
Convergence of Newton’s Method over
Commutative Semirings?

Michael Luttenberger and Maximilian Schlund

Institut für Informatik, Technische Universität München,
Boltzmannstr. 3, 85748 Garching, Germany
{luttenbe,schlund}@model.in.tum.de

Abstract. We give a lower bound on the speed at which Newton’s
method (as defined in [5, 6]) converges over arbitrary ω-continuous com-
mutative semirings. From this result, we deduce that Newton’s method
converges within a finite number of iterations over any semiring which is
“collapsed at some k ∈ N” (i.e. k = k + 1 holds) in the sense of [1]. We
apply these results to (1) obtain a generalization of Parikh’s theorem,
(2) to compute the provenance of Datalog queries, and (3) to analyze
weighted pushdown systems. We further show how to compute Newton’s
method over any ω-continuous semiring.

1 Introduction

Fixed-point iteration is a standard approach for solving equation systems of the
formX = F (X): The naive approach is to compute the sequenceXi+1 = F (Xi)
given some suitable initial approximation X0. In calculus Banach’s fixed-point
theorem guarantees that the constructed sequence converges to a solution if F
is a contraction over a complete metric space. In computer science, Kleene’s
fixed-point theorem1 guarantees convergence if F is an ω-continuous map over a
complete partial order. In reference to Kleene’s fixed-point theorem, we will call
the naive application of fixed-point iteration “Kleene’s method” in the following.
It is well-known that Kleene’s method converges only very slowly in general.
Consider the equationX = 1/2X2+1/2 over the reals. Kleene’s method κ(h+1) =
1/2(κ(h))2 + 1/2 converges from below to the only solution x = 1 starting from
the initial approximation κ(0) = 0. However, it takes 2h−3 iterations to gain h

bits of precision, i.e. 1− κ(2h−3) ≤ 2−h [8].
Therefore, many approximation schemes do not apply Kleene’s method, in-

stead they construct from F a new map G to which fixed-point iteration is
then applied: Newton’s method, for instance, obtains G from a nonlinear func-
tion F by linearization. In above example, F (X) = 1/2X2 + 1/2 is replaced
by G(X) = 1/2X + 1/2 yielding the sequence ν(h+1) = G(ν(h)) = 1 − 2−h for
ν(0) = 0, i.e. we get one bit of precision with each iteration.

? This work was partially funded by the DFG project “Polynomial Systems on Semi-
rings: Foundations, Algorithms, Applications”

1 Depending on literature, this result is also attributed to Tarski.



2 Michael Luttenberger and Maximilian Schlund

A system X = F (X) where F is given in terms of polynomials over a semi-
ring is called algebraic. In computer science, algebraic systems arise e.g. in the
analysis of procedural programs where their least solution describes the set of
runs of the program (possibly evaluated under a suitable abstraction). Motivated
by the fast convergence of Newton’s method over the reals, in [5, 6] (see [7] for
an updated version) Newton’s method was extended to algebraic systems over
ω-continuous semirings: It was shown there that Newton’s method always con-
verges monotonically from below to the least solution at least as fast as Kleene’s
method. In particular, there are semirings where Newton’s method converges
within a finite number of iterations while Kleene’s method does not. This ex-
tension of Newton’s method found several applications in verification (see e.g.
[7, 4, 11]). Independent of the mentioned work, the same extension of Newton’s
method has been proposed in [17] in the setting of combinatorics which led to
new efficient algorithms for random generation of objects.

In this article we give a lower bound on the speed at which Newton’s method
converges over arbitrary commutative ω-continuous semirings. We measure the
speed by essentially looking at the number of terms evaluated by Newton’s
method. To make this more precise, consider the equation X = aX2 + c in the
formal parameters a, c (e.g. over the semiring of formal power series). Its least
solution is the series B =

∑
n∈N Cna

ncn+1 with Cn the n-th Catalan number.

The Kleene approximations κ(h+1) := aκ(h)κ(h) + c of B are always poly-
nomials and one can show that the number of correctly computed coefficients
increases by one in each iteration, e.g. κ(3) = c + ac2 + 2a2c3 + a3c4. By con-
trast, the Newton approximations ν(h) are (infinite) power series. It follows easily
from the characterization [5] of the Newton approximations by “tree-dimension”
(see Sec. 3), that the coefficient of ancn+1 in ν(h) has converged to Cn if and
only if n + 1 < 2h, i.e. the number of coefficients which have converged is now
roughly doubled in each iteration. In [17] this property is called quadratic con-
vergence (see also Ex. 5) and is used there to argue that Newton’s method allows
to efficiently compute a finite number of coefficients of the formal power series
representing a generating function.

