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Abstract

The well-known Hindley-Milner type system has several shortcomings. By presenting a
new type system together with a type inference algorithm we try to address some of these
shortcomings without losing the advantages of Hindley-Milner.

The type system uses constructor sets as types and therefore allows an easy approach to
subtyping. Furthermore, by extending the basic function constructor, it allows functions to
have multiple resulting types depending on the values of the arguments.
The type inference algorithm is split up in three phases: First automata construction to

model the correct branching behavior. Then collecting the types of each expression and
finally creating a set of implications between the different types. These implications allow
to follow the flow of types through the program.

Additional to the type system, a process-based concurrent language to work with the type
system is designed and presented in syntax and semantics.
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1. Introduction

The work of Hindley [Hin69], Milner [Mil78], Damas [DM82] and Mycroft [Myc84] laid the
foundations for the modern type systems used in almost all current programming languages.
Unfortunately, the type system these authors describe has several short-comings: Some

constructs of a language might be semantically legal but cannot be typed without the
annotation of explicit type information. It indeed does not allow the static inference of the
most general type of a function in isolation from other functions in the current program
[Wel02]. This, amongst other consequences, leads to problems in regard to useful error
messages [Chi01].
Additionally, the Hindley-Milner system requires the resulting type of a function to be

independent from the value of an argument. Hence it is impossible to construct and type
a function, which evaluates to a type α in case it receives some value A and to type β in
all other cases. This restriction might be seen as an obstacle when modeling programmatic
functions as processes rather than mathematical functions. Such a process receives messages
and behaves according to those messages, like for example a process sum, that sums up
all integers sent to it until it receives a special token (here: A) that makes it return the
calculated sum:

sum’ acc x = x | A -> acc -- type: Int

| _ -> sum’ (acc + x) -- type: (Int ->)* A -> Int

sum = sum’ 0

Here it is desired to allow type safety on the one hand, but leaving the corset that the
Hindley-Milner system imposes1 on the other hand.

In this thesis we will develop a type system that tries to tackle these problems: It defines
types as a set of constructors, where the function type does not stand special and is handled
as a constructor, too. Therefore it is possible for a single function to have a type that is
a set of function constructors. Additionally, the function constructors were extended to
also hold the pattern the argument has to match. Hence a function constructor x A−−→ y

expects x to match the pattern A and thus is different from the function x B−−→ y. Now,
1Wrapping the resulting types in explicit choice datatypes like Either in Haskell can only be seen as some
sort of workaround and not as a general solution.
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1. Introduction

it is possible to have the behavior of result types depending on the argument’s value as
described beforehand.

The other important point, namely modularity, is resolved by using an approach to type
inference, where the control flow and the flow of types is modeled. This is done as a step
for each function in isolation and only at the time all modules are connected (linking) the
inter-function flows are evaluated and inferred.

There exists a further weakness: The Hindley-Milner system does not allow polymorphic
functions as first-class objects and thus disallows passing polymorphic functions as arguments.
This, for instance, leads to type errors for the following Haskell [PJ03] snippet:

let f x = (x 1, x ’a’)

in f id

This weakness may or may not yet be removed by the type system presented in this work –
it depends on the definition of polymorphicy (cf. Sec. 4.1). Small modifications of the type
inference algorithms should allow the use with a type system containing type variables. Such
a type system is without oppositon polymorphic.
This thesis is organized as follows: In Chapter 2, we give a short introduction into type

systems and semantics. We then present a language this type system has been designed
for in Chapter 3, and finally, in Chapter 4, we describe its type inference with its different
phases of automata construction, constructor collection and implication generation.
This thesis will not present any proofs of soundness or completeness of the provided

algorithms, but instead will concentrate on the design of the language, its semantics, and
the definition of the type inference. As the influence between these three parts is mutual,
the language itself is regarded as part of the core of this work.

2



2. Background

In this chapter we will give a short overview about the backgrounds of programming
languages, their semantics and type systems.

2.1. Programming languages

Programming languages can be classified by different paradigms. One is whether they
work in an imperative, functional or logical fashion. Imperative languages like C [KR88] or
Java [GJSB05] are characerized by algorithms that “describe computation in terms of state-
transformation operations” (cf. [Rey98]). These languages make excessive use of memory
cells, which are updated destructively during the algorithms. Functional languages like
SML [MTHM97] or Haskell [PJ03] on the other hand express the program as a mathematical
function, which is evaluated. Variables are immutable here. The third species, logical
languages like Prolog [SS86], see their programs as a series of logical formulas. Results for
these programs are created by finding solutions to the set of formulas.
From these three, the imperative and the functional approach are the most common

ones, but functional languages are preferred in academia due to their tight coupling to
mathematics and the avoidance of side-effects. This allows for an easier theoretical reasoning
about the properties of a language.

Another property to differentiate programming languages is their ability for concurrency:
Non-concurrent languages only allow a single thread of execution (serial computation),
though they might have techniques to have multiple programs running in parallel and
communicating with each other. Concurrent languages on the other hand allow to run
multiple threads either explicitly or implicitly inside one program.

2.2. Operational Semantics

The syntax of a language does not describe the correct behavior of a program. So there is
the need to formalize the way a program expression behaves. This is done by strictly laying
down the semantics of that language.

3



2. Background

These semantics can be represented in different terms. One of them is the style of
operational semantics, which specifies the behavior of the language in terms of states. The
current configuration of the states is determined by the syntax of the language: For each
possible syntactic term in the language, a rule is created that shows under which premisses
a configuration is transformed into another one.

There exist two different kinds of operational semantics: Small-step operational semantics
or structural operational semantics were first introduced by Plotkin [Plo81] and model the
behavior of a term step-by-step. That is, given a current command c in state s, they describe
under which circumstances this can be evaluated into the command c′ with state s′.

On the other hand, there is also big-step operation semantics or natural semantics [Kah87],
which only describe the final state that is reached by a given command.

Besides the operational semantics, the semantics might also be specified using denotional
semantics [SS71], where a more abstract view is taken by stating the meaning of a term
as some mathematical object. These allow a complete abstraction from the program itself
into some mathematical domain and therefore to reason in this domain. Unfortunately,
this entails some prior work in finding the mathematical domain to be used. Quoting
Tofte [Tof88],

It seems a bit unfortunate that we should have to understand domain theory to
be able to investigate whether a type inference system admits faulty programs.

we prefer the aforementioned small-step operational semantics approach.

2.3. Type Systems

A type system is a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of values they
compute.

This definition is given by Pierce in [Pie02] and essentially condenses the reason for the
existance of type systems: To provide means to catch errors and generally assert that the
program will not fail.
In typed languages, each expression in the program obtains a type, which describes the

set of values this expression may result in. The type system then consists of a set of rules
which describe how types have to match.

A main difference between type systems is whether they are statically or dynamically typed.
The first one assigns types at compile time, while the latter does so during runtime. Another
difference lies between monomorphic and polymorphic type systems. In monomorphic

4
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systems, expressions have exactly one type, while they have multiple types in polymorphicly
typed languages (see the end of Section 4.1 for a discussion on different definitions of
polymorphicy).
Further, type systems can be grouped by whether they use explicit or implicit typing

(or a mixture of both): Explicit typing requests, that the programmer annotates the type
information to each variable and function inside the program. This information is then used
to check whether the program is type safe. In implicitly typed programs, the programmer
omits all type information and the type system has to infer it.

Type systems are a broad research area and therefore we do not intend to give an overview
about the different kinds and abilities of those systems. Instead we refer to Cardelli [Car97],
who gives an extensive overview and to Pierce’s book [Pie02], which provides a comprehensive
coverage of this topic.

2.4. Related Work

The approach taken in this thesis seems to be a novel one. We were not able to find
publications which go a similar way. Nevertheless, the work by Marlow and Wadler [MW97]
was used as an inspiration during the development, but at the current shape, the two systems
differ largely. So does their system omit first class functions and interprocess communications
– both two essential requirements for our work.

The idea of adding constraints to types is not a new one, and has already been described
for example by [XP99] and [SP07]. But both approaches differentiate between data-types
and types, i.e. a certain type is described by different data constructors (e.g. the type list by
the two constructors Nil and Cons) and the constraints are added to these data constructors.
This is not applicable for our approach where types are defined as sets of constructors and
the constraints are part of the whole type.

5
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3. Grips – the language

The type system, which provides the largest part of this thesis, utilizies new concepts. To use
these concepts in a practical environment and not only theoretically on paper, we created a
language to go with this system. This language, called “Grips”, will be used throughout the
coming chapters to describe the features of the type system. In this chapter, we are going
to present the language itself: we describe the design, syntax and semantics of Grips.

3.1. Language design and syntax

As described in section 2.1, there are different classes of paradigms for programming languages.
It was outlined there, that the class of functional languages has the property of being simple
to reason about. Therefore Grips is designed to be of functional nature. Moreover, with
the rise of current multiprocessor systems and the existance and usage of large networks,
concurrency has become an important property and hence Grips will also be concurrent.
These properties make it similar to Erlang [Arm03], but not the same: For instance Erlang
has explicit spawning of processes, while this is an implicit action in Grips. Also Erlang
has advanced features like replacing program modules at runtime, which are not part of our
language.
The raison d’être of this language is, as was mentioned, to have an application for the

type inference algorithm of this thesis. Therefore this language is implicitly typed and has
no syntax for specifying type information.
The functionality and syntax of Grips will be presented in four steps: Basic lambda

calculus, constructors and patterns, processes, and finally futures. The complete syntax can
be found in appendix A. This syntax does implement only the core functionality, and more
complex constructs, which are built using these core elements, are added as syntactic sugar.
This syntactic sugar will be used throughout the code examples where appropriate and its
rules are also outlined in the aforementioned appendix.

