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Zusammenfassung

Polynomielle Systeme über Semiringen treten in verschiedenen Bereichen der Infor-
matik auf, so z.B. in der statischen Analyse prozeduraler Programme oder der The-
orie formaler Sprachen. In dieser Dissertation wird ein neues Verfahren zur Berech-
nung des kleinsten Fixpunkts polynomieller Systeme vorgeschlagen. Hierbei han-
delt es sich um eine Verallgemeinerung des wohlbekannten Newton-Verfahrens zur
Approximation von Nullstellen nichtlinearer Funktionen über den reellen Zahlen
durch iterative Linearisierung. Es wird gezeigt, dass die vorgestellte Verallge-
meinerung des Newton-Verfahrens mindestens genauso schnell gegen den kleinsten
Fixpunkt konvergiert wie die übliche Fixpunktiteration. Weiterhin werden mehrere
Klassen von Semiringen identifiziert, für welche das verallgemeinerte Newton-
Verfahren, im Gegensatz zu der gewöhnlichen Fixpunktiteration, den kleinsten
Fixpunkt bereits nach einer endlichen Anzahl von Iterationen erreicht. Schließlich
ergeben sich aus diesen Konvergenzresultaten interessante Querbeziehungen zu
anderen Themen aus dem Bereich der formalen Sprachen, wie z.B. Sprachen von
endlichem Index oder dem Satz von Parikh.

Ausgehend von den Klassen von Semiringen, über welchen das verallgemeinerte
Newton-Verfahren bereits nach endlich vielen Schritten den kleinsten Fixpunkt
erreicht, werden in der Dissertation noch drei weitere Typen von Semiringen
vorgestellt, welche es gestatten, den kleinsten Fixpunkt durch eine endliche Anzahl
von Linearisierungen zu bestimmen. Hierbei erlauben es zwei der drei vorgestellten
Semiringklassen den kleinsten Fixpunkt nur mit Hilfe einer Linearisierung bereits
zu bestimmen, während im Fall der dritten Klasse auf eine Linearisierung ganz
verzichtet werden kann.

Abschließend werden in der Dissertation noch Min-Max-Systeme betrachtet.

Disese stellen eine natürliche Erweiterung polynomieller Systeme über total-

geordneten Semiringen dar. Es wird eine Klasse von Semiringen vorgestellt, die

es erlaubt, nichtlineare Min-Max-Systeme mit Hilfe des bekannten Ansatzes der

Strategieieration, erweitert auf nichtdeterministische Strategien, zu lösen.





Abstract

Systems of polynomials on semirings arise in several branches of computer science,
like static analysis of procedural programs or formal language theory. We propose
a new technique for calculating the least fixed points of such polynomial systems.
This technique is a generalization of Newton’s method, the well-known method
for approximating a zero of a nonlinear function on the reals. We show that
our generalization of Newton’s method converges at least as fast as the standard
fixed point iteration, and identify classes of semirings on which Newton’s method
even reaches the least fixed point after a finite number of steps in contrast to the
standard fixed point iteration. We further obtain from these convergence results
interesting links to other topics of formal language theory, for instance, languages
of finite index and the Parikh theorem.

Motivated by our results on the convergence of Newton’s method, we then identify
three more classes of semirings which allow for an even faster calculation of the
least fixed point. Two of these semirings allow for reducing a nonlinear polynomial
system to a linear system in such a way that the least fixed point is preserved. In
the third case already a finite number of standard fixed point iterations suffice to
calculate the least fixed point, although this class of semirings does not satisfy the
ascending chain condition.

We then turn to min-max-systems, a natural generalization of polynomial systems

on semirings whose natural order is total. We identify a class of semirings which

allow to solve nonlinear min-max-systems by the established approach of strat-

egy iteration. In particular, we consider strategy iteration using nondeterministