proof of this result in [6]. Section 3 builds up on these re-
sults by Courcelle. We also mention that for Petri-net languages an effective
construction is known thanks to Habermehl, Meyer, and Wimmel [10].

These results can be used to tackle undecidable questions regarding the am-
biguity, inclusion, equivalence, universality or emptiness of languages by over-
approximating one or both languages by suitable regular languages [15,14,8,10]:
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For instance, consider the scenario where we are given a procedural program
whose runs can be described as a pushdown automaton resp. a CFG G1 and a
context-free specification G2 of all safe executions, and we want to check whether
all runs of the system conform to the safety specification L(G1) ⊆ L(G2). As
L(G1)∩∇L(G2) 6= ∅ ⇒ L(G1) 6⊆ L(G2), we can obtain at least a partial answer
to the otherwise undecidable question. Of course, in the case L(G1) ⊆ ∇L(G2)
no information is gained, and one needs to refine the problem e.g. by using some
sort of counter-example guided abstraction refinement as done e.g. in [14].

Contributions and Outline Our first results (Sections 3 and 4) concern the blow-
up incurred when constructing a (non-)deterministic finite automaton (NFA
resp. DFA) for the subword closure of a language given by a context-free gram-
mar G where we improve the results of [9]: For a CFG G of size n, [9] shows

that an NFA recognizing ∇L(G) has at most 22
O(n)

states, and there are CFGs
requiring at least 2Ω(n) states. (For linear CFGs the upper and lower bounds are
both single exponential.) The upper bound of [9] is established by analyzing the
inductive construction of [13]. We improve this result in Section 3 to 2O(n) by
slightly adapting Courcelle’s construction [6] (we also briefly discuss that naively
applying Courcelle’s construction cannot do better than 2Ω(n logn) in general).

This result of course yields immediately an upper bound of 22
O(n)

on the size of
minimal DFA representing ∇L(G). In Section 4 we show this bound is tight al-
ready over a binary alphabet. To the best of our knowledge, so far only examples
were known which showcase the single-exponential blow-up when constructing
an NFA accepting the subword closure of a context-free grammar [9] resp. a DFA
accepting the subword closure of a DFA or NFA [17]. We then study in Section
5 the equivalence problem for NFAs recognizing subword- resp. supword-closed
languages. While for general NFAs this problem is PSPACE-complete, we show
that it becomes coNP-complete under this restriction. We combine these results
in Section 6 to derive a conceptual simple semi-decision procedure for checking
language-inequivalence of two CFGs G1, G2: we first construct NFAs for ∇L(G1)
and ∇L(G2), and check language-inequivalence of these NFAs; if the NFAs are
inequivalent, we construct a witness of the language-inequivalence of G1 and G2;
otherwise we refine the grammars, and repeat the test on the so obtained new
grammars. This approach is motivated by the abstraction-refinement approach
of [14] for checking if the intersection of two context-free languages is empty.
We experimentally evaluate our approach by comparing it to cfg-analyzer of [2]
which uses incremental SAT-solving to tackle the language-inequivalence prob-
lem. Missing proofs can be found in the extended version of the paper [3].

2 Preliminaries

By Σ we denote a finite alphabet. For every natural number n, let Σ≤n denote
the words of length at most n over Σ. The empty word is denoted by ε; the set
of all finite words by Σ∗.



We measure the size |G| of a CFG G as the total number of symbols on the
right hand sides of all productions. The size of an NFA is simply measured as
the number of states (this is an adequate measure for a constant alphabet, since
the number of transitions is at most quadratic in the number of states).

Throughout the paper we will always assume that all CFGs are reduced,
i.e. do not contain any unproductive or unreachable nonterminals (any CFG can
be reduced in polynomial time). Let X be a nonterminal in a CFG G. We define
L(X) as the set of all words w ∈ Σ∗ derivable from X. If S is the start symbol
of G, then L(G) := L(S). Moreover, ΣX ⊆ Σ denotes the set of all terminals
reachable from X. Overloading notation we sometimes write ∇X for ∇L(X).

The dependency graph of a CFG G is the finite graph with nodes the non-
terminals of G where there is an edge from X to Y if there is a production
X → αY β in G. We say that X depends directly on Y (written as X .Y ) if
X 6= Y and there is an edge from X to Y . The reflexive and transitive closure of
. is denoted by D∗. We write X ≡ Y if X D∗ Y ∧Y D∗X, i.e. if X and Y are lo-
cated in a common strongly-connected component of the dependency graph. We
say that G is strongly connected if the dependency graph is strongly connected.

From [6] we recall some useful facts concerning the subword closure:

Lemma 1. For any nonterminals X,Y, Z in a CFG G it holds that:

1. ∇(L(X) ∪ L(Y )) = ∇L(X) ∪∇L(Y )
2. ∇(L(X) · L(Y )) = ∇L(X) · ∇L(Y )
3. X ≡ Y ⇒ ∇X = ∇Y
4. If X →∗ αY βZγ for Y,Z ≡ X then ∇X = Σ∗X

3 Computing the Subword Closure of CFGs

In this section we describe an optimized version of the construction in [6] to
compute an NFA for the subword closure of a CFG G of size 2O(|G|), which is
asymptotically optimal. We first illustrate the construction by a simple example.

As explained at the end of the next section, a naive implementation of the
construction of [6] leads to an automaton of size 2Ω(n)n! = 2Ω(n logn) whereas
our approach achieves the (optimal) bound of 2O(n).

3.1 Construction by Example

Consider the grammar G with start symbol S defined by the productions:

S → XaU | UaU | X X → ZbY | ε
Y → XY a | b U → V Z | acb
V → ZU | ε Z → cZ | bc

S

XY

Z

U V

On the right-hand side, the dependency graph is shown where an edge x → y
stands for xD y. To simplify the construction, we first transform the grammar



G into a certain normal form G′ (with ∇L(G) = ∇L(G′)) and then construct
an NFA from G′.

In the first step we compute the strongly connected components (SCCs) of G,
here {X,Y } and {U, V }. Since Y → XY a (with Y ≡ X and X ≡ X), we know
that ∇Y = ∇X = Σ∗X = {a, b, c}∗. We therefore can replace any occurrence of
Y by X (thereby removing Y from the grammar) and redefine the rules for X to
X → aX | bX | cX | ε. In case of the SCC {U, V } the grammar is linear w.r.t. U
and V , i.e. starting from either of the two we can never produce sentential forms
in which the total number of occurrences of U and V exceeds one. Hence, we can
identify U and V without changing the subword closure. Finally, we introduce
unique nonterminals for each terminal symbol and restrict the right-hand side of
each production to at most two symbols by introducing auxiliary nonterminals
W and T :

S → XW | UW | X W → AaU

X → AaX | AbX | AcX | Aε U → UZ | ZU | AaT | Aε
T → AcAb Z → AcZ | AbAc
Aa → a Ab → b

Ac → c Aε → ε

S

X W

Z

U

T

Aε Aa AbAc

Note that the dependency graph of this transformed grammar is now acyclic
apart from self-loops. Because of this, we can directly transform the grammar
into an acyclic equation system (or straight-line program, or algebraic circuit)
whose solution is a regular expression for ∇S:

∇Aa = (a+ ε) ∇Ab = (b+ ε)
∇Ac = (c+ ε) ∇Aε = ε
∇Z = c∗(∇Ab∇Ac) ∇T = ∇Ac∇Ab
∇U = Σ∗Z(∇Aa∇T )Σ∗Z ∇W = ∇Aa∇U
∇X = Σ∗X ∇S = ∇X∇W +∇U∇W +∇X

In order to obtain an NFA for∇S, we evaluate this equation system from bottom
to top while re-using as many of the already constructed automata as possible.
For instance, consider the equation: ∇S = ∇X∇W + ∇U∇W + ε · ∇X. Be-
cause of acyclicity of the equation system, we may assume inductively that we
have already constructed NFAs A∇X , A∇W , and A∇U for ∇X, ∇W , and ∇U ,
respectively. To construct the NFA for ∇S, we first make two copies A(1), A(2)

of each of these automata. Automata with superscript (1) will be used exclu-
sively for variable occurrences to the left of the concatenation operator, while
automata with superscript (2) will be used for the remaining occurrences. We

then read quadratic monomials, like ∇X∇W , as an ε-transition connecting A
(1)
∇X

with A
(2)
∇W as shown in Figure 1 where all edges represent ε-transitions.