3.1.1. Lambda calculus

We will describe the functionality of this language first without the aspect of concurrency,
as this is not needed for the general understanding: From the basic building blocks it is

7



3. Grips – the language

a simple lambda-calculus with let-bindings (see [Bar90] for detailed information), as can
be found in most functional languages like Haskell or SML. This is enriched with another
common feature – pattern matching – to allow branching depending on the content of a
variable. Together, these elements give rise to the following part of the core syntax, which
will be completed during the coming sections:

expr ::= skip (Empty expression)

| end (Empty expression #2)

| var (Variable call)

| λ var. expr (Abstraction)

| expr1 expr2 (Application)

| let var = expr1 in expr2 (Let-Binding)

| letrec var = expr1 in expr2 (Recursive Let-Binding)

| ?var |m1 var1@varpat1 → expr1

...

|mn varn@varpatn → exprn

; expr (Pattern Matching)

Here, var is any variable name and varpat is a pattern with variables and will be explained
during the next section.

The two different empty expressions – skip and end – behave the same, except when used
inside pattern matching. This difference and the detailed semantics of the pattern matching
will be also explained in coming sections.

We further define the sets E and V ⊂ E to be the sets of expressions and variables,
respectively. Here, E are all expressions that adhere to the grammar given with expr, while
V is defined via var.
Also all expressions directly at top-level inside a source file are seen as being in global

scope, i.e. they are visible everywhere. Different source files are at the moment seen as one
global scope with a flat namespace. Note though, that the Grips core language does not
define syntax for including or importing other modules.

3.1.2. Constructors and patterns

With the constructs above, there is no way of defining data. To achieve this task, Grips uses
constructors of the form C expr1 . . . exprn. These constructors are the only way to work on
data. Therefore also basic datatypes like integers need to be wrapped inside a constructor
(e.g. Int 2), where the argument needs to be handled by a given special set of functions.

8



3.1. Language design and syntax

Otherwise it would not be possible to describe a function plus :: Int→ Int→ Int, as the
plain integer wrapped in the Int constructor cannot be retrieved. This is a known approach
and is for example also used in Python [VR03, pyt11] and furthermore includes the definition
of certain functions outside the language’s own semantics.
There is currently also no syntax to describe constructors, i.e. specify their arity and

types of arguments. Instead they are simply used throughout the program and the compiler
asserts that all uses of a certain constructor have the same number and types of arguments.
Hence it is not possible for constructors to be partially applied. It is a conservative extension
to the language to add these definitions, but they were omitted to keep the core language
small.
With this constructor notation the syntax gets extended to:

expr ::= · · · the rules defined above

| C expr1 . . . exprn (Constructor, n ≥ 0)

pat ::= _ (Matches everything)

| C pat1 . . . patn (Matches constructor C and tests all arguments)

varpat ::= var@_

| var@C varpat1 . . . varpatn

As can be seen, the difference between pat and varpat only lies in the additional variables,
which are included in varpat. These variables are used to bind the match of the corresponding
subpattern. An example for this will be given in a moment.

We further define a relation p1 v p2 operating on patterns and determining whether pattern
p1 is included (i.e. more specific) in p2. It is obvious, that all patterns are more specific than
_. Also note, that patterns are only comparable when using the same constructors. Hence
A and B are incomparable as are A _ C and A _ D. This relation can be defined via the
set of constructors a pattern represents. So if JpK denotes the set of all constructors which
are represented by p, we define p1 v p2 ⇐⇒ Jp1K ⊆ Jp2K.
From this follows that there are patterns, which do use the same constructors (in the

pattern) but are also incomparable. This happens when the intersection of the sets of
constructors is not empty but neither one is a subset of the other. An example is p1 = A _ B

and p2 = A B _, where A B B is represented by both, but A C B only by p1 and A B C

only by p2.
Using this basic syntax it is already possible to write normal functional programs as all the

9



3. Grips – the language

important parts are in place. So for example one can implement the fibonacci function1:

letrec fib = \x -> x | Int 0 -> Int 0

| Int 1 -> Int 1

| Int _ -> fib (x - Int 1) + fib (x - Int 2)

in fib (Int 20)

This example also shows the usage of patterns for the match statement: A pattern is a
constructor or the underscore, where constructors only match themselves and underscore
matches everything. This applies recursively to all the arguments of the constructor pattern.

The variables which are shown in the syntax can be used to reference the matched part of
the pattern. As a showcase, the fibonacci function is modified to use variables:

letrec fib = \x -> x | Int (y @ 0) -> Int y

| Int (y @ 1) -> Int y

| y @ (Int _) -> fib (y - Int 1) + fib (y - Int 2)

in fib (Int 20)

It is obvious that when matching against a single variable, the outer-most variable in the
pattern is equal to the matched one, as can be seen in the last case of this example.

3.1.3. Processes

The basic approach to concurrency in Grips are multiple processes running in parallel while
the processes themselves are of a sequential nature. These processes only communicate with
each other using messages and do not share variables besides some read-only environment.
This kind of concurrency was first described by Hoare in [Hoa78] for his first revision of the
language CSP (Concurrent Sequential Processes) and later revised into another language
with the same name (see [Ros98] for a discussion on the concepts and history).

The general description of a process in CSP is that a process P of the form a→ P ′ waits
until it receives an a after which it behaves like the process P ′. This is now mapped to
lambda-expressions in Grips: The expression λa. t is a process which waits until it receives
the message a. When this has happened, it behaves like t. The syntactic element for
sending messages is the function application. For the ease of programming and to comply
with the mathematical foundation of a “function”, sending messages does not alter the
receiving process, but creates a new state of this process in which the message has been
already received. Now the new state and the original process co-exist. Altering the receiving
process itself would lead to a situation, where multiple uses of a process would yield different

1Given a function “-” working on integers has already been defined.
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results even with the same arguments. This violates one major mathematical assumption on
functions.
To illustrate this concept, we use the following example:

let f = \x -> \y -> skip

in let x = f A

Here f is a handle to a process which waits for two messages. After receiving them it
behaves like the empty process. Thus the application f A sends a message to the process f
is pointing to, and hence x now is a handle to a process which waits for one more message
before behaving like the empty process.
This notion of handles is not restricted to lambda expressions, but in fact every variable

name is a handle to some process. In case this process is empty, a lambda expression or a
constructor, it is fully evaluated and may receive messages, in all other cases it is subject to
evaluation by the rules laid out in Section 3.2.

This behavior of variables being labels can be found in other languages, too. An example
is C, where a variable is a label for a memory cell and assigning a value to this variable
stores this value in the referred memory cell. And also similar to these languages, the
differentiation between a handle and the process it is pointing to is not always made explicit.
So we will say “f is a process” instead of “f is a handle which points to a process”, quite as
one uses to say “x is 1” instead of “x points to a memory cell which contains the integer 1”.
The presented simple theory of processes can be enriched by choice, which means that

a process behaves differently depending on the message it receives. In CSP it is written
a→ P1 | b→ P2, stating that the process behaves like P1 if an a is received and as P2 if a b
is sent2. The counterpart in Grips is the match-statement

?r |m1 y1@p1 → t1

...

|mn yn@pn → tn

 ; t

Here, depending on which pattern pi matches r, the corresponding branch ti is chosen. If the
last statement in ti is a skip3, then the evaluation continues after ti with the fall-through
part t. This is also the difference between the two no-op statements end and skip, as end

ends the process when reached.
Using this notion of processes, it is possible to create functions which accept an infinite

amount of messages. This can be implemented by a process that does a final recursive call.
2Sending messages different from a or b is not allowed and not handled explicitly.
3Note that a skip is sometimes added implicitly as described in Appendix A.2.
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3.1.4. Futures

The Grips constructs presented so far only allow messages in one direction: It is not possible
for a process to send a message back to the process it received a message from. This ability
is added now by the construct of futures. These are variables4, which are marked as being
filled eventually with a value (refer to [Hal85] for an introduction). This means that upon
the creation of a future one holds a handle to an eventually filled value and can pass this
handle around while the value is computed in parallel. If one wants to use the value, the
content of the handle is examined: Either it is filled already and one uses the contained
value, or it is still empty and the current process blocks until the future is filled with a value.

Adding the concept of futures requires the following additions to the syntax:

expr ::= · · · the rules defined above

| var1, var2 ← expr1 ; expr2 (Future sending)

| !var (Wait)

| bind var = expr1 ; expr1 (Future binding)

Adding the bind construct additionally to the existing let and letrec is done to easily
differentiate syntacticly between future bindings and variable creation. This differentiation
is especially important for the type inference as presented in Chapter 4.
The two vars in the construct for sending futures are the name of the future and the

process expr1 becomes after sending the future, respectively. To illustrate this concept, we
will show a short example:

letrec f = \x -> \y -> bind x = y

in r, f’ <- f

f’ (Int 10)

Here, after the second line, r is an unbound future: It has been send to f but not yet
been bound to any value. And f ′ is the process λ y. bindx = y ; skip, which is the part of
f after receiving x, but with x contained in the local environment of f ′. And finally, after
the last line, r is bound to Int 10.

Using these futures it is now possible to compute values concurrently. Hence we enhance
our fibonacci example from above such that the fib function now does not evaluate to a
value, but instead receives a future and fills this with the result:

4Which is equivalent to processes as outlined in the previous section.

12



3.2. Operational Semantics

letrec fib = \x -> \res -> x | Int 0 -> bind res = Int 0

| Int 1 -> bind res = Int 1

| Int _ -> fib_1 <- fib (x - Int 1)

fib_2 <- fib (x - Int 2)

bind res = (! fib_1) + (! fib_2)

in r <- fib 20

-- do something completely unrelated here

-- ...

! r

The call r ← fib 20 immediately returns, with the future r as the result. The result of
fib 20 is computed in parallel and the current thread of execution does not care about it
until the point where the value of r is retrieved.
A special case with respect to futures are constructors: They behave implicitly like a

process which awaits a future that is filled with the constructor itself. Thereafter the
constructor behaves like the empty process. Hence the type of a constructor A is &A→ ε,
where &A stands for “a future of type A.”

When used in actual code, this looks like:

let x = A 2 in

y, x’ <- x

-- now y is equal in behavior to x

x’’ <- x’ -- this is not allowed, as x’ is the empty process

Please note that the concept of futures leaves the world of CSP, as CSP does not allow
shared state between processes – and a future is such a shared state. It even is possible to
send the same future to different processes. This can for example be achieved by sending a
future to the identity function, where you gain an unbound future that can be passed on
by normal function application to other processes. As a possible use-case, these different
processes may be controlled by other messages to determine which of them actually binds the
future (as multiple binding is not legal) and which of them just uses it. A larger commented
example program is given in Fig. 3.1.