In programs analysis, monomials correspond to runs of a program and we
are in general not only interested in the coefficients of a finite number of mono-
mials. We show in Theorem 6 for any monomial m that either its coefficient in

ν(n+k+1) has already converged or it is bounded from below by 22
k

(where n
is the number of variables of the given algebraic system). In particular, if the

coefficient of m is less than 22
k

in ν(n+k+1), then we know that it has converged.
Using this theorem, we extend Parikh’s theorem2 to multiplicities bounded by
a given k ∈ N (see Sec. 5.1). From this it follows that the set of monomials
whose coefficients have converged in the h-th Newton approximation is Pres-
burger definable. In Sec. 5.2 we apply these results to the problem of computing
the provenance of a Datalog query improving on the algorithms proposed in [12].
As a further application of our results, we show in Sec. 5.3 how Newton’s method

2 Parikh’s theorem states that the commutative image of a context-free grammar is a
semilinear set, i.e. definable by means of a Presburger formula



Convergence of Newton’s Method over Commutative Semirings 3

by virtue of Theorem 6 can be used to speed up the computation of predecessors
and successors in weighted pushdown-systems [18] which has applications e.g.
in the analysis of procedural programs or generalized authorization problems in
SPKI/SDSI. As a side result, we also show how to compute Newton’s method for
algebraic systems over arbitrary, also noncommutative, ω-continuous semirings
(Sec. 3, Definition 2). Due to the page limit, we refer the reader to the technical
report [13] for the missing proofs.

2 Preliminaries

N denotes the nonnegative integers (natural numbers). N∞ are the natural num-
bers extended by a greatest element ∞. For k ∈ N let Nk = {0, 1, . . . , k}. A∗
(A⊕) denotes the free (commutative) monoid generated by A. Elements of A⊕

are usually written as monomials (in the variables A). N∞〈〈A∗〉〉 denotes the set
of all total functions from A∗ to N∞. These functions are commonly represented
a formal power series (in noncommuting variables A and coefficients in N∞).
Analogously for N∞〈〈A⊕〉〉 with now commuting variables.

A context-free grammar is a triple G = (X ,A, R) with variables (nonter-
minals) X , alphabet (formal parameters) A, and (rewrite) rules R. We do not
assume a specific start symbol. G is nonexpansive if no variable X ∈ X can be
rewritten into a sentential form in which X occurs at least twice (see e.g. [19]). G
is in quadratic normal form if any rule X → u0X1u1 . . . ur−1Xrur of G satisfies
u0u1 . . . ur ∈ A+, X1X2 . . . Xr ∈ X+, and r ∈ {0, 2}.

We slightly deviate from the standard representation of derivation trees: We
label the nodes of a derivation tree directly by the corresponding rule (see Ex-
ample 1). For X ∈ X , a derivation tree of G is an X-tree if its root is la-
beled by a rule rewriting X. The word represented by a derivation tree is called
its yield. The ambiguity of a context-free grammar G w.r.t. to X ∈ X is the
map ambX ∈ N∞〈〈A∗〉〉 which assigns to a word w ∈ A∗ the number of X-
trees of G which yield w. Analogously, we define the commutative ambiguity
cambX ∈ N∞〈〈A⊕〉〉 which assigns to each monomial m ∈ A⊕ the number of X-
trees of G which yield a permutation of m. G is unambiguous w.r.t. X if every
word has a unique X-tree, i.e. if ambX takes only values in {0, 1}.

The family amb = (ambX | X ∈ X ) can equally be characterized as the least
solution of the algebraic system X = FG(X) over N∞〈〈A∗〉〉 consisting of the
equations X =

∑
(X,γ)∈P γ. In particular, for any interpretation ι : A→ S of the

alphabet symbols as elements of some ω-continuous semiring 〈S,+, ·〉 it is known
[3, 7] that amb evaluates under (the ω-continuous homomorphism induced by)
ι to the least solution of the algebraic system X = F ι(X) over S where F ι is
obtained from F by substituting every occurrence of a ∈ A by ι(a). Similarly,
any approximation scheme for amb translates to an approximation scheme for
ι(amb) over S. As we can associate with any algebraic system X = F (X) over
〈S,+, ·〉 a context-free grammar (in the restricted from defined above) such that
X = FG(X) has the same least solution, it suffices to study how to approximate
amb. Analogously for a commutative semiring 〈S,+, ·〉 and camb. We therefore



4 Michael Luttenberger and Maximilian Schlund

do not introduce ω-continuous semirings and algebraic systems formally, but
refer the reader to e.g. [19].