We do not claim that this construction yields the smallest NFA, but it is
easy to describe and yields an NFA of sufficiently small size in order to deduce
in the following subsections an asymptotically tight upper bound on the number
of states. We recall that using a CFG of size 3n+ 2 to succinctly represent the
singleton language {a2n}, the bound of 2Θ(n) follows [9].
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Fig. 1. Efficient re-use of re-occurring NFAs in Courcelle’s construction.

In [1] it is remarked that a straight-forward implementation of Courcelle’s
construction yields an NFA “single exponential” size w.r.t. |G|. However, no
detailed complexity analysis is given. Consider the CFG with start-symbol An
and consisting of the rules A0 → a and for all 1 ≤ k ≤ n : Ak → AiAj ∀0 ≤
i, j ≤ (k−1). If we compute an NFA for ∇An via the straight-forward bottom-up
construction it will have size an := |A∇An

| with an = 2+
∑

0≤i,j≤(n−1)(ai+aj). It

is easy to show that an ≥ 2nn! ∈ 2Ω(n logn). Hence, the crucial part to achieve the
optimal bound of 2O(n) is to reuse already computed automata. We just remark
that one can also achieve similar savings by factoring out common terms in the
right hand side of the acyclic equations. A subsequent bottom-up construction
leads to an NFA of size 2O(n) as well but the constant hidden in the O is larger
and the analysis is more involved. Note that this also shows that we can construct
a regular expression of size 2O(n) representing the subword closure.

3.2 Normal Form for Computing the Subword Closure

To simplify our construction, we will assume that our grammar has a special
form which is similar to CNF but with unary rules allowed. Any CFG can be
transformed into this form with at most linear blowup in size preserving its
subword closure (but not its language).

Definition 2. A CFG G is in quadratic normal form (QNF) if for every ter-
minal x ∈ Σ ∪ {ε} there is a unique nonterminal Ax with the only production
Ax → x and every other production is in one of the following forms:

– X → Y X or X → XY (with Y 6= X)
– X → Y or X → Y Z (with Y,Z 6= X)

A grammar in QNF is called simple if

– for all X → Y X or X → XY , we have X .Y
– for all X → Y or X → Y Z, we have X .Y,Z.

Note that the dependency graph associated with a grammar in simple QNF is
acyclic with the exception of self-loops.

First, we need a small lemma that allows us to eliminate all linear productions
“within” some SCC, i.e. productions of the form X → αY β such that X 6= Y
but Y D∗X.



Lemma 3. Let G be a strongly connected linear CFG with nonterminals X =
{X1, . . . , Xn} so that every production is either of the form X → αY β or X → α
for α, β ∈ Σ∗. Consider the grammar G′ which we obtain from G by replacing
in every production of G every occurrence of a nonterminal Xi by Z. We then
have that ∇L(Z) = ∇L(Xi) for all i ∈ [n].

Using the preceding lemma, we can show that it suffices to consider only CFG
in simple QNF in the following.

Theorem 4. Every CFG G can be transformed into a CFG G′ in simple QNF
such that ∇L(G) = ∇L(G′) and |G′| ∈ O(|G|).

Proof (sketch). First, we use Lemma 1 to simplify all productions involving an
X with X ⇒∗ αXβXγ. Then we apply Lemma 3 to contract SCCs to a single
non-terminal. Finally, we introduce auxiliary variables for the terminals and we
binarize the grammar (keeping unary rules like [12]).

