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Abstract

We suggest a new annotation scheme for
unlexicalized PCFGs that is inspired by
formal language theory and only depends
on the structure of the parse trees. We
evaluate this scheme on the TüBa-D/Z
treebank w.r.t. several metrics and show
that it improves both parsing accuracy and
parsing speed considerably. We also show
that our strategy can be fruitfully com-
bined with known ones like parent annota-
tion to achieve accuracies of over 90% la-
beled F1 and leaf-ancestor score. Despite
increasing the size of the grammar, our
annotation allows for parsing more than
twice as fast as the PCFG baseline.

1 Introduction

As shown by (Klein and Manning, 2003), un-
lexicalized PCFGs can achieve high parsing ac-
curacies when training trees are annotated with
additional information. An annotation basically
amounts to splitting each nonterminal into sev-
eral subcategories, which can even be derived
automatically (Petrov et al., 2006; Petrov and
Klein, 2007). Currently used annotation strate-
gies, e.g. parent annotation (Johnson, 1998) or se-
lectively splitting special nonterminals (e.g. mark-
ing relative clauses) as in (Schiehlen, 2004), are
mostly linguistically motivated (with the excep-
tion of the above mentioned automatic approach).

In this paper we study new heuristics motivated
by formal language theory for improving the pars-
ing accuracy of unlexicalized PCFGs by means of
refining the nonterminals of the grammar: One
heuristic splits a nonterminal X into a family of
nonterminals (Xd)d∈D based on the notion of the
dimension (also Horton-Strahler number) of a tree
(Strahler, 1952; Esparza et al., 2007; Esparza et
al., 2014).

The dimension of a rooted tree t is defined as the
height of the highest perfect binary tree1 we can
obtain from t by pruning subtrees and contracting
edges.2

A result of (Flajolet et al., 1979) shows that
the dimension characterizes the minimal amount
of memory that is required to traverse a tree. So,
intuitively, parse trees of high dimension should
indicate an unnaturally complex sentence structure
requiring the reader to remember too many incom-
plete dependent clauses in the course of reading
the sentence. Section 2 corroborates experimen-
tally that, indeed, parse trees of natural language
have small dimension.

Since dimension is a meaningful measure of
complexity and parse trees have low dimension,
we conjectured that annotating nonterminals with
the dimension of the subtree rooted at them could
improve parsing accuracy (see Fig. 1 for an il-
lustration). Section 5 shows that this is indeed
the case: The combination of the dimension an-
notation and the well known parent annotation
technique leads to absolute improvements of more
than 5% F1, 7–8% leaf-ancestor score, and a rela-
tive reduction of the number of crossing brackets
of over 25% compared to a plain PCFG baseline.
At the same time, quite surprisingly, parsing speed
more than doubles.

It could be argued that any other graph theo-
retical measure for the complexity of a tree could
lead to similar results. For this reason we have
also considered annotating nonterminals with the
height of the subtree rooted at them (the height is
the most basic measure related to trees). Our ex-
periments show that height annotation is also ben-
eficial but further refinement via parent annotation
yields less improvements than for the dimension
annotation.

1A binary tree of height h is perfect if it has 2h leaves.
2In other words, the dimension of t is the height of the

highest perfect binary tree which is a minor of t.
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Figure 1: Dimension annotation of a tree from TüBa-D/Z: the label of every nonterminal is decorated
with the dimension of the subtree rooted at it. The dimension of a parent node is the maximum of the
dimensions of its children (plus one if this maximum is attained at least twice).

In the following two sections, we present more
details on the use of tree dimension in NLP, con-
tinue with describing our experiments (Section 4)
together with their results (Section 5), and finally
conclude with some ideas for further improve-
ments.

2 Tree Dimension of Natural Languages

We were able to validate our conjecture that parse
trees of natural language should typically have
small dimension on several treebanks for a variety
of languages (cf. Table 1). The average dimension
of parse trees varies only from 1.7 to 2.4 over all
languages and the maximum dimension we ever
encountered is 4.

3 Annotation Methods

In this paper we compare three different annota-
tion methods: dimension, height, and parent an-
notation. The dimension (resp. height) annotation
refine a given nonterminal X by annotating it with
the dimension (resp. height) of the subtree rooted
at it. A standard technique in unlexicalized pars-
ing we compare against is vertical markovization,
i.e. to refine nonterminals by annotating them with
their parent (or grandparent) nonterminal (Klein
and Manning, 2003).