3.2. Operational Semantics

While the previous section dealt with the syntax of Grips, this section will specify the
behavior of a Grips program. This will be done by giving a small-step operational semantics
(cf. Section 2.2 for an introduction to this topic).

13
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-- f receives a future
-- if the next message is
-- A: x is bound to True
-- B: the process evaluates to the content of x
-- everything else: the message is ignored
letrec f = \x -> \y -> y | A -> bind x = True

| B -> !x
| _ -> f x

in
-- the identity function
let id = \x -> x in
r <- id -- r is now an unbound future
let g = f r in
let h = f r in
-- by assigning to a variable the application is evaluated
-- in a separate process
let g’ = g A in
h C B -- C is ignored
-- at this point the current process has evaluated to True

Figure 3.1.: Example, showing multiple future passing

Notation

We present the semantics in terms of SOS-style inference rules [Plo81], where each state is
a set of processes and “−→⊆ S × S” is the evaluation relation, whereby S denotes the set
of states. Thus t −→ t′ expresses “the state t is evaluated to the state t′”. These rules use
certain meta-variables, which are:

• E: the set of all expressions (defined in the previous sections)

• V: the set of all variables (defined in in Sec. 3.1.1)

• P: the set of all processes

• x, y, r, f, g, h ∈ V: different variable names. r is used for futures, f, g and h
for functions and processes, and x, y are used for variables without a certain
specification.

• e, t ∈ E: expressions

• >: the value of an uninitialized future

Further, with σ̂(t) we denote a substitution which replaces all bound variables in t by
fresh ones.
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3.2. Operational Semantics

The current state of an evaluation of a Grips program consists of a set of processes.
Each of the processes is evaluated separately and the order of evaluation of the processes is
nondeterministic. Hence each of the following rules describes one step of evaluation of one
particular process, though the evaluation might create new processes. All other processes
not used in the rule are contained in the mapping Π ⊆ V× P, which maps handles to their
respective process. Thus the rule

premises

Π | h : t −→ Π | h : t′ | h′ : t′′

has to be read as: “Given certain premises, any process t is evaluated to t′ and a new process
t′′ is created under a (new)5 handle h′.”
In Section 3.1.3 it has already been stated that a process can either be fully evaluated

or be subject to evaluation. Whenever a rule uses another process, it is assumed that this
process is fully evaluated, which is the case, if it is either empty, a lambda expression or
a constructor. If this does not hold (i.e. the process used is not fully evaluated), the rule
cannot be applied.
If there is no rule which can be applied for any handle, the program is stuck, which

indicates an error.

Semantic rules

The difference between end and skip only shows in match statements. Hence if the whole
process only contains an end, it behaves the same as the empty process.

Π | h : end −→ Π | h : skip
(E-End)

Π(f) = tf Π(f) 6= >

Π | h : f −→ Π | h : tf
(E-SingleHandle)

fresh x′i
Π | h : C x1 . . . ei . . . en −→ Π | h : C x1 . . . x

′
i . . . en | x′i : ei

(E-Construct)

The rule E-Construct states that expressions in arguments to a constructor are evaluated
to handles, until the constructor only holds handles.
The next rule describes the behavior for dereferencing futures: Given that the variable

5Depends on the context.
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dereferenced is filled with a value (keep in mind that & expresses “future” which differentiates
it from normal processes), this value is copied into a fresh process, whose handle the current
process evaluates to. A rule for an unfilled future (i.e. the content of the future is >) does
not exist – as long as the future is empty no rule can be applied to it.

Π(r) = &e fresh h′

Π | h : !r −→ Π | h : h′ | h′ : e
(E-WaitRead)

The following rules for the different kinds of binding are similar to those of other functional
languages. Due to the global namespace of handles, it must be guaranteed that each new
variable has a name different from existing ones. Otherwise the old process of the variable
would be overwritten by the new definition. To avoid these clashes of variable names, the
variable being bound to is replaced by a fresh one. The only difference for the recursive case
is that this substitution is also done for the expression which is bound, because the newly
created variable might be used there.

fresh x′

Π | h : letx = e in t −→ Π | h : t[x′/x] | x′ : e
(E-Let)

fresh f ′

Π | h : letrec f = tf in t −→ Π | h : t[f ′/f ] | f ′ : tf [f ′/f ]
(E-LetRec)

When it comes to future binding, this renaming is not possible, as the variable being
bound to, has to match the name of the future which has been sent. The reason is the
reliance on names to find the content of the handle in the global process space Π: If a fresh
name would be used, the connection to the received future would be lost and hence the
sending process would never receive the content.

Furthermore, due to the & a future is syntacticly different from a normal process and
hence these rules would not match the expression put into the future. But this prevents
concurrent evaluation of the future and therefore instead of saving the expression itself,
another handle is created which holds the expression and can evaluate it in parallel. The
future only holds this handle.

Π(r) = > fresh r′

Π | h : bind r = e ; t −→ Π | h : t | r : &r′ | r′ : e
(E-Bind)

The following two rules deal with function application: They ensure, that function
and arguments are put into handles. This way, as all processes are evaluated in parallel
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independent of their usage, the argument evaluation is strict. Further the evaluation of the
arguments is stated to happen from left to right.

fresh f

Π | h : e1 e2 −→ Π | h : f e2 | f : e1
(E-ApplyStep)

fresh g

Π | h : f e −→ Π | h : f g | g : e
(E-ApplyStepArgument)

After this replacement has been done, the body of the called function is copied into the
current process. With the use of the σ̂ substitution, all bound variables in the body get
replaced by fresh names (e.g. in letx = y inx, the variable x gets substituted, but not y).
This avoids name clashes as variables in the body may have the same name as variables in
the context of the current process.

Π(f) = λx. t g ∈ dom(Π)

Π | h : f g −→ Π | h : σ̂(t)[g/x]
(E-Apply)

It has been described in the section introducing futures (Sec. 3.1.4), that futures can be
sent to constructors. This is a special case of application and the next rule implements that
part.

Π(f) = C x1 . . . xn Π(r) = >

Π | h : f r −→ Π | h : skip | r : &C x1 . . . xn
(E-ApplyConst)

The previous rule already showed that sending futures is a normal application with the
additional constraint, that the message is >. Consequently the semantics of the future-
sending-expression are exactly that: Creating a new handle with the >-process and apply
it.

fresh r′ fresh y′

Π | h : r, y ← f ; t −→ Π | h : t[r′/r, y′/y] | r′ : > | y′ : fr′
(E-SendFuture)

Now follows the slightly more complicated construct of the match: The core construct
only matches against a future6. Further it contains a fall-through expression, which is only
reached by those branches ending in skip. This has been described in Section 3.1.3 and will
be handled by the function s : E× E→ E, whose rules are given in detail in Fig. 3.3. This
function receives a branch and the fall-through expression and creates the final expression
to evaluate by replacing a final occurring skip by the fall-through expression.

6This is the difference between ?r | . . . and r | . . ., the latter being just syntactic sugar. The exact rules are
laid out in appendix A.2 on page 54.
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createprocs(y@(x@A z@_), A B) = ({x′ : A, z′ : B, y′ : A B}, [z′/z, y′/y, x′/x])
createprocs(y@(x@A z@B), A B) = ({x′ : A, z′ : B, y′ : A B}, [z′/z, y′/y, x′/x])
createprocs(y@_, A (B C) C) = ({y′ : A (B C) C}, [y′/y])
createprocs(y@(x@A u@_ v@C), A (B C) C) =

({y′ : A (B C) C, x′ : A, u′ : B C, v′ : C}, [y′/y, x′/x, u′/u, v′/v])

Figure 3.2.: Examples of createprocs uses

The match statement is handled by two different rules: The first one handles the case,
where a match is found, the second one handles the opposite case of failure. For determining
whether a certain expression matches a pattern, these rules use the function matches, which
takes care of extracting the current pattern out of the expression (it may be needed to resolve
multiple indirections through handles) and comparing it against the given var-pattern.

Π(r) = &e matches(e, p1) Π̂, σ = createprocs(y1@p1, e)

Π | h :


?r |m1 y1@p1 → t1

...

|mn yn@pn → tn

 ; t

−→ Π | h : s(σ(t1); σ̂(t)) | Π̂

(E-MatchHandleMatch)

The function createprocs used in the previous rule creates a fresh handle for each
variable in the matched var-pattern, which points to the matched sub-pattern (creating the
set of handles Π̂). It further returns a substitution σ from the variables of the var-pattern
to their respective handle in Π̂. Some examples for this function can be found in Fig. 3.2.
This substitution then is applied to the branch statement. Thereby the values of the
matched expressions are brought into scope. Additionally the substitution σ̂ is applied to
the fall-through statement to avoid name-clashes with variables introduced in the branch.
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3.2. Operational Semantics

s(end, t) ≡ end

s(skip, t) ≡ t
s(t, skip) ≡ t

s(C x1 . . . xn, t) ≡ C x1 . . . xn

s(!x, t) ≡ !x
s(e1 e2, t) ≡ e1 e2

s(bindx = e ; t1, t2) ≡ bindx = e ; s(t1, t2)
s(let f = e in t1, t2) ≡ let f = e in s(t1, t2)

s(letrec f = e in t1, t2) ≡ letrec f = e in s(t1, t2)
s(r, f ′ ← f ; t1, t2) ≡ r, f ′ ← f ; s(t1, t2)

s(λx. t1, t2) ≡ λx′. s(t1[x′/x], t2) fresh x′

s




?r |m1 y1@p1 → t1
...

|mn yn@pn → tn

 ; tm, t

 ≡


?r |m1 y1@p1 → t1
...

|mn yn@pn → tn

 ; s(tm, t)

Figure 3.3.: Transformation rules

The following failure rule is simpler, as the non-matching case is simply discarded.