Theorem 5. For any CFG G in simple QNF with n nonterminals there is an
NFA A with at most 2 · 3n−1 states which recognizes the subword closure of G,
i.e. ∇L(G) = L(A).

Proof (sketch). Since the dependency graph of a grammar in simple QNF is a
DAG (if we ignore self-loops), we can order the nonterminals according to a
topological ordering of this graph. We proceed bottom-up to inductively build
an NFA for ∇L(G) = ∇S as in section 3.1. Since our grammar is in QNF,
at each stage we only have to produce at most two copies of every automaton
representing the subword-closure of a “lower” nonterminal Y . Inductively, for
each of these Y we can build an NFA with at most 2 · 3i many states where i is
Y ’s position in the topological ordering. Using the “biparitite wiring” sketched
in Figure 1 the size of the automaton for X can then be estimated as

|AS | ≤ 2 +
∑

Y : S .Y

2 · |AY | ≤ 2 + 4 ·
n−2∑
i=0

3i = 2 · 3n−1.

Corollary 6. For every CFG G of size n there is an NFA A of size 2O(n) and

a DFA D of size 22
O(n)

with ∇L(G) = L(A) = L(D).

4 CFG → DFA: Double-exponential Blowup

As seen in the preceding section, moving from a context-free grammar G rep-
resenting a subword-closed language to a language-equivalent NFA A, the size
of the automaton is bounded from above by 2O(|G|). For superword closures [9]
prove the same upper bound for the size of the NFA. From both results we im-

mediately obtain the upper bound 22
O(|G|)

on the size of the minimal language-
equivalent DFA recognizing the sub- or superword closure of a CFG G. This
bound is essentially tight as witnessed by the family of finite languages

Lk =

k⋃
j=1

{0, 1}j−1{0}{0, 1}k{0}{0, 1}k−j .



Lk contains exactly all those words w ∈ {0, 1}2k+1 which contain two 0s which
are separated by exactly k letters. Using the idea of iterated squaring in order to
succinctly encode the language {a2n} as a context-free grammar (resp. straight-
line program) of size O(n), the language L2n can be represented by a context-
free grammar of size O(n) as well. One then easily shows that the Myhill-Nerode
relation w.r.t. L2n , ∇L2n , and ∆L2n , respectively, has at least 22

n

equivalence
classes:

Theorem 7. There exists a family of CFGs Gn of size O(n) (generating finite
languages) such that the minimal DFAs accepting either L(Gn), or ∇L(Gn), or
∆L(Gn), have at least 22

n

states.

5 Equivalence of NFAs modulo Sub-/Superword Closure

As hinted at in the introduction, one application of the sub- resp. superword
closure is (in-)equivalence checking of CFGs by regular over-approximation. For
this, we must solve the equivalence problems for NFAs representing sub/sup-
word closed languages. Naturally, the question arises how hard this is.

Let A and B denote NFAs over the common alphabet Σ, having nA and nB
many states, respectively. Recall that the universality problem for NFAs, i.e.

L(A)
?
= Σ∗, and hence also the equivalence problem L(A)

?
= L(B) are PSPACE-

complete. Only recently, it was shown in [18] that these problems stay PSPACE-
complete even when restricted to NFAs representing languages which are closed
w.r.t. either prefixes or suffixes or factors. However, in [18] it was also shown that
for subword-closed NFAs (i.e. ∇L(A) = L(A)), universality is decidable in linear
time as L(A) = Σ∗ holds if and only if there is an SCC in A whose labels cover
all of Σ. It is easily shown that a similar result also holds for superword-closed
NFAs (i.e. ∆L(A) = L(A)): We have L(A) = Σ∗ if and only if ε ∈ L(A).

In this section we show that both equivalence problems, i.e. ∇L(A)
?
= ∇L(B)

and ∆L(A)
?
= ∆L(B), are coNP-complete, hence are easier than in the general

case (unless NP = PSPACE). In the following, we write more succinctly A
?≡∇ B

and A
?≡∆ B for these two problems. The following lemma is easy to prove:

Lemma 8. Let A be an NFA. Define A∇ as the NFA we obtain from A by adding
for every transition q

a−→ q′ of A the ε-transition q
ε−→ q′. Similarly, define A∆

to be the NFA we obtain by adding the loops q
a−→ q for every state q and every

terminal a ∈ Σ to A. Then ∇L(A) = L(A∇) and ∆L(A) = L(A∆).