Example 1. Consider the grammar GL : X → aXX | c. The language L(GL)
generated by GL is known as Lukasiewicz language of all proper3 binary trees
with binary nodes labeled by a, and leaves labeled by c represented as a word
using Polish notation. Below on the left the common depiction of the derivation
tree of acacc is shown; the middle tree is the representation used in the following
which is isomorphic to the binary tree represented by acacc shown on the right:

X

a X X

c a X X

c c

(X, aXX)

(X, c) (X, aXX)

(X, c) (X, c)

a

c a

c c

As GL is unambiguous, amb enumerates all proper binary trees. camb on the
other hand is the generating function of proper binary trees, i.e. camb(ancn+1)
is the n-th Catalan number Cn.

camb = c+ac2+2a2c3+5a3c4+14a4c5+42a5c6+132a6c7+429a7c8+1430a8c9+. . .

3 Newton’s Method for Context-Free Grammars

The Kleene approximation κ(h) of amb (κ(h+1) = FG(κ(h)) with κ(0) = 0) can
be characterized by means of the derivation trees evaluated by them (see e.g. [5]):

The X-component κ
(h)
X of κ(h) assigns to w ∈ A∗ the number of X-trees of height

less than h which yield w. In [6, 5] the notion of dimension was introduced to give
a similar characterization of the Newton approximations ν(h): The dimension of
a (rooted) tree t is the maximal height of any perfect4 binary tree which is a
minor of t. The dimension is also known as Horton-Strahler number or register

number [9]. Then ν
(h)
X assigns to w ∈ A∗ the number of X-trees of dimension

less than h which yield w. Analogously for camb. We use this result to unfold any
context-free grammar G w.r.t. to the dimension into a new context-free grammar
G(h) so that the (commutative) ambiguity of G(h) is exactly the h-th Newton
approximation of the (commutative) ambiguity of G. One advantage of this new
definition is that it allows to effectively compute Newton’s method over any ω-
continuous semiring for which we can compute the semiring operations and the
Kleene star. By contrast, the algebraic definition in [6, 5] requires the user to
find in every iteration step a certain semiring element. There, only for particular
semirings, e.g. when addition is idempotent, it was shown how to construct these
elements. For the unfolding we assume that G is in quadratic normal form. This
is no real restriction but simplifies the presentation.5

3 A binary tree is proper if every node is either binary or nullary.
4 A proper binary tree is perfect if every leaf has the same distance to the root.
5 See the technical report [13] for how to unfold arbitrary context-free grammars.



Convergence of Newton’s Method over Commutative Semirings 5

Definition 2. Let G be a context-free grammar G = (X ,A, R). Set X ν :=
{X(d), X̂(d) | X ∈ X , d ∈ N}. The unfolding Gν = (X ν ,A, Rν) of G is:

– X(d) → X̂(e) for every d ∈ N, and every 0 ≤ e < d.
– If X → u0 in R, then X̂(0) → u0.
– If X →G u0X1u1X2u2 in R, then for every d ≥ 1:

X̂(d) → u0X
(d)u1X̂

(d)u2
X̂(d) → u0X̂

(d)u1X
(d)u2

X̂(d) → u0X̂
(d−1)u1X̂

(d−1)u2.

For any given h ∈ N let G(h) = (X (h),A, R(h)) be the context-free grammar

induced by the variables {X(h) | X ∈ X}. The h-th Newton approximation ν
(h)
X

of the (commutative) ambiguity of G w.r.t. X is the (commutative) ambiguity of
G(h) w.r.t. X(h).

Lemma 3. Every X̂(d)-tree (X(d)-tree) has dimension exactly (less than) d.
There is a yield-preserving bijection between the X̂(d)-trees (X(d)-trees) and the
X-trees of dimension exactly (less than) d.

Newton’s method is closely related to nonexpansive grammars and related no-
tions like quasi-rational languages:

Theorem 4. Let G = (X ,A, R) be a context-free grammar.

1. All Newton approximations of camb are rational in N∞〈〈A⊕〉〉.
2. Newton’s method converges to amb (camb) of G within a finite number of

iterations if and only if G is nonexpansive. If G is nonexpansive, then New-
ton’s method converges within |X | iterations.

If G is expansive, not much can be said regarding convergence speed in the
noncommutative setting as illustrated by any unambiguous grammar G: For a

given w ∈ L(G), the least h with ν
(h)
X (w) = ambX(w) is simply the dimension

of the unique X-tree yielding w. Thus, in the following section we focus on the
commutative setting and study the speed at which Newton’s method converges to
camb by means of a lower bound on all coefficients which have not yet converged.