Π(r) = &e ! matches(e, p1)

Π | h :



?r |m1 y1@p1 → t1

|m2 y2@p2 → t2

...

|mn yn@pn → tn


; t

−→ Π | h :


?r |m2 y2@p2 → t2

...

|mn yn@pn → tn

 ; t

(E-MatchHandleFailure)
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4. Development of the type system

In this chapter the development of the type system will be presented and discussed. It starts
with defining the set of types used in that system. It continues with giving the description
of the construction of an automaton for the control flow in a function and then describe the
semantics for collecting the constructors which are used for any variable. Finally we are
building a system of implications which also model the flow of control, but now in a more
specified and finer way by tracking each occurrence of a constructor.
These four different chapters all have their own notation as they try to achieve different

goals by different means. Therefore it did not seem wise to give an overview of all notions
used in the upcoming sections. Instead we solely state those sets and functions utilized in
all sections.

• E: the set of expressions

• V ⊂ E: the set of variables

• T: the set of types

• P: the set of patterns as defined by Fig. 4.1. The definitions from Section 3.1.2 apply.

• M: the set of match branches

• M : M→ P: a relation mapping labels of branches of match statements to patterns.
This is used to store the complete pattern a particular branch matches.

The first four sets should be self-explanatory and E and V have moreover been defined
while introducing Grips. They are the very same sets as given in Chapter 3 . In M each
branch of a match statement is an element, and such a branch is represented as a label.
These labels can be seen in the syntax as given in the previous chapter:

?r |m _→ t

Here the label m represents the current branch.
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4. Development of the type system

pat ::= _
| cons pat1 . . . patn n ≥ 0

cons ::= [A− Z][a− zA− Z0− 9]∗

Figure 4.1.: Pattern definition

4.1. Description of the types

In difference to the well-known Hindley-Milner typing system [Hin69][Mil78] and the Damas-
Milner type inference algorithm W [DM82], the typing system presented in this thesis allows
a function to have different types for the different branches of execution – given the branching
happens on the message received last. From this follows, that the correct typing of a branch
depends on the type of the last message.
This needs to be reflected in the way types are to be defined in this system. Another

point is the content of a type: What exactly does a certain type τ stand for?
The latter point can be answered by seeing the only way data can be defined in Grips

(cf. Sec. 3.1.2) – by constructors. Advanced concepts like type-classes [WB89] are not part
of this language, which allows to have sets of constructors as a basic type. For the matter
of typing, also futures (&) and functions (→) are seen as constructors, though they do not
share the other properties of syntactic constructors as outlined in Sec. 3.1.2, which first
and foremost implies, that the inference rules of constructors are not applicable to them. A
further special “constructor” is the unit constructor (). It is used only for controlling the
flow of types insides matches as will be detailed later on in this section.
These points can be summed up by the following definition of a type τ ∈ T:

τ ::= {t1, . . . , tn}

t ::= cons τ1 . . . τn (n ≥ 0) (Constructor)

| τ1
P∈P−−−−→ τ2 (Function Type)

| &τ (Future)

| () (Unit)

The P in the definition of the function type fulfills the demand for different branch-types
depending on the sent message as described in the beginning of this section: It is a pattern,
the last message (of type τ1) has to match, so that the function returns a type τ2. So if a
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function has the type
{{A,B,C} A−−→ τ1, {A,B,C}

_−−→ τ2}

it results in type τ1 if a message A is sent, and in τ2 for all other cases.
As the reader might notice, this additional pattern might be redundant, as it could be

expressed directly in the type of the message – thus yielding

{{A} → τ1, {B,C} → τ2}

for the previous example. But this is in fact not possible, as the type of the first message is
equal to the variable representing the message inside the function body. And this variable has
to have the complete set of constructors it can represent in this function. So the additional
pattern is indeed required to allow the wanted behavior of types in branches.
Representing the branching of types inside the function type is still not sufficient, as the

branching happens at match-statements and it is thus necessary to be able to represent
this behavior already at this point. Therefore the plain τ gets extended and is annotated
with the pattern the last message must have matched. This leads to the definition of the
constrained type set τ̄ :

τ̄ ::= 〈τ1|P1 , . . . , τn|Pn〉

To enhance readability and reduce irritations the excessive usage of set braces might entail,
angle brackets were preferred. Nonetheless τ̄ is still a set and hence the ordering of types is
of no importance.

Throughout this thesis, a τ̄ in most cases is of the form 〈τ|_〉 and thus this extra abstraction
may be ignored by the reader up to the point where it will be used in more complex variants.
A last extension to this system of types is induced by the existence of the fall-through

expression inside a match-statement. For this reason it is again necessary to express the
difference in types between a branch, which further continues to the fall-through part, and
another branch which does not. Additionally, in matters of typing, the type of a branch
continues at the fall-through point. So, given the following example,

x | A -> \y -> skip

| B -> C

D

the first branch falls through and thus gets the type1 〈{_ _−−→ {D}}|A〉. In contrast, the
second branch ends directly at the C and hence gets the type 〈{C}|B〉.

1The property of constructors to implicitly await a future is omitted here for brevity.
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We achieve this behavior by adding another type to each statement leading to the complete
type expression of a syntactic construct:

τ̄i B τo

τ̄i is a constrained type as defined above, and τo is a normal type. But while τ̄i represents
the type of the whole expression, τo states whether this expression qualifies for fall-through in
a match: If it is (), fall-through does not happen, else it is the type of the last sub-expression
in the current expression. Mostly for historical reasons, they are referred to as input (τ̄i)
and output (τo) types, though τo is indeed the type that “comes out” of a branch in a match.
As types are sets and sets allow subset relations, the type system does allow subtyp-

ing [Rey98][Pie02]. Hence, if τ1 ⊆ τ2 holds, one can use τ1 in places where τ2 is expected.
This must not be confused with polymorphism, which requires that expressions can have an
“infinite family of types” [Rey98, p. 379], which is normally implemented by allowing types
to contain type variables. These can then be instantiated with different types itself. As
there is only a finite number of subsets of a type, this type system is monomorphic according
to Reynolds.
On the other hand, Cardelli defines subtyping as another form of polymorphism [CW85]

called inclusion polymorphism. Together with the parametric polymorphism, that fits the
definition of Reynolds, they both are part of universal polymorphism. Therefore we refrain
from giving an explicit statement to whether the type system of this thesis is mono- or
polymorphic.
Also it must be taken care to not create infinite types like τ = {C τ}. This is currently

not supported by the presented system.

4.2. Automata construction

In this section, an algorithm is presented that creates an automaton which will correctly
model the branching behavior of a function. Hence it is possible to see the flow of control
induced by messages.

This automaton uses the process-based notion we introduced in Section 3.1.3: It describes
what a certain process does after receiving a certain message. Therefore the nodes in this
automaton represent a process which awaits a message (i.e. a lambda expression) and the
edges are labeled with the pattern of the received message. An example is presented in
Fig. 4.3. The program which would result in such an automaton could be for example the
one shown in Fig. 4.2.
Note that such an automaton is not unique, i.e. a family of programs map to the same
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let f =
let g = \y -> y | Int 2 -> return False
in
\x -> x | A C _ -> g

| C -> g
| _ -> return True

Figure 4.2.: Example program

f

g

A C _

C

_

Int 2

_

_

Figure 4.3.: Example automaton

automaton.

4.2.1. Notation

For each global function f , we create an automaton

Af = (q0, Q, V, F,Σ, δ,Φ,Γ)

where Q, q0 ∈ Q, and F ⊆ Q have their common meaning (refer for example to [HMU00] for
an introduction in automata theory) of set of states, starting state, and set of final states,
respectively. The other parts are:

• Σ ⊆ P: the alphabet, being the set of all possible patterns.

• V : a set of virtual nodes, which are used to model calls to external functions. Virtual
nodes are represented as [g C1 . . . Cn], where g ∈ V is the function name and C1 . . . Cn

(Ci ∈ P) are the arguments. Given a virtual node v, these parts are accessed via
name v and args v, respectively. With [[g C1 . . . Cn] + Cm . . . Ck] a new virtual node
[g C1 . . . CnCm . . . Ck] is created. Note: Q ∩ V = ∅.

• δ ⊆ Q× (Σ∪ {ε})× (Q∪ V ): the transition relation. Note that it is defined differently
from the δ found in common automata definitions.
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• Φ ⊆ V×Q: a relation mapping function names to a state in the automaton

• Γ ⊆ V × 2V : a relation mapping variable names to a subset of V . This mapping
is used to hold the set of virtual nodes the application of a variable might produce.
This is needed, when a variable can point to different functions depending on runtime
behavior.

Additionally, the following parts make use of certain variables. These are

• S ⊆ Q: a set of temporary nodes. These nodes should not be reachable in the final
automaton. In this thesis, they are represented by ∗e for any e.

• `: the current label. See section 4.2.2 for details on the functionality.

• α ⊆ V: the set of current variables, which still allow branching

• β ⊆ V× V: a mapping from variables to variables. This tracks sending futures, i.e. if
x is a future sent to y, then (x, y) ∈ β.

• q̂ ∈ Q: current state

• ω ∈ Q: holds the state which is jumped to when the command is evaluated. This is
used in match-statements.

For implementation reasons, in the following algorithms those variables (except S) are
used as if they were the top of stacks. This means, that for example ` is just the short
notation for top ¯̀, where ¯̀ is a stack of labels and top s returns the top-most element of
any stack s.

4.2.2. Edge refinement

We outlined in the introduction to this section, that the reason of the automaton is to give
detailed information about the effect of different constructors in an argument. Therefore it
is essential to gather the correct information. This especially includes nested matches, where
the pattern of the first match gets more definite with each nesting step. Such an example is
given in Fig. 4.4 with the respective automaton in Fig. 4.5.