To prove that both A
?≡∆ B and A

?≡∇ B are coNP-complete we will give a poly-
nomial bound on the length of a separating word, i.e. a word w in the symmetric
difference of L(A∇) and L(B∇) resp. of L(A∆) and L(B∆).

We first show that the DFA obtained from A∇ resp. A∆ using the powerset
construction has a particular simple structure (this was also observed in [17]).



Lemma 9. Let A be an NFA. Let D∇A (resp. D∆A ) be the DFA we obtain from

A∇ (resp. A∆) by means of the powerset construction. For any transition S
a−→ T

of D∇A (D∆A ) it holds that S ⊇ T (resp. S ⊆ T ).

Thus, the transition relation of D∇A (disregarding self-loops) can be “embedded”
into the lattice of subsets of the states of A, which has height nA − 1.

Corollary 10. With the assumptions of the preceding lemma: The length of the
longest simple path in D∇A (resp. D∆A ) is at most nA − 1.

It now immediately follows that a shortest separating word for sub- resp. supword
closed NFAs – if one exists – has at most length linear in the size of the two
NFAs.

Lemma 11. Let A and B be two NFAs. If A 6≡∇ B (resp. A 6≡∆ B), then there
exists a separating word of length at most nA + nB − 2.

Theorem 12. The decision problems A
?≡∇ B and A

?≡∆ B are in coNP.

To show coNP-hardness, recall the proof that the equivalence problem for star-
free regular expressions is coNP-hard by reduction from TAUT: Given a formula
φ in propositional calculus, we build a regular expression ρ (without Kleene
stars) over Σ = {0, 1} that enumerates exactly the satisfying assignments of φ.
Hence, φ ∈ TAUT iff L(ρ) = Σn iff ∇L(ρ) = Σ≤n, since the subword closure can
only add new words of length less than n (analogously for ∆).

Theorem 13. The decision problems A
?≡∇ B and A

?≡∆ B are coNP-hard.

6 Application to Grammar Problems

We apply our results to devise an approximation approach for the well-known
undecidable problem whether L(G1) = L(G2) for two CFGs G1, G2. Possible
attacks on this problem include exhaustive search for a word in the symmetric
difference w ∈ (L1⊕L2) ∩ Σ≤n w.r.t. some increasing bound n e.g. by using
incremental SAT-solving [2]. Unfortunately, this quickly becomes infeasible for
large problems. Previous work has successfully applied regular approximation
for ambiguity detection [19,5] or intersection non-emptiness of CFGs [14].

A high-level description of our approach to (in-)equivalence-checking is given
in Figure 2. Of course the procedure will not terminate if L(G1) = L(G2),
so in practice a timeout will be used after which the algorithm will terminate
itself and output “Maybe equal”. Steps (1) and (2) might take time (at most)
double exponential in the size of the grammars G1 and G2: Recall that the
construction of Section 3 yields in the worst-case an NFA Ai whose number
of states is exponential in the size of the given CFG Gi. To check if ∇L(G1) =
∇L(G2), an on-the-fly construction of the power-set automaton for A1×A2 can be
used which terminates as soon as a set of states is reached which contains at least
one accepting state of, say, A1 but no accepting state of A2. Using Lemma 11, we



1. Compute NFAs A1 and A2 for the subword closures of G1 and G2, respectively.
2. Check, if L(A1) = L(A2).

(a) Case “Not equal”: Generate a witness w ∈ L(G1)⊕L(G2).
(b) Case “Equal”: Refine the grammars and restart at 1.

Fig. 2. Equivalence checking via subword closure approximation.

can safely terminate the exploration of simple paths if their length exceeds the
bound stated in Lemma 11. In the worst case this might take time exponential
in the size of A1 and A2, so at most double exponential in the size of G1 and G2.