Example 5. Unfolding GL (see Ex. 5) w.r.t. the dimension gives us X̂(0) → c,
X(1) → X̂(0) and for d > 0

X(d) → X̂(0) | X̂(1) | . . . | X̂(d−1)

X̂(d) → aX(d)X̂(d) | aX̂(d)X(d) | aX̂(d−1)X̂(d−1)

Modulo commutativity, we can deduce from this the following rational expres-
sions for the first few approximations of camb: ν(0) = 0, ν(1) = c,

ν(2) = (2ac)∗ac2 + c
= c+ ac2 + 2a2c3 + 4a3c4 + . . .

ν(3) = (2a((2ac)∗ac2 + c))∗a((2ac)∗ac2)2

= c+ ac2 + 2a2c3 + 5a3c4 + 14a4c5 + 42a5c6 + 132a6c7 + 428a7c8 + . . .



6 Michael Luttenberger and Maximilian Schlund

We have expanded the series until the first coefficient which differs from camb
(see Ex. 1) to exemplify the notion of quadratic convergence introduced in [17]:
ν(h) differs from camb in the coefficient of ancn+1 if and only if n + 1 ≥ 2h as
any tree with less than 2h leaves can only have dimension at most h − 1. This
also shows that Newton’s method cannot converge faster than quadratic in this
sense. Note that although Newton’s method converges quadratically w.r.t. camb,
it only converges linearly over the reals: Consider GL interpreted as an algebraic
system over R with ι(a) = ι(c) = 1/2 yielding X = 1/2X2+1/2. By also reading
the unfolded grammar as an algebraic system and interpreting the alphabet by
the same ι we recover the Newton approximations over R: X(0) = 0, X̂(0) = 1/2,
and for d > 0:

X(d) = X(d−1) + X̂(d−1) and X̂(d) = (1−X(d))−1 · 1/2
(
X̂(d−1)

)2
Induction shows that indeed ι(ν(h)) = X(h) = 1− 2−h.

4 Rate of Convergence Modulo Commutativity

Let G = (X ,A, R) be a context-free grammar. In the following n denotes |X |
and ν(h) denotes the h-th Newton approximation of camb of G, i.e. ν

(h)
X =

cambX(h−1) . We say that two X-trees (w.r.t. G) are Parikh-equivalent if they
yield the same word up to commutativity. We show that after n + 1 iterations

all coefficients which have not converged yet are bounded from below by 22
k

.

Theorem 6. For all k ≥ 0 and v ∈ A⊕: ν
(n+k+1)
X (v) ≥ min(cambX(v), 22

k

).

Proof (sketch). Assume there is v ∈ A⊕ with ν
(n+k)
X (v) < cambX(v). This means

there exists some derivation tree t with dimension dim(t) ≥ n+ k + 1 and yield
v modulo commutativity. Essentially we show that t witnesses the existence of

at least 22
k

different, but Parikh-equivalent trees of lower dimension.
To make this more precise, we need to introduce l(t): Recall that we labeled

the nodes of derivation trees by rules of G. A variable Y is a label of t if there is
at least one node which is labeled by a rule rewriting Y . Then l(t) is the number
of variables labeling t. We prove by induction on the number of vertices of t that

if dim(t) ≥ l(t) + k + 1, then there exist at least 22
k

Parikh-equivalent trees of
dimension at most l(t) + k.

Assume that t has dimension l(t) + k + 1 and exactly two subtrees t1, t2
having dimension exactly l(t) + k and furthermore l(t1) = l(t2) = l(t) (all other
cases reduce to this one, or follow from the induction hypothesis). Since t1 has
dimension l(t) + k it contains a perfect binary tree of height l(t) + k as a minor.
The set of nodes of this minor on level k define 2k (independent) subtrees of t1.
Each of these 2k subtrees has height at least l(t), and thus by the Pigeonhole
principle contains a path with two variables repeating. We call the partial deriva-
tion tree defined by these two repeating variables a pump-tree. We relocate any
subset of these 2k pump-trees to t2 which is possible since l(t2) = l(t) = l(t1).



Convergence of Newton’s Method over Commutative Semirings 7

See the following picture for an illustration of the relocation process (we have
two choices for the pump-tree on the left, yielding four possible “remainders”).