For this task we define a datatype to represent the label of an edge, which can be refined
over multiple steps. This datastructure Label is created by the function new-label (see
Algorithm 4.1) and has two methods: lab (see Algorithm 4.2) and refine (see Algorithm 4.3),
where lab returns the current string representation of the label, and refine returns a new
refined Label.
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4.2. Automata construction

f = \x -> x | A y@_ -> y | B -> \z -> \z’ -> end
| C -> \z -> z | Y -> end
| _ -> end

| _ -> return False

Figure 4.4.: Code example of nested refinement

Input: variable name x
-- var: variable this pattern is used for
-- pat: the pattern string
-- subs : V→ Label: holds the sub-patterns
` = {var : x, pat : _, subs : ∅}
return `

Algorithm 4.1: Creating a new label

Input: label `
Output: transition string
if ` = ε then
return ε

else
if `.pat = _ then
return _

else
pat := `.pat

for each variable v in pat do
replace v by lab `.subs(v) in pat

done
return pat

fi
fi

Algorithm 4.2: Label printing
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Input: label `
Input: variable x to refine
Input: refinement pattern pat
Output: refined pattern
copy-` := copy `
if pat 6= _ then -- refine by _ useless
if x 6= `.var then -- Refinement of a subpattern
copy-`.subs[x 7→ refine `.subs(x) x pat]

else if constructor and arity of pat and `.pat differ then
fail “refinement mismatch”

else if `.pat = _ then
copy-`.pat = pat

for each variable v in pat do
copy-`.subs(v) = new-label v

done
else
for each argument a of pat do
v := variable corresponding to a
copy-`.subs[v 7→ refine `.subs(v) v a]

done
fi

fi
return copy-`

Algorithm 4.3: Label refinement

push ā1 x1

. . .
push ān xn
A(t)
pop ā1

. . .
pop ān

Algorithm 4.4: Explicit behavior of the preserving call
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f

A B

A C

A _

_

_

_

_

Y

Figure 4.5.: Nested automaton

4.2.3. The algorithm A

The algorithm to create the automaton for the function f is presented as an inductive
definition. The parts of each construct of the language are given in an imperative style for
better readability, but could be represented in normal functional style quite easily. Using a
functional style would amongst others imply that the parts of the automaton Af , which are
considered global state, have to be passed around explicitly.
Also by using the notation A(t)〈a1 = x1, . . . , an = xn〉 we want to express that the state

of the variables a1 to an is preserved and is set to their respective values x1 to xn for the
application of A on t. With introducing the notation in Section 4.2.1 we also mentioned
that variables are just implicit references to the top of stacks. These stacks can now be used
for state-preservation and hence A(t)〈a1 = x1, . . . , an = xn〉 can be seen as syntactic sugar
for explicit stack operations, which are shown in Algorithm 4.4.

Moreover we assume that the compiler changed those applications, where the first part is
not just a variable, to function applications inside a let-block. So (!x) A would be changed
to letx′ =!x inx′ A or (λx. f x 2) C is transformed to letx′ = λx. f x 2 inx′ C.

Initialization

For each function where a complete and independent automaton should be created, the
different parts of the automaton need to be initialized. Therefore everything is set to the
empty set except:

• Q := {qF }

• F := {qF }
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4. Development of the type system

• ω := qF

This adds a final state qF to the automaton. This final state is also the only one, i.e. F
will not hold any other states throughout this algorithm. The use of ω will be explained in
the coming section dealing with the skip statement.
The function is then just handled as a normal letrec f = λx. t by this algorithm.

Lambda-Expression

A lambda expression λ y. t creates a new node and adds a transition from the current node
to the newly created one, using the current label as the pattern on this transition:

Q := Q ∪ {qy}
δ := δ ∪ {(q̂, lab `, qy)}
A(t)〈` = new-label y, α = {y}, q̂ = qy〉

Skip

The skip statement is an implicit statement for all statements which allow sequencing or
scoping (these are all assignments, the match construct and the sending of futures). Hence
it needs to be differentiated between the positions it can occur in: In most cases it signals
the end of process, but while in a match the computation continues at the fall-through
expression of the match.

This is the reason the variable ω has been introduced: It holds the node in the automaton
a skip is jumping to – it is qF for all cases except in matches where it is set to the node of
the fall-through expression beforehand:

δ := δ ∪ {(q̂, lab `, ω)}

End

The end-statement is similar to the skip, but always ends the process:

δ := δ ∪ {(q̂, lab `, qF )}

Constructors

As pointed out earlier in Section 3.1.4, constructors implicitly receive a future which is filled
with their own content and then are finished. This is reflected by their behavior in the
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4.2. Automata construction

automaton, which adds another node that then goes with an _-transition into the final
node:

Q := Q ∪ {qC}
δ := δ ∪ {(q̂, lab `, qC), (qC ,_, qF )}

Assignment

Assignments can be of three different kinds:

• function definition: letrecx = e in t

• variable binding: letx = e in t

• future binding: bindx = e ; t

These three forms are not distinguished for this algorithm, though, as their semantic
differences are without impact on the automaton:

-- Evalute the assigned expression, but start with a fresh temporary node.
Q := Q ∪ {∗x}
A(e)〈q̂ = ∗x, α = ∅, ` = ε, ω = ω〉

-- Collect all virtual nodes which are directly reachable from ∗x
Γ := Γ[x 7→ {v | ∃l. (∗x, l, v) ∈ δ ∧ v ∈ V }]

-- Collect all normal nodes directly reachable. This marks x as a function.
if ∃q ∈ Q \ (F ∪ S) : (∗x, ε, q) ∈ δ then

Φ := Φ[x 7→ q]
fi

-- Remove temporary edges and evaluate the enclosed expression
δ := δ \ {(∗x, ε, q) | ∀q ∈ Q ∪ V }
A(t)

In Fig. 4.6 you find an example automaton showing the different steps of the presented
algorithm for the code snippet

let g = \y -> end -- ’\y -> end’ is represented as ’e’ in the automaton

In this example, the automaton is assumed to be constructed up to the current state q̂.
After the current algorithm is finished, you will notice, that the newly created node qg is
not connected to the existing automaton by an incoming edge. This is the correct behavior,
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(a) Before evaluating e
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(b) After evaluating e

q̂...

∗x qg

qF

_

(c) Removing temporary edges

Figure 4.6.: Creating the automaton of an assignment

as there should be only an edge to the node, if the flow of control ever reaches it, i.e. the
function g is called. But with the current code above, this has not happened yet. If it is
used as a function at a later point in the code, an edge might be added from the calling site
to qg. The details for this are given in Section 4.2.4.

Sending futures

Sending a future (r, f ′ ← f ; t) is basically of no influence for the automaton, except that
the name of the future is recorded in β so that the name of the future can later be related
to the original variable. This is needed to determine, whether the variable is the last one
being received and thus allows full branching.

β := β[r 7→ f ]
A(t)

Function calls

In the introduction to this section it has been mentioned, that this algorithm assumes, that
function applications always start with a variable. This especially removes the need for
a special handling of inlined lambda abstractions. Hence a function call can always be
assumed to be of the form g C1 . . . Cn for n ≥ 0. Such a call creates a virtual node which
symbolizes a transition to a state in another automaton. Such a virtual node does not have
any outgoing edges, which makes it quite similar to the final node. While the outgoing
edges of a node to nodes in Q must be unique with respect to the labels, a node may have
outgoing edges with the same label to multiple virtual nodes.
These virtual nodes are then handled later on. See Section 4.2.4 for details.
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4.2. Automata construction

if g ∈ dom(Γ) ∧ Γ(g) 6= ∅ then -- g is a variable, mapping to different functions
V := V ∪ {[x+ C1 . . . Cn] | x ∈ Γ(g)}
δ := δ ∪ {(q̂, lab `, [x+ C1 . . . Cn]) | x ∈ Γ(g)}

else -- normal call
V := V ∪ {[g C1 . . . Cn]}
δ := δ ∪ {(q̂, lab `, [g C1 . . . Cn])}

fi

Match

With function calls and lambda expressions, the match-statement is one of the core parts for
the automaton construction: This construct allows branching in the automaton, but only on
the last message. Additionally, it has the fall-through expression, which is evaluated after
some branches, depending on the content of the branch, as was presented in Section 3.1.3.
These different fields make the algorithm for the match-statement the most complicated

of the algorithms presented in this section. It is presented in Algorithm 4.5 on page 35.
We will show an example of the automata construction of a match-statement in Fig. 4.7.

Therefore, assume the following code given:

let f = \x -> x | A -> skip

| B -> \y -> skip

| C -> end

D

The Fig. 4.7 starts with showing the automaton before the match, but already with the
temporary node ∗t for the fall-through statement added. In figures (b) to (d) the different
branches are added to the automaton and it can be clearly seen, that the skips end in ∗t,
while end directly adds a transition to the final state. Please also note the additional state
qy which is created for the lambda expression, and that the following skip behaves similar
to the one in the first branch.

Following in figure (e), the partial automaton of the fall-through statement D is added. As
can be observed, it is connected via an ε-transition which marks this transition as temporary.
And finally, in the last figure (f), the edges to ∗t and the ε-transition are combined by
moving the edges to the state the ε-transition points to. This leaves the temporary node
unconnected to the remainder of the automaton and hence it is unimportant for the rest of
the algorithm.
From this example the meaning behind the temporary nodes becomes evident: They

“bind” these edges where – at the point of construction – it is not possible to know the

33



4. Development of the type system

f

∗t

(a)

f

∗t

A

(b)

f qy

∗t

A

B

_

(c)

f qy

∗t

qF

A

B

_

C

(d)

f qy

∗t

qF

qD

A

B

_

C

ε

_

(e)

f qy

∗t

qF

qD

A

B

_

C

_

(f)

Figure 4.7.: Creating the automaton of a match

state, those transitions lead to. Only after this becomes known, the edges are moved to the
appropriate target and the temporary node is obsolete.

4.2.4. Mapping virtual nodes

After generating an automaton using the described algorithm A, this automaton might
have virtual nodes. These virtual nodes are used to model calls to external functions.
Unfortunately, virtual nodes are difficult to handle in the upcoming analyses as besides
the type of arguments, nothing is known about the function called and it is not possible
to see in which state in the automaton of the called function the call will end. Hence we
want to reduce the number of possible virtual nodes by resolving virtual nodes leading to
local functions, i.e. functions defined in the current function or the current function itself (=
recursive calls).