In the following, we describe in greater detail how we generate a separating
word w′ in L(G1) or L(G2) if we find a separating word w ∈ ∇L(G1)⊕∇L(G2),
resp. how we refine G1 and G2 if ∇L(G1) = ∇L(G2).

6.1 Witness Generation for L(G1) 6= L(G2)

If our check in step (2) returns “Not equal” we know that ∇L(G1) 6= ∇L(G2)
and we obtain a word w ∈ ∇L(G1)⊕∇L(G2), w.l.o.g. assume in the following
w ∈ ∇L(G1)\∇L(G2). This word has length linear in |A1| and |A2|, i.e. at most
exponential w.r.t. |G1| and |G2|.

To obtain a (direct) certificate for the fact that L(G1) 6= L(G2), we construct
a superword w′<w with w′ ∈ L(G1) – such a w′ is guaranteed to exist as it is
the reason for w ∈ ∇L(G1). Straight-forward induction on w shows:

Lemma 14. For w ∈ Σ∗ a DFA recognizing ∇L({w}) resp. ∆L({w}) and hav-
ing at most |w|+ 2 states can be constructed in time polynomial in |w|.

We can therefore intersect G1 with a DFA accepting ∆L({w}), to obtain a new
CFG G′1 whose size is at most cubic in |w|[4,16], i.e. exponential in the size of
G1. From this grammar, we can obtain in time linear in |G′1| a shortest word w′

in L(G′1) = L(G1) ∩∆L({w}). The length of w′ is at most exponential in |G′1|,
i.e. at most double exponential in |G1|.

In practice, shorter witnesses are preferable, so we construct the shortest
word in L(A2) ∩ L(G1). In theory this might incur a triple exponential blow-up
resulting from complementing A2, but this way we can find a separating word
w′ which is not a superword of w and hence is usually shorter.

6.2 Refinement

In case that the test in step (2) returns “Equal”, we refine both grammars such
that subsequent subword-approximations may find a counterexample to equal-
ity. Assume that our equivalence check yields ∇L(G1) = ∇L(G2). A possible
refinement strategy is to cover L := ∇L(G1) using a finite number of regular
languages L ⊆ L′ := L0 ∪ L1 ∪ · · · ∪ Lk and then to repeat the equivalence
check for all pairs of refined languages L(G1) ∩Li and L(G2) ∩Li for all i. The
requirement L′ ⊇ L protects the refinement from cutting off potential witnesses.



A simple method is covering using prefixes: Here we generate all prefixes
p1, . . . , pk of words in L of increasing length (up to some small bound d called
the refinement depth) and set Li := piΣ

∗ and L0 = ∇{pi | i ∈ [k]}. Since⋃
i Li ⊇ L this strategy preserves potential witnesses and since any counterex-

ample eventually appears as a prefix, this yields a semi-decision procedure for
grammar inequivalence. In our experiments we disregard the finite language L0

(which can also be checked by enumeration) and only check refinement using
the infinite sets piΣ

∗ with the goal of quickly finding some (not the shortest)
distinguishing word. This strategy is often able to tell apart different CFLs after
few iterations as shown in the following.

6.3 Implementation and Experiments

We implemented the inequivalence check in an extension1 of the FPsolve tool
[7]. The additional code comprises roughly 1800 lines of C++ and uses libfa2 to
handle finite automata.

Our worst-case descriptional complexity results for the subword closure of
CFGs (exponential sized NFA, double-exponential sized DFA) and our remarks
on the length of possible counterexamples might suggest that our inequivalence
checking procedure is merely of academic interest. Here we briefly show that
this is not the case, and that overapproximation via subword closures is actually
quite fast in practice.