(X, a)

(X, a)

(X, a) (X, a)

(X, c) (X, c) (X, c) (X, c)

(X, a)

(X, c) (X, c)

 

(X, a)

(X, a)

(X, a) (X, c)

(X, c) (X, c)

(X, a)

(X, c) (X, a)

(X, c)(X, c)

Each of these 22
k

choices produces a different tree t̃—the trees differ in the
subtree t̃1. We now apply the following result from [6]: For every derivation tree
t there is a Parikh-equivalent tree t̃ of dimension at most l(t). Applying this result
to t̃2 allows us to reduce the dimension of each t̃ to at most dim(t1) = l(t) + k.

This way we obtain at least 22
k

different Parikh-equivalent trees of dimension
at most dim(t1) = l(t) + k.

Remark 7. As we can also choose t2 as the source and t1 as the destination of

the relocation process, we obtain in fact a lower bound of 21+2k , which is best
possible (in this form): Looking at Ex. 5 for k = 0 we obtain a lower bound
of ν(2)(v) ≥ 4 for all coefficients that have not converged yet – and indeed
ν(2)(a3c4) = 4.

It would be nice to have a non-uniform global bound on the coefficients
ν(n+1+k)(v) (i.e. some bound that depends on k and |v|). However, the follow-
ing grammar H shows that this cannot be done without taking into account
the structure of the grammar: H : Y → BY | BX,B → b,X → aXX | c.
This grammar contains GL, but any word produced by Y can have an arbi-
trarily long prefix of b’s and each such prefix has a unique derivation. Thus
cambY (bmancn+1) = cambX(ancn+1) = Cn.

We say that a ω-continuous semiring S is collapsed at some positive integer k
if in S the identity k = k + 1 holds (see e.g. [1]). For instance, the semirings
Nk〈〈A∗〉〉 and Nk〈〈A⊕〉〉 are collapsed at k. For k = 1 the semiring is idempotent.

Corollary 8. Newton’s method converges within n+ log log k iterations for any
algebraic system with n variables over a commutative semiring collapsed at k.

5 Applications

5.1 Parikh’s Theorem for Bounded Multiplicities

Petre [15] defines a hierarchy of power series over N∞〈〈A⊕〉〉 and showed that
this hierarchy is strict. In particular he shows that Parikh’s Theorem does not
hold if multiplicities are considered. Here we combine our convergence result and
some identities for weighted rational expressions over commutative k-collapsed
semirings to show that moving from N∞〈〈A⊕〉〉 to Nk〈〈A⊕〉〉 allows us to prove a
Parikh-like theorem, i.e. we give a semilinear characterization of cambG.



8 Michael Luttenberger and Maximilian Schlund

In the following, let k denote a fixed positive integer. By Theorem 4 and
Corollary 8 we know that cambG is rational modulo k = k+1. In the idempotent
setting (k = 1), see e.g. [16] the identities (i) (x∗)∗ = x∗, (ii) (x + y)∗ = x∗y∗,
and (iii) (xy∗)∗ = 1 + xx∗y∗ can be used to transform any regular expression
into a regular expression in “semilinear normal form”

∑r
i=1 wi,0w

∗
i,1 . . . w

∗
i,lr

with

wi,j ∈ A∗. It is not hard to deduce the following identities over Nk〈〈A⊕〉〉 where

x<r abbreviates the sum
∑r−1
i=0 x

i. By supp(x) we denote the characteristic series
of the support of x:

Lemma 9. The following identities hold over Nk〈〈A⊕〉〉:

(I1) kx = k supp(x)

(I2) (γx)∗ = (γx)<dlogγ ke + kxdlogγ kex∗

(I3) (x∗)∗ = kx∗

(I4) (x+ y)∗ = (x+ y)<k + xkx∗ + yky∗ + kxy(x+ y)max(k−2,0)x∗y∗

(I5) (xy∗)∗ = 1 + xy∗ + x2x∗ + x2y
∑

0≤m,j<k−2
(
2+m+j
1+j

)
xmyj

+ kx2y(xmax(k−2,0) + ymax(k−2,0))x∗y∗

for γ any integer greater than one.

Consider a rational series r ∈ Nk〈〈A⊕〉〉 represented by the rational expression
ρ. The above identities, where (I3), (I4), (I5) generalizes (i), (ii), (iii), respec-
tively, allow us to reduce the star height of ρ to at most one by distributing the
Kleene stars over sums and products yielding a rational expression ρ′ of the form
ρ′ =

∑s
i=1 γiwi,0w

∗
i,1 . . . w

∗
i,li

(wi,j ∈ A∗, γi ∈ Nk) which still represents r over

Nk〈〈A⊕〉〉. By (I1) we know that, if γi,0 = k, we may replace wi,0w
∗
i,1 . . . w

∗
i,li

by

its support which is a linear set in NA.