While creating the automaton, no attention was paid to the locality of the called functions.
Therefore, it is necessary to look at each virtual node and check whether the function called
in the virtual node is in Φ. Remember that Φ maps from function names to states in Q.
Hence, if a function g ∈ dom(Φ), it is known that execution can continue at the state Φ(g).
So it remains to use each of the passed arguments to walk through the automaton and
eventually replace the virtual node by the nodes which were reached during the transition.
This is continued until a local fixpoint is reached, meaning that if during this transition a
virtual node v is reached, v is going to be resolved immediately. If this is not possible, i.e. v
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4.2. Automata construction

-- Create the temporary node, which will be used for the fall-through expression.
Q := Q ∪ {∗t}
for i := 1 to n do
-- Find the message this future corresponds to.
e := r

while e ∈ dom(β) do
e := β(e)

done
if e ∈ α then -- branching on last message → refine
`m := refine ` e pi
αm := α ∪ vars pi ∪ {yi}
βm := β[yi 7→ e]
M :=M[mi 7→ lab `m]

else
`m := `

αm := ∅
βm := β

M :=M[mi 7→ _]
fi

-- Evaluate the branch expression.
-- With setting ω = ∗t, all skip expressions will jump to ∗t.
A(ti)〈` = `m, α = αm, β = βm, ω = ∗t〉

done

-- Evaluate the fall-through expression, starting with the temporary node.
A(t)〈` = ε, α = ∅, q̂ = ∗t〉

-- Resolve the ε-transitions from ∗t.
-- q A−−→ ∗t

ε−−→ q′ becomes q A−−→ q′

qnext := {q | (∗t, ε, q) ∈ δ}
δ := δ \ {(∗t, ε, q) | ∀q ∈ Q ∪ V }
for all (q, l, ∗t) ∈ δ do
δ := δ \ {(q, l, ∗t)}
δ := δ ∪ {(q, l, q′) | q′ ∈ qnext}

done

Algorithm 4.5: Match Rule
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Figure 4.8.: Divergence in virtual nodes

does not jump to a local function, a new virtual node v′, consisting of v plus the remaining
arguments, is created and returned as the final node for this transition. As it is possible that
a node reaches several virtual nodes with the same label, the final result also may return
multiple virtual nodes.

If, during resolving a virtual node, the very same virtual node is passed again and there
are still arguments to handle, the automata construction has to be aborted, because the
current program flow diverges. This can be seen in an example in Fig. 4.8. Here the virtual
node which is being resolved always adds one more instance of A to itself when looping
through the automaton. This can be done infinitly many times and hence the resolving
algorithm would never stop.

Naturally, this algorithm relies on the transition relation of the automaton, δ, to get
the next state given a current state and a transition label. But δ only works on the exact
pattern, i.e. if (q,_, q′) ∈ δ and there exists no other transition from q, trying to find the next
transition from q with the pattern A would fail. Furthermore, it needs to be specified what
is the correct transition for label A C if both (q,_, p) and (q, A _, p′) are in δ. Therefore we
define an enhanced transition relation δ̂ which choses the correct transition for each given
pattern. The algorithm for δ̂ is given in Alg. 4.6.

The algorithm described in this section is given in Algorithms 4.7 and 4.8.

4.2.5. Correctness check

The automaton, which has been constructed by the presented rules and algorithms, does
not need to be necessarily correct: The algorithms only checked for divergence in virtual
nodes (Alg. 4.8) and correct arity of patterns (Alg. 4.3). Hence it is possible, that an invalid
program passed the automata construction, but this automaton then is invalid too. For
checking the validity of such an automaton, we define the following properties, which must
hold:
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4.2. Automata construction

Input: node q ∈ Q
Input: pattern p ∈ Σ ∪ {ε}
Output: node which is reached with p from q

if p = ε then
return δ(q, p)

else
labels := {l | ∃q′.(q, l, q′) ∈ δ ∧ p v l}
-- sort labels lexicographically, where _ is seen as the largest letter
slabels := sort labels
-- now the first element of slabels is the most specific pattern which matches p
return {q′ | (q, slabels[0], q′) ∈ δ}

fi

Algorithm 4.6: Extended transition relation δ̂

for all v ∈ {v | v ∈ V ∧ ∃ l, q : (q, l, v) ∈ δ} do
if name v ∈ dom(Φ) then -- local function
parents := {q | ∃l. (q, l, v) ∈ δ}
-- see algorithm 4.8 on the following page for the called function
nodes := resolve v
for all n ∈ nodes do
for all p ∈ parents do
for all l ∈ {l | (p, l, v) ∈ δ} do
δ := δ \ {(p, l, v)}
δ := δ ∪ {(p, l, n)}

done
done

done
fi

done

Algorithm 4.7: Mapping virtual nodes

37



4. Development of the type system

Input: virtual node v
Output: set of nodes v is replaced with
nodes := {(v, [])}
visited := v

result := ∅
alert := false

while nodes is not empty do
node, nargs := popnodes
if alert = true then
fail “Cycle detected”

else if node ∈ V then
if n ∈ visited then
alert := true

else
pushnode visited

fi
fi
if node ∈ V ∧ namenode /∈ Φ then
result := result ∪ {[node+ nargs]}

else
if n ∈ V then
currargs := argsnode+ nargs

node := Φ(node)
else
currargs := args

fi
if currargs is not empty then
trans := pop currargs
next := δ̂(node, trans)
nodes := nodes ∪ {(n, currargs) | n ∈ next}

else -- nothing further to go to
result := result ∪ {node}

fi
fi

done
return result

Algorithm 4.8: Resolving one virtual node

38



4.3. Constructor collection

DFA-Check Our automaton has to be a deterministic finite automaton for the normal
states in Q, and hence does not allow transistions under the same label from a certain state
to a multiple other states:

∀q ∈ Q ∀l ∈ Σ : ¬∃x, y ∈ Q : (q, l, x) ∈ δ ∧ (q, l, y) ∈ δ ∧ x 6= y

No ε-transitions This kind of transition is a temporary one and must not exist in the
final automaton:

∀(x, l, y) ∈ δ : l 6= ε

No edges between asterisk nodes Similar to the ε-transistions, these are only used
temporarily and should have no connection to any other part of the automaton:

∀(x, l, y) ∈ δ : x /∈ S ∧ y /∈ S

If these three properties hold, the created automaton is deemed valid.

4.3. Constructor collection

The second part in this type inference algorithm is to collect the possible constructors of
each variable and use them to construct the types of functions.
The constructor collection will again be presented in a syntax-directed style by giving

rules for each syntactic construct. Such a rule will be of the form

premises

e : τ̄ B τ ∇U

for each construct e.
This rule states that under certain premises, the expression e receives the type τ̄ B τ given

that the set of constraints in U can be satisfied. The description of the meaning of the type
τ̄ B τ has been given in Section 4.1 and applies here unaltered.
The constraint set U consists of subset relations of the form τ1 ⊆ τ2. Additionally, we

write τ1 = τ2 as a short form for τ1 ⊆ τ2, τ1 ⊇ τ2, and omit the set braces when the set only
contains one constructor.

Note that the rules often refer to the type by a symbolic τ and that the same τ in different
positions (for example in the type of an expression and in the constraint set U) indeed refer
to the very same type. These – though they look similar to type variables – are just labels
for one specific type.
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4. Development of the type system

It is often common to have some sort of environment in the rule, which maps variable
names to something specific in the rules (which would be types here). This showed to be
clumsy for the comming rules, and therefore these rules assume that all variable names are
unique. This assumption can easily be realised by the compiler, even for variables used but
not declared in the current scope, and should hence be safe to make. And when variables are
unique, it is also possible to assign a unique type label to each variable. From this follows,
that there exists a function V : V→ T, that maps each variable name to the corresponding
type.
Other type labels, which are neither retreived via V nor introduced with a premise, are

always fresh. Explicitly declaring them as fresh is omitted for brevity.

4.3.1. Typing Rules

Similar to the other inference systems in this thesis, the difference between end and skip

is small and only noticed in different behavior in match-statements. This behavior can be
represented in types by using the unit constructor in the output type as has been described
in Section 4.1.

end : 〈τi|_〉B τo∇{τo = ()}
(CIP-End)

skip : 〈τo|_〉B τo∇∅
(CIP-Skip)

Additionally, skip uses the same type for input and output type. This behavior allows the
correct connection with the fall-through expression and will be illustrated with an example
at the end of this section.

The next rule states the behavior for a constructor. It accounts for the implicit possibility
of receiving a future (cf. Sec. 3.1.4). Also, similar to the other parts of the type inference
system, it does not allow fall-through in a match and therefore uses () as the output type.

e1 : 〈τ1|_〉B τ ′1∇U1 . . . en : 〈τn|_〉B τ ′n∇Un
C e1 . . . en : 〈τC |_〉B τ ′C ∇{τC = &(C τ1 . . . τn) _−−→ ε, τ ′C = ()} ∪ U1 ∪ . . . ∪ Un

(CIP-Const)

Referencing a variable and de-referencing a future work the probably expected way:
The single variable reference only copies the type from the environment V and the future
de-referencing adds a constraint requiring the type of the variable to be a future.