The paper [2] presents cfg-analyzer, a tool that uses SAT-solving to attack
several undecidable grammar problems by exhaustive enumeration. We demon-
strate the feasibility of our approximation approach on several slightly altered
grammars (cf. [20]) for the PASCAL programming language3. The altered gram-
mars were obtained by adding, deleting, or mutating a single rule from the origi-
nal grammar [20]. We used FPsolve and cfg-analyzer to check equivalence of the
altered grammar with the original. Both tools were given a timeout of 30 seconds.
We want to stress that we do not strive to replace enumeration-based tools like
cfg-analyzer, but rather envision a combined approach: Use overapproximations
like the subword closure (with small refinement depth) as a quick check and resort
to more computationally demanding techniques like SAT-solving for a thorough
test. Also note that it is not too hard to find examples where enumeration-based
tools cannot detect inequivalence anymore, e.g. by considering grammars with
large alphabet (like C# or Java) for which the shortest word in the language is
already longer than 20 tokens. Here we just showcase an example where both
approaches can be fruitfully combined.

Table 1 demonstrates that even if our tool uses the very simple prefix-
refinement (which is the main bottleneck in terms of speed), we can successfully
solve 100 cases where cfg-analyzer has to give up after 30 seconds and even in
cases where both tools find a difference, FPsolve does so much faster.

1 The fork is available from https://github.com/regularApproximation/newton.
2 http://augeas.net/libfa/
3 Available from https://github.com/nvasudevan/experiment/tree/master/

grammars/mutlang/acc .

https://github.com/regularApproximation/newton
https://github.com/nvasudevan/experiment/tree/master/grammars/mutlang/acc
https://github.com/nvasudevan/experiment/tree/master/grammars/mutlang/acc


scenario # instances # CA tCA #FP tFP #(CF ∧ FP ) t∧CA t∧FP

add 700 190 17.9 18 2.43 8 10.7 4.97
delete 284 61 17.8 34 0.424 10 14.4 0.464
empty 69 32 18.7 1 1.35 1 5.62 1.35
mutate 700 167 19.1 100 1.3 36 15.8 2.87

switchadj 187 16 20.5 2 5.46 1 9.68 0.34
switchany 328 35 18 9 3.72 8 9.09 2.84∑

2268 501 – 164 – 64 – –

Table 1. Numbers of solved instances for different scenarios and respective average
times: #CA: solved by cfg-analyzer, #FP: solved by FPsolve, #(CA ∧ FP ): solved
by both tools, t∧tool: time needed by tool on instances from (CA ∧ FP ).

7 Discussion and Future Work

Motivated by the language-equivalence problem for context-free languages, we
have studied the problems of the space requirements of representing the subword
closure of CFGs by NFAs and DFAs, and the computational complexity of the
equivalence problem of subword-closed NFAs. We have shown how to construct
from a context-free grammar G an NFA accepting ∇L(G) consisting of at most
2O(|G|) states – a small gap between the lower bound of Ω(2|G|) and our upper
bound of O(3|G|) for grammars in QNF remains for future work. A further ques-
tion is if this bound can be improved in the case of languages given as determinis-
tic pushdown automata. We have further shown that the upper bound on the size

of a DFA accepting ∇L(G) of 22
O(|G|)

is tight. Interestingly, a binary alphabet
suffices for the presented language family Lk: for instance the worst-case exam-
ple of [17], which showcases the exponential blow-up suffered when constructing
an DFA for the subword closure of a language given as DFA or NFA, requires
an unbounded alphabet. We note that a unary context-free language cannot
lead to this double exponential blow-up – this follows from the proof of Theo-
rem 3.14 in [9] (see also Lemma 14 here). Regarding the language-equivalence
problem, we have shown that it becomes coNP-complete when restricted to sub-
resp. superword-closed NFAs. This is somewhat surprising given the fact that
it stays PSPACE-complete for many related families (e.g. for prefix-, suffix-, or
factor-closed languages). Finally, we have briefly described an approach to tackle
the equivalence problem for CFGs using the presented results, though much work
remains to turn our current implementation into a mature tool: In particular,
since the intersection of two regular overapproximations is again a regular over-
approximation, it could be fruitful to combine the subword closure (or variants
like [14]) with other regular approximation techniques like [15]. We also need to
improve the refinement of the approximations when scaling the problem size.
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