Theorem 10. Every rational r ∈ Nk〈〈A⊕〉〉 can be represented as a finite sum of
weighted linear sets, i.e. r =

∑
i∈[s] γi supp(wi,0w

∗
i,1 . . . w

∗
i,l) with wi,j ∈ A∗ and

γi ∈ Nk.

Example 11. The rational expression ρ = (a + 2b)∗ represents the power series∑
i,j∈N 2jaibj in N∞〈〈A⊕〉〉. Computing over N2〈〈A⊕〉〉 we may transform ρ as

follows:

(a + 2b)∗
(I4)
= (a + 2b)<2 + a2a∗ + (2b)2(2b)∗ + 2a(2b)a∗(2b)∗ = a∗ + 2(bb∗ +

aba∗b∗) = a∗ + 2(bb∗a∗)
(I1)
= 1 supp(a∗) + 2 supp(bb∗a∗)

Corollary 12. For every k ∈ N∞ we can construct a formula of Presburger
arithmetic that represents the set {v ∈ NA | cambG,X(v) = k}.

This corollary can be applied to inclusion testing between two rational series
over Nk〈〈A⊕〉〉 which is relevant e.g. for detecting early convergence of Newton’s
method, i.e. if ν(h+1) = ν(h). Although we know that after n + log log k steps
the method has converged, in applications (see Sec. 5.2) n could be quite large
and the n+ log log k bound might be too pessimistic.



Convergence of Newton’s Method over Commutative Semirings 9

5.2 Provenance Computation for Datalog

Roughly speaking, provenance is additional information attached to the results
of a database query explaining how said results were obtained from the current
facts in the database. Provenance information is important e.g. to implement
updatable views [10]. Recently, commutative ω-continuous semirings were pro-
posed as provenance annotations where the provenance of unions or projections
is modelled by addition of the annotation and joins yield multiplications. Tagging
the tuples from the facts in the database allows us to trace back the provenance
of the results by solving an algebraic system [12].

For an example consider the binary relation E depicted below (first table).
The Datalog query T (x, y) : - E(x, y); T (x, y) : - E(x, z), E(z, y) computes its
transitive closure T = E∗ (second table).

X Y

a b e1
b b e2
b c e3
c d e4

X Y

a b X1 = e1 + X1X4

a c X2 = X1X5

a d X3 = X1X6 + X2X7

b b X4 = e2 + X4X4

b c X5 = e3 + X4X5

b d X6 = X4X6 + X5X7

c d X7 = e4

X1 = X∗
4 e1

X2 = (X∗
4 )2e1e3

X3 = [(X∗
4 )2 + (X∗

4 )3]e1e3e4
X4 =

∑
n≥0 Cn(e2)n+1

X5 = X∗
4 e3

X6 = (X∗
4 )2e3e4

X7 = e4


(1=1+1)

=

e1e
∗
2

e1e
∗
2e3

e1e
∗
2e3e4

e2e
∗
2

e3e
∗
2

e∗2e3e4
e4

To capture the so called “how-provenance” we tag every tuple in E by a letter
from Σ = {e1, e2, e3, e4}. The provenance of the k-th tuple in T is the value
of Xk in the (least) solution (over a suitable semiring) of the algebraic system
representing the query. In our example the solution over N〈〈A⊕〉〉 can be computed
by hand and we can also give a very short representation as rational expressions
if we assume idempotence of addition (1 = 1 + 1). From the result we can see
that the tuple (b, d) can be obtained by a join of (b, c) and (c, d), preceded by
any number of joins of (b, b) with itself 6.

Depending on our choice of the semiring we obtain a coarser or finer view on
the provenance. As N∞〈〈A⊕〉〉 is the commutative semiring, freely generated by A,
we can regard it as the universal provenance semiring [12]. However, N∞〈〈A⊕〉〉 is
in some sense a bad choice for representing solutions, as we cannot do this finitely.
Green et al. [12] therefore resort to compute the complete provenance series
only if they finite by enumerating all derivation trees using Kleene’s method
essentially; if the power series is an infinite sum they only compute the coefficient
for a given monomial.

For many applications, idempotent semirings suffice to capture interesting
provenance information. Useful examples are the tropical semiring 〈N∞,min,+〉,
or the Viterbi-semiring 〈[0, 1],max, ·〉 for probabilistic settings. [12] raised the
open question how to compute provenance over the tropical semiring, which can
be done by Newton’s method as already described in [6]. A useful generalization
which is not idempotent is the k-tropical semiring Tk [14] which was used there
for general k-shortest distance computations. This semiring satisfies the identity

6 More precisely, the operations are joins followed by projections.



10 Michael Luttenberger and Maximilian Schlund

k = k+1, so by our results Newton’s method can be used to calculate provenance
series over Tk in n+ log log k steps.