V (x) = τx

x : 〈τx|_〉B τo∇{τo = ()}
(CIP-Var)
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V (x) = τx

!x : 〈τi|_〉B τo∇{τx ⊇ &τi, τo = ()}
(CIP-Wait)

Next we define the type of a lambda expression by getting each type of the expression
inside the lambda and change it into a function constructor under the same label.

e : 〈τe1 |P1, . . . , τen |Pn〉B τ ′e∇U V (x) = τx

λx. e : 〈τf |_〉B τ ′e∇{τf = {τx
P1−−−→ τe1 , . . . , τx

Pn−−−→ τen}} ∪ U
(CIP-Lambda)

Similarly, a function application adds the constraint of a function with the appropriate
types. The necessary pattern used in the function constructor is generated by the function
pattern : E→ P. This function extracts the pattern syntacticly, this means that any variable
implies the pattern _ and only statically defined constructors are taken into account. From
this restriction follows a difference between the definitions let f = g and let f ′ = λx. g x.
While f does not make any statement about any possible argument it is just an alias for
g and all arguments are handled as if they were given to g directly. On the other hand f ′

makes all arguments be sent to g via the pattern _, which results from the use of the extra
variable. So instead of being an alias, f ′ is a message relay explicitly receiving messages and
sending them further to g – but with a possible loss of information.

e1 : 〈τ1|_〉B τ ′1∇U1 e2 : 〈τ2|_〉B τ ′2∇U2 P = pattern(e2)

e1 e2 : 〈τi|_〉B τo∇{τo = (), τ1 ⊇ τ2
P−−→ τi} ∪ U1 ∪ U2

(CIP-Apply)

e : 〈τe|_〉B τ ′e∇Ue t : τ̄i B τo∇U V (x) = τx

letrecx = e in t : τ̄i B τo∇Ue ∪ U ∪ {τe = τx}
(CIP-Letrec)

e : 〈τe|_〉B τ ′e∇Ue t : τ̄i B τo∇U V (x) = τx

letx = e in t : τ̄i B τo∇Ue ∪ U ∪ {τe = τx}
(CIP-Let)

e : 〈τe|_〉B τ ′e∇Ue t : τ̄i B τo∇U V (x) = τx

bindx = e ; t : τ̄i B τo∇Ue ∪ U ∪ {τx ⊇ &τe}
(CIP-Bind)

The three previous rules state the behavior of assignments, where CIP-Letrec and CIP-

Let are identically. CIP-Bind differs in that it requires the bound variable to be a future.
Additionally, the first two rules state equalities while binding only adds a subset constraint.
This follows from the possibility to bind a future in different places where each place may
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have a different type and all of those types must be collected.

t : τ̄i B τo∇U f : 〈τf |_〉B τ ′f ∇Uf V (r) = τr V (y) = τy

r, y ← f ; t : τ̄i B τo∇{τf ⊇ τr
_−−→ τy} ∪ U ∪ Uf

(CIP-Future)

The rule for future sending is very similar to CIP-Apply. It does not even enforce the
argument to be of a future type. This is caused by the way the types are constructed: The
types themselves are sets of constructors defined by a set of subset relations. Hence an
additional constraint τr ⊇ &τrr for some τrr does not result in an enhancement, because it
is not possible for other places to reference the τrr and alter its constructor set.
This behavior conforms to the task of this part of the type inference: Only collect all

possible constructors even if they are illegal. Rejecting invalid programs will then be done
by the third part of the inference: the implication building.
The last rule to come covers the match-statement. It makes use of the two functions

below:

• pattype(y@p) – creates the constraints for each variable in y@p. So for instance

pattype(y@(C x@(A B) z@(_)))

will yield

{V (y) = &(C V (x) V (z))→ ε} ∪ pattype(x@(A B)) ∪ pattype(z@_)

•
⊎

(τ̄1, τ̄2) – combines two constrained types by copying the types with unique patterns
and unifying types with the same pattern. Therefore it returns the newly combined
type and a set of constraints. Example:

⊎
(〈τ11|A, τ12|B〉, 〈τ21|A, τ22|C〉) = 〈τ11|A, τ12|B, τ22|C〉, {τ11 = τ21}

The general idea is to create a constrained type ˆ̄τj for each branch with the pattern
inferred by the automaton. These patterns are contained in M. Using the automaton
for this task allows to correctly handle refined matches without the overhead of tracking
variables in these rules.

Such a constrained type is only newly created if and only if the type of the branch is
constrained with the general pattern _. In all other cases, this type has already been created
by nested matches inside the branch. As these hold the refined patterns, the current pattern
is ignored.
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Additionally the fall-through expression is added to the corresponding branches by adding
the constraint τ ′j ⊆ τt if output type τ ′j of the branch mj is unequal to (). With this
constraint, the type of the fall-through expression is stated to be equal to the output type
of the last expression, which results in the change of the input type due to the definition of
skip (see CIP-Skip above).

Upj = pattype(yj@pj)
V (yj) = τj tj : τ̄j B τ ′j ∇Uj Ũj = if τ ′j = () then ∅ else {τ ′j ⊆ τt}

ˆ̄τj = case τ̄j of 〈τ|_〉 then 〈τ |M(mj)〉 otherwise τ̄j

t : 〈τt|_〉B τ ′t ∇Ut τ̄i, Û =
⊎
j

ˆ̄τj V (r) = τr ∀j ∈ [1, n]


?r |m1 y1@p1 → t1

...

|mn yn@pn → tn

 ; t : τ̄i B τ ′t ∇ Û ∪ Ut∪

⋃
j∈[1,n]

({τr ⊇ &τj
_−−→ ε} ∪ Uj ∪ Upj ∪ Ũj)

(CIP-Match)

The type of the overall match is obtained by combining the constrained types of each
branch into one constrained type (via the

⊎
function). As this unifies these branches with the

same pattern, it correctly differentiates matches on the last message, where each branch has
an explicit pattern, from other matches, where no real branching happens and all branches
are given the pattern _. Hence all these branches and therefore their types are unified.

4.3.2. Combining the Types / Modularity

The inference of the previous section is, as described in the introduction to this chapter, ran
on each global function in itself. Thereafter the constraint sets of the different functions are
combined into one large set. Because of the use of unique variable names and also unique
type names, references to external functions in a definition can be resolved automatically in
this large set, as the type names match.
This can be done multiple times to create even larger sets – so for example first one

module, then different modules into one package and finally different packages. By saving
the current constraint set the combination process can also be executed at a later point in
time as no information is lost.
Depending on the definition of modularity, this behavior may not qualify as modular,

because the exact type of a function depends on all uses. For this to change, the introduction
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of type variables is necessary. This allows to only mention these constructors in the type of
a function, which are explicitly given (most often as part of a match). The type would then
get extended by a type variable and all constructors not explicitly mentioned would map
onto this type variable and have the same flow through the function.
This extension is not presented in this thesis and should be part of future work.

4.4. Implication analysis

After the types of each variable have been determined in the previous section, this section will
show a method to generate a set of implications between different occurrences of constructors.
This allows to model the flow of type information through the program. Hence certain
constructors that cannot be reached are illegal and thus it is possible to reject invalid
programs. This is also possible by solving the created system of implications: If no solution
can be found, the program is invalid. Because the flow of constructors is known, it is then
possible to give detailed output where the source of error lies and which path through the
program leads there.
The general idea of this approach is to attach a unique label to each occurrence of a

constructor. Then, using a syntax-oriented inference system, implications can be created
between these occurrences that imply another. Due to the branching, these implications
do not only exist between different instantiations of the same constructor but also between
different constructors.
The whole process is best illustrated by an example: Assume the code given in Fig. 4.9.

By using the information gathered from collecting the constructors, all variables are replaced
by their types, i.e. the set of constructors they represent. This might lead to a program
as given in Fig. 4.10. Between these constructors, we create the implications yielding the
following set of implications:

{A2 ⇒ A1, A1 ⇒ A7, A3 ⇒ A4, B1 ⇒ B2, A4 ⇒ A5,

A5 ⇒ A6, B2 ⇒ B3, B3 ⇒ C1, A7 ⇒ A3}

This result is, of course, a simplified version of what the presented rules would infer. For
instance, the function symbols in the examples were not touched, while they would have
been substituted by their types too. Also the flow back from g to f (e.g. rules from A6 and
C1 to specify the return value of f) is omitted.
For this inference algorithm we again assume, that each variable is unique. Additionally

it is assumed, that each expression is annotated with its type. This can for example be done
while doing the constructor set inference. And a third assumption is, that variables which

44



4.4. Implication analysis

let f = let y = A in
let g = \x -> x | A -> x

| B -> C
in g A

Figure 4.9.: Example program

let f = let A1 = A2 in
let g = \{A3,B1} -> {A4,B2} | A5 -> A6

| B3 -> C1
in g A7

Figure 4.10.: Example program after substituting types

are matched against are not used inside the branches. Instead the outermost variable of the
varpattern of this branch is to be used:

x | y@A -> -- only use y here

| y@(B C) -> -- only use y here

| z@_ -> -- only use z here

The reason lies in the different set of constructors bound to these variables: The variable
which is matched, does necessarily contain all possible choices of the branches. The types
of the outermost variables in the varpattern however only contain the constructors for
their respective branch. As both are equal in behavior inside the branch and the types
of the varpattern variables are just subsets of the type of the matched variable, this is a
safe program transformation. Even more, with the previously given assumption of unique
variable names, the replacement can happen without accidently replacing other variables
with the same name.

Similar to the other sections of this chapter, we will first introduce some notation that
will be used throughout this section. Thereafter we will give the syntax-directed rules.

4.4.1. Notation

In this section, we define, in addition to the other sets V, T etc., a set CA to be the set of
all annotated constructors, which are built by the following grammar, where l is any unique
label.

ca ::= consl ca1 . . . can (n ≥ 0)

The powerset of CA yields the set of annotated types TA = 2CA , as types are sets of
constructors. With defining the absence of annotations as annotations with the empty string,
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4. Development of the type system

it follows T ⊂ TA.
Furthermore we define a substitution σ : TA → TA, that takes a type (be it annotated

or not) and returns a set of annotated types, i.e. it annotates each constructor in the
passed type. If the type is already annotated, the annotation is replaced by the new one.
By definition, the annotations are unique and hence multiple applications with the same
argument return different results. For ease of notation, we sometimes use the notion of
adding subscripts to σ, for instance σ1. This shall partly revoke the previous statement, as
multiple applications of the same argument to a σ with subscript returns the same result:

σ(A) 6= σ(A)

σ1(A) = σ1(A) 6= σ2(A) 6= σ(A)

Each of the upcoming rules for an expression e will then be of the form:

premises

Γ, G ` e : I BG′,T

with the following denotation of the variables used:

• Γ: V→ TA: an environment mapping the variable to its annotated type

• G,G′: a logical formula (guard) consisting of branch labels ∈M and False. The branch
labels in this context are normal atoms of the formula without any special functionality.
They are used in the implications for stating that the pattern of the branch has been
matched and this implication therefore uses this branch. While G is the formula before
evaluating the rule, G′ is valid after the rule.

• I: a set of implications. The atoms of the implications are annotated constructors
(without arguments) and branch labels, while the implications in the set itself are
considered to be connected by conjunctions.

• T ∈ TA: the annotated type of the current expression. Because σ returns unique
constructors, they need to be explicitly passed around. Otherwise it would not be
possible to re-create them.