Let us remark that we focus here only on meth-
ods to split nonterminals and leave merging strate-
gies for further investigations. Amongst them hor-
izontal markovization (Klein and Manning, 2003)
is especially valuable for battling sparsity and can

Language Average Maximum
Basque 2.12 3
English 2.38 4
French 2.29 4
German(1) 1.94 4
German(2) 2.13 4
Hebrew 2.44 4
Hungarian 2.11 4
Korean 2.18 4
Polish 1.68 3
Swedish 1.83 4

Table 1: Average and maximum dimension for
several treebanks of natural languages. Sources:
English – 10% sample from the Penn treebank
shipped with python nltk (Loper and Bird, 2002),
German(2) – release 8 of the TüBa-D/Z treebank
(Telljohann et al., 2003), the remaining treebanks
are taken from the SPMRL shared task dataset
(Seddah et al., 2013).

lead to more compact and often more accurate
PCFGs.

4 Methodology

4.1 Experimental Setup
We use release 8 of the TüBa-D/Z treebank
(Telljohann et al., 2003) as dataset. To com-
bine easy prototyping and data exploration with
efficient parsing and standard evaluation methods
we used python nltk (Loper and Bird, 2002) to-
gether with the Stanford parser (Klein and Man-



ning, 2003). For evaluation we used the built in
evalb, leaf-ancestor, and crossing brackets metrics
provided by the Stanford parser. Is is important to
note that all our experiments use gold tags from
the treebank3 which had the pleasant side effect
that no parse failures were encountered. All exper-
iments were carried out on a machine with an Intel
i7 2.7 GHz CPU and 8 GB RAM and took about
one week to run4. Our scripts and raw data can be
obtained freely from https://github.com/
mschlund/nlp-newton.

4.2 Randomization

We decided to sample our training- and test-data
randomly from the treebank several times inde-
pendently for each annotation strategy under test.
This enables us to give more precise estimations
of parsing accuracy (Section 5) and to assess their
variability (cf. Figure 2). For each sample size N
from {5k, 10k, 20k, . . . , 70k} we selected a ran-
dom sample of size N from the set of all 75408
trees in the treebank. The first 90% of this sample
was used as training set and the remaining 10% as
test set. We then evaluated each of our six anno-
tation methods on this same training/test set. The
whole process was repeated ten times each, yield-
ing 480 experiments altogether. For each experi-
ment we evaluated parsing accuracy according to
three evaluation measures as well as the parsing
speed and the size of the derived grammar. Each
of these numbers was then averaged over the ten
random trials. To ensure perfect reproducibility
we saved the seeds we used to seed the random
generator.

4.3 Evaluation Measures

To thoroughly assess the performance of our anno-
tation schemes we not only report the usual con-
stituency measures (labeled precision/recall/F1

and crossing brackets) proposed originally by
(Abney et al., 1991) but also calculate leaf-
ancestor scores (LA) proposed by (Sampson,
2000) since it has been argued that LA-scores de-
scribe the informal notion of a “good” parse better
than the usual constituency measures. This is es-
pecially relevant for comparing parsing accuracy
over different treebanks (Rehbein and Van Gen-
abith, 2007a; Rehbein and van Genabith, 2007b).

3This is unrealistic of course, but is used for comparability
with other work like (Rafferty and Manning, 2008).

4We only used a single core, since memory turned out to
be the main bottleneck.

5 Results

Our results are collected in Table 5. We measured
a baseline accuracy of 84.8% labeled F1-score
for a plain PCFG without any annotations, lower
than the 88% reported by (Rafferty and Manning,
2008) on a previous release of the TüBa-D/Z tree-
bank (comprising only 20k sentences of length at
most 40). However, the absolute improvements
we found using annotations are consistent with
their work, e.g. our experiments show an abso-
lute increase of 3.4% when using parent annota-
tion while (Rafferty and Manning, 2008) report a
3.1% increase. We suspect that the differences are
largely suspect to the different data: considering
sentences up to length 40, our experiments yield
scores that are 1% higher. To explain all remain-
ing differences we plan to replicate their setup.

5.1 Impact of Annotations

All three annotation methods (w.r.t. parent, dimen-
sion, height which we will abbreviate by PA, DA,
HA for convenience) lead to comparable improve-
ments w.r.t. constituency measures with small ad-
vantages for the two structural annotations. LA-
evaluation on the other hand shows that HA and
DA have a clear advantage of 3% over PA.