As already remarked in [12], idempotent semirings are often too coarse an
abstraction in a database context where one often considers the so called bag-
semantics (i.e. we also care about the multiplicities of query results or provenance
information). The k-collapsed semirings Nk〈〈A⊕〉〉 are a possible way out of the
dilemma that we want to capture the bag-semantics to some extent but cannot
use the most general semiring N∞〈〈A⊕〉〉 since its elements are not finitely rep-
resentable in general. Suppose, we want to compute provenance for a recursive
query and are satisfied with a power series having coefficients less than k = 264

(i.e. standard 64-bit integers). By Theorem 6 we know that Newton’s method
converges after at most n+ 6 steps.

5.3 Analysis of Weighted Pushdown Systems

A Pushdown system (PDS) 〈Q,Γ,∆〉 consists of a finite set of control states Q,
a finite set of stack symbols Γ , and a set of rewrite rules ∆ ⊂ QΓ → QΓ≤2.
A PDS induces an infinite graph over the QΓ ∗ of configurations: there is an
edge from qγ to q′γ′ if there is a rule qA → q′ρ ∈ ∆ such that γ′ = Aγ′′ and
γ′ = ργ′′. In a weighted PDS each rule carries also as weight an element of a
semiring 〈S,+, ·〉. The semiring multiplication is used to extend weights from
single rules to paths, while addition is used to combine the weight of several
paths. Such weighted graphs arise e.g. in the analysis of procedural programs
[18] or in authorization problems [20]. A central problem is: given a configuration
c of the graph, determine for any other configuration c′ the weight of all finite
paths leading from c to c′.

To solve this problem for arbitrary configurations, one builds a weighted
finite automaton whose transitions corresponds to particular runs starting in a
configuration pA with a single stack symbol and ending in a configuration qε
with empty stack. The total weight of these paths is the least solution of an
algebraic system over the given semiring S. In the standard approach [18] this
algebraic system is solved on the fly while constructing the automaton. For this a
work list variant of Kleene’s method is used. This approach therefore only works
for certain semirings and its running time is directly proportional to the number
of iterations needed by Kleene’s method to converge which depends on the given
semiring. Alternatively, as discussed in [2], one can first build the unweighted
automaton, and then solve the algebraic system explicitly. We give an example
how Newton’s method in combination with Theorem 6 allows to speed this up:

Consider the PDS pA
a−→ pAA, pA

b−→ q, and qA
c−→ p where we have assigned

a unique label (weight) to each rule. The PDS encodes a program which always
starts in the configuration pA, and we expect it to terminate in pε. Termination
in configuration qε is considered to be an error. To simplify debugging, we would
like to have, say the k paths from pa to qε, in particular, these paths should be
short. All paths from pa to pε resp. qε are described by the grammar

X → aXX | aY c and Y → aXY | b.



Convergence of Newton’s Method over Commutative Semirings 11

We first determine the length of the k shortest paths. To this end, we can col-
lapse the alphabet to a singleton, say ι(a) = ι(b) = ι(c) = z, and compute the
commutative ambiguity of the resulting grammar modulo k = k + 1. The coef-
ficient of zi in cambX resp. cambY then tells us, how many paths (up to k) of
length i lead from pA to pε resp. qε. For simplicity, assume k = 4. By virtue of
Theorem 6 we know that at most n+ 1 + log log k = 4 Newton iterations suffice
to compute camb modulo k = k+ 1. (For comparison, Kleene’s method can take
up to O(k) iterations, consider e.g. pA→ pAA, pA→ qA, qA→ qε.) This gives
us: cambX = z3 + 2z7 + 2z11 +O(z12) and cambY = z+ z5 + 3z9 +O(z10). The
partial expansion of cambY tells us the four shortest paths from pA to qε consist
of one path of length 1, one path of length 5, and two paths of length 9 each.
For constructing the actual paths, these lengths allows us to early discard paths
which cannot contribute to the k shortest paths. For instance, we can now apply
Kleene’s method and discard after each iteration any path of length at least 10.
This will take 5 iterations until we have discovered enough paths.