The rules do not create the set of implications explicitly, because if a constructor contains
&, the direction of the implication has to be reversed. This happens because the values
bound to futures “flows” all the way back to where it was sent. Therefore the creation
of implications is done by the function imp(G, l, r). This function generates a set of
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4.4. Implication analysis

implications from each constructor in l to each constructor in r with the guard-set G.
This is done recursively for each argument. If a reference is encountered, the direction
is reversed once. For example imp(G, {C1 (A1 &C3)}, {C2 (A2 &C4)}) would generate
{G ∧ C1 → C2, G ∧A1 → A2, G ∧ C4 → C3}.

The inference is initialized with G = True and Γ mapping each global function to its
annotated type.

4.4.2. Implication Rules

Again, skip and end only differ in that the latter prevents fall-through in match-statements.
This is achieved by having False as the resulting guard-formula which results in implications of
the form False∧ . . .⇒ . . .. Such an implication is a neutral element in the set of implications,
while it itself stops the flow of constructors to the constructors of the fall-through statement
which would be found in the consequent.

Γ, G ` skip : ∅BG, ∅
(IMP-Skip)

Γ, G ` end : ∅B False, ∅
(IMP-End)

The rule for constructors again only cumulates the arguments of the constructor and
creates the function representation of the constructor. Note that this rule explicitly states
an implication. This is because the constructor is freshly introduced and therefore, besides
the guard, there is no annotated constructor that could be part of the antecedent.

Γ, G ` ei : Ii BG′i,Ti i ∈ [1, n]

Γ, G ` C e1 . . . en : {G⇒ σ1(C)} ∪ I1 ∪ . . . ∪ InB
False, {&(σ1(C) T1 . . .Tn) _−−→ ∅}

(IMP-Const)

Variables create implications between the current annotated type and a newly annotated
one.

Γ, G ` x : {imp(G,Γ(x), σ1(Γ(x)))}B False, σ1(Γ(x))
(IMP-Var)

Dereferencing futures behaves similarly, but instead of the whole type it uses the part of
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4. Development of the type system

the type inside the future.

Γ, G `!x : {imp(G, c, σ1(c)) | &c ∈ Γ(x)}B False, {σ1(c) | &c ∈ Γ(x)}
(IMP-Wait)

It has been an assumption noted in the introduction to this section, that each expression
has explicitly stated its type. This can be seen in the rule IMP-Lambda, where the lambda
expression is assigned its type τλ. For reasons of brevity, this type will only be stated when
it is referred to in the rule itself. It must also be noted, that the usage of τλ is not completely
accurate, as the full type would be something like 〈τλ|_〉 B τo as stated in the previous
section. But the output type is of no relevance anymore, as it was only needed to generate a
correct equation system. Hence it can be dropped here. Further we will only use explicit
types in cases, where there is no constraint added. Therefore it also possible to strip the
shell of the constrained type and only use the τλ inside.

Now this type is used to generate an annotated version by annotating argument and result
type. Additionally implications are generated from the annotated type of the expression
inside the lambda to the different result types.

τλ = {X P1−−−→ E1, . . . , X
Pn−−−→ En} Γ[x 7→ σ1(X)], G ` e : I BG′,T

Γ, G ` (λx. e) : τλ :
⋃
i

{imp(G,T, σ2(Ei))} ∪ I BG′,
⋃
i

{σ1(X) Pi−−→ σ2(Ei)}
(IMP-Lambda)

IMP-Apply then goes the opposite way and adds implications from the annotated type of
the argument to the argument of the function. Further it defines the result type of the whole
application to be the union of all possible result types. There is no need to differentiate
by pattern as the function itself generates the correct implications based on the argument.
Thus through a chain of implications, the argument constructors influence the constructors
in the result.

Γ, G ` e1 : I1 BG′1,T1 T1 = {X P1−−−→ E1, . . .}
Γ, G ` e2 : I2 BG′2,T2

Γ, G ` e1 e2 : I1 ∪ I2 ∪ {imp(G,T2, X)}B False,
⋃
i

Ei
(IMP-Apply)

Γ[x 7→ σ1(τx)], G ` t : I BG′,T Γ, G ` e : Ie BG′e,Te

Γ, G ` letx : τx = e in t : {imp(G,Te, σ1(τx))} ∪ I ∪ Ie BG′,T
(IMP-Let)
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4.4. Implication analysis

Γx = Γ[x 7→ σ1(τx)] Γx, G ` t : I BG′,T Γx, G ` e : Ie BG′e,Te

Γ, G ` letrecx : τx = e in t : {imp(G,Te, σ1(τx))} ∪ I ∪ Ie BG′,T
(IMP-Letrec)

The two previous rules for assignment added implications from the assigned values to the
variable. The same is done for the binding operation in the next rule. But the difference here
lies in a subtle alternation: While IMP-Let and IMP-Letrec created new assignments for the
constructor sets, IMP-Bind uses the same type that is already existing in the environment.
Moreover, by the way imp is invoked, the implication runs from the introduction of the
variable (probably in the lambda expression) to the bound expression. But as they both
contain & (it is added explicitly for the bound expression in T′e), these implications are
reversed. And hence the constructors of the bound expression indeed point to the future in
the lambda expression. And this indeed is the desired behavior, as the flow of information
for futures is backwards.

Γ \ x,G ` t : I BG′,T Γ, G ` e : Ie BG′e,Te T′e = {&c | c ∈ Te}

Γ, G ` bindx = e ; t : {imp(G,Γ(x),T′e)} ∪ I ∪ Ie BG′,T
(IMP-Bind)

Similar considerations have been made for IMP-Future: Here σ1(X) seems to link to X,
while both contain & and therefore the implication is reversed.

Γ, G ` e : Ie BG′e,Te Te = {X _−−→ Y }
Γ[r 7→ σ1(X), y 7→ σ2(Y )], G ` t : I BG′,T

Γ, G ` r, y ← e ; t : {imp(G, σ1(X), X), imp(G, Y, σ2(Y ))} ∪ I ∪ Ie BG′,T
(IMP-Future)

Finally, we have the rule that handles the match-statement. This rule uses a special
function patcons(y@p, r, c). For each variable in the varpattern y@p it generates the
constructor set of the matched sub-pattern and returns a mapping Γi from these variables to
the corresponding annotated constructors. It is therefore quite similar to the createprocs

function used during the operational semantics (Fig. 3.2). It further returns a set of
implications Iyi from the c to these constructors.

The guard formula inside the branch does not hold the set of constructors of r that were
needed to reach this branch. Instead it simply addsmi, i.e. the label of the branch. And in Ipi

the constructors imply that label. Here it must be taken care, that only these constructors
are taken into account, which were not matched by preceding matches. Otherwise the
same constructors that, for example matched A B will also match A _ and hence create a
disambiguity.
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4. Development of the type system

Finally, the resulting guard formulas of each branch are put into a disjunction to create
the guard for the fall-through case. Thereby, again the different fall-through behavior of the
branches is correctly represented.

Γi, Iyi = patcons(yi@pi, r,G ∧mi) Γ ◦ Γi, G ∧mi ` ti : Ii BG′i,Ti

Ipi = {imp(G, ci,mi) | &ci ∈ Γ(r), ci v pi, ∀p̂ ∈ {p1, . . . , pi−1} : ci 6v p̂} ∀i ∈ [1, n]

Γ, G ∧ (G′1 ∨ . . . ∨G′i) ` t : It BG′t,Tt

Γ, G `


?r |m1 y1@p1 → t1

...

|mn yn@pn → tn

 ; t :
⋃
i

(Ii ∪ Ipi ∪ Iyi) ∪ It BG′t,
⋃
i

Ti ∪ Tt

(IMP-Match)
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5. Conclusion

During this work we showed a novel approach for a type system and its inference. It was
aimed on tackle certain short-comings in the Hindley-Milner system. These were:

untypable correct expression In the presented systems this should not happen, though
those yielding infinite types are still not possible.

missing modularity Depending on the definition on modularity, this might be resolved.

unrelated error messages The core of the type systems is the modeling of type flow. Hence
it is possible to exactly give the path that lead to a certain type error.

branch-aware functions This part is another core of the type system and hence is successfully
implemented.

The points, where we cannot explicitly state, whether the goal is fulfilled are in need
of type variables. These are currently not part of the system and therefore restrict the
application, as all types have to be collected instead of using an abstract variable to hold all
uncollected constructors.
A further drawback of the current system, which needs further research, comes from

disallowing infinite types. Here it needs investigation if the system can be extended to also
support them, or if they are not needed and can for example be expressed using processes,
as processes can be infinite without any problems.

And while we assume, that this system is both sound and complete, these properties need
a formal proof.
Besides the type system we showed a process-based concurrent language. By using the

notion of processes, this language allows constructs which are not possible in conventional
functional languages.
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A. Grips language

A.1. Syntax

expr ::= skip (Empty expression)

| end (Empty expression #2)

| var (Variable call)

| C expr1 . . . exprn (Constructor, n ≥ 0)

| λ var. expr (Abstraction)

| expr1 expr2 (Application)

| let var = expr1 in expr2 (Let-Binding)

| letrec var = expr1 in expr2 (Recursive Let-Binding)

| bind var = expr1 ; expr1 (Future binding)

| var1, var2 ← expr1 ; expr2 (Future sending)

| !var (Wait)

| ?var |m1 var1@varpat1 → expr1

...

|mn varn@varpatn → exprn

; expr (Pattern Matching)

pat ::= _ (Matches everything)

| C pat1 . . . patn (Matches constructor C and tests all arguments)

varpat ::= var@_

| var@C varpat1 . . . varpatn
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A. Grips language

A.2. Syntactic sugar

Two general rules apply:

• variables which are not needed can be omitted and fresh anonymous variables will be
inserted in place

• where the syntax demands in expr or ; expr, the expr can be omitted and is taken as
being ε

s1

s2
≡ s1 ; s2

fx1 . . . xn = t ≡ letrec f = λx1. . . . λ xn. t in

f C = t1

f D = t2
≡

letrec f = λ y. y | C → t1

| D → t2
in

e | r, x′ → t ≡ r, x′ ← e ; t

e | y@pat, e′ → t ≡ (r, e′ ← e ; ?r | y@pat→ t) for some fresh r

return x ≡ λ res. bind res = x

\x→ t ≡ λx. t
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