Quite surprisingly, both DA and HA can be
fruitfully combined with parent annotation im-
proving F1 further by almost 2% and LA-metrics
by 1–2% as well. However, the height+parent
combination cannot compete with the dimen-
sion+parent method. One reason for this might be
the significant increase in grammar size and result-
ing data-sparseness problems, although our learn-
ing curves (cf. Figure 2) suggest that lack of train-
ing data is not an issue.

Altogether, the DA+PA combination is the most
precise one w.r.t. all metrics. It provides abso-
lute increases of 5.6% labeled F1 and 7.4–8.4%
LA-score and offers a relative reduction of cross-
ing brackets by 27%. This is especially relevant
since according to (Manning and Schütze, 1999) a
high number of crossing brackets is often consid-
ered “particularly dire”. Finally, this combination
leads to a 60% increase in the number of exactly
parsed sentences, significantly more than for the
other methods.

5.2 Parsing Speed

We further study to what extent the three heuris-
tics increase the size of the grammar and the time



evalb Leaf-Ancestor Crossing brackets
Annotation |G| Speed ± stderr F1 exact LA (s) LA (c) # CB zero CB
Plain 21009 1.74± 0.04 84.8 24.4 84.0 79.7 1.17 58.5
Parent 34192 1.07± 0.01 88.2 31.8 86.6 82.9 1.07 61.8
Height 76096 3.06± 0.03 88.7 33.7 89.8 86.2 0.93 65.2
Height+parent 130827 2.20± 0.04 89.2 36.8 90.8 87.0 0.95 65.4
Dim 49798 6.02± 0.10 88.5 31.8 89.7 86.1 0.90 64.9
Dim+parent 84947 4.04± 0.07 90.4 39.1 91.4 88.1 0.85 67.2

Table 2: Average grammar sizes, parsing speed, and parsing accuracies according to various metrics (for
the 70k samples only, i.e. on 7000 test trees). All numbers are averaged over 10 independent random
samples. |G| denotes the number of rules in the grammar, parsing speed is measured in sentences per
second. LA scores are reported as sentence-level (s) and corpus-level (c) averages, respectively. All
accuracies reported in % (except # CB – the average number of crossing brackets per sentence).
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Figure 2: Learning curves for different annotation
strategies. Average F1 with standard deviation for
random samples of various sizes (10 independent
samples each).

needed to parse a sentence. As expected all three
annotations increase the size of the grammar con-
siderably (PA by 60%, DA by almost 140%, and
HA by 260%). Surprisingly, our experiments did
not show a direct influence of the grammar size
on the average time needed to parse a tree: While
parsing speed for PA drops by about 40%, DA and
HA actually lead to significant speedups over the
baseline (factor 3.4 for DA and 1.7 for HA). For
the combination of dimension and parent annota-
tion the gain in speed is less pronounced but still
a factor of 2.3. One possible explanation is the
fact that (for a grammar in CNF) a nonterminal of
dimension d can only be produced either by com-
bining one of dimension d with one of dimension
strictly less than d or by two of dimension exactly
d− 1. Since the dimensions involved are typically
very small (cf. Table 1) this may restrict the search
space significantly.

6 Discussion

We have described a new and simple yet effec-
tive annotation strategy to split nonterminals based
on the purely graph-theoretic concept of tree di-
mension. We show that annotating nonterminals
with either their dimension or their height gives
accuracies that lie beyond parent annotation. Fur-
thermore dimension and parent annotation in com-
bination yield even higher accuracies (90.4% la-
beled F1 and 91.4% LA-score on a sentence-
level). Lastly, one of the most surprising findings
is that, despite considerable growth of grammar
size, parsing is significantly faster.

6.1 Future Work

We are currently experimenting with other tree-
banks like the SPMRL dataset (Seddah et al.,
2013) which contains various “morphologically
rich” languages (cf. Table 1). Although we cannot
possibly expect to match the accuracies achieved
by highly optimized lexicalized parsers with our
simple annotation strategy alone, we are confident
that our results transfer to other languages. A logi-
cal next step is to integrate our annotation methods
into current parsing frameworks.

Since our annotations increase the size of
the grammar significantly, horizontal markoviza-
tion and more careful, selective dimension/height-
splits (i.e. only carry out “profitable” splits) seem
promising to avoid problems of data-sparsity – in
particular if one wants to use further state-splitting
techniques that are more linguistically motivated.

Finally, we are interested in understanding the
parsing speedup incurred by dimension/height-
annotations and to provide a theoretical analysis.
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Heike Zinsmeister, and Kathrin Beck. 2003. Style-
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