On the other hand, by virtue of Theorem 6 we know that we discover a
sufficient number of paths of any given length l when considering only derivation
trees of low dimension. Consider e.g. the restriction of the grammar to derivation
trees of dimension at most one (see Def. 2). Dimension 0 gives us the shortest
path b from pA to qε. The unfolding of the grammar to dimension exactly 1 is:

X̂(1) → aX̂(1)abc | aabcX̂(1) | aabcabc | aŶ (1)c

Ŷ (1) → aX̂(1)b | aabcŶ (1) | aabcb

Applying Kleene iteration now to this unfolded grammar, we only enumerate
trees of dimension 1 with at most 9 leaves. Within two iterations we obtain
enough paths, namely aabcb, (aabc)2b, aaaabcbcb, and aaabcabcb, to answer the
query. Note that a path of the form (aabc)hb has a derivation tree of dimension
1, but of height h+1, i.e. it takes h+1 Kleene iterations on the original grammar
to discover this path. By increasing k, the gap between Newton’s method and
Kleene’s method can thus be made arbitrarily large.

6 Future Work

For proper binary trees, [9] provide a closed form for the number of trees with
n leaves and dimension less than h, i.e. for ν(h)(an−1cn). They show that the
expected dimension of a random binary tree with n leaves is tightly concentrated
around 1/2 log2 n. This implies a much faster convergence of Newton’s method
in the case of GL. We conjecture that a similar result can also be derived for
arbitrary context-free grammars.

In the idempotent case, we can use a result of [21] to obtain for a given
context-free grammar G a Presburger formula of size linear in |G| defining its
Parikh image. It would be interesting, if one could generalize this procedure to
semirings collapsed at k as the result of Sec. 5.1 in general leads to very large
expressions.



12 Michael Luttenberger and Maximilian Schlund

References

1. Bloom, S.L., Ésik, Z.: Axiomatizing rational power series over natural numbers.
Inf. Comput. 207(7), 793–811 (2009)

2. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis
of concurrent programs with procedures. Int. J. Found. Comput. Sci. 14(4), 551–
(2003)

3. Bozapalidis, S.: Equational elements in additive algebras. Theory Comput. Syst.
32(1), 1–33 (1999)

4. Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: A simple
and direct automaton construction. Inf. Process. Lett. 111(12), 614–619 (2011)

5. Esparza, J., Kiefer, S., Luttenberger, M.: An extension of Newton’s method to
ω-continuous semirings. In: DLT. LNCS, vol. 4588, pp. 157–168. Springer (2007)

6. Esparza, J., Kiefer, S., Luttenberger, M.: On fixed point equations over commuta-
tive semirings. In: STACS. LNCS, vol. 4393, pp. 296–307. Springer (2007)

7. Esparza, J., Kiefer, S., Luttenberger, M.: Newtonian program analysis. J. ACM
57(6), 33 (2010)

8. Etessami, K., Yannakakis, M.: Recursive markov chains, stochastic grammars, and
monotone systems of nonlinear equations. J. ACM 56(1) (2009)

9. Flajolet, P., Raoult, J.C., Vuillemin, J.: The number of registers required for eval-
uating arithmetic expressions. Theor. Comput. Sci. 9, 99–125 (1979)

10. Foster, J.N., Karvounarakis, G.: Provenance and data synchronization. IEEE Data
Eng. Bull. 30(4), 13–21 (2007)

11. Ganty, P., Majumdar, R., Monmege, B.: Bounded underapproximations. In: CAV.
pp. 600–614 (2010)

12. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS. pp.
31–40 (2007)

13. Luttenberger, M., Schlund, M.: An extension of Parikh’s theorem beyond idempo-
tence. Tech. rep., TU München (2011), (http://arxiv.org/abs/1112.2864)

14. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems. J.
Autom. Lang. Comb. 7(3), 321–350 (2002)

15. Petre, I.: Parikh’s theorem does not hold for multiplicities. J. Autom. Lang. Comb.
4(1), 17–30 (1999)

16. Pilling, D.L.: Commutative regular equations and Parikh’s theorem. J. London
Math. Soc. pp. 663–666 (1973)

17. Pivoteau, C., Salvy, B., Soria, M.: Algorithms for combinatorial structures: Well-
founded systems and newton iterations. J. Comb. Theory, Ser. A 119(8), 1711–1773
(2012)

18. Reps, T.W., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and
their application to interprocedural dataflow analysis. Sci. Comput. Program. 58(1-
2), 206–263 (2005)

19. Rozenberg, G.: Handbook of formal languages: Word, language, grammar, vol. 1.
Springer Verlag (1997)

20. Schwoon, S., Jha, S., Reps, T.W., Stubblebine, S.G.: On generalized authorization
problems. In: CSFW. pp. 202–218 (2003)

21. Verma, K.N., Seidl, H., Schwentick, T.: On the complexity of equational horn
clauses. In: CADE. LNCS, vol. 3632, pp. 337–352 (2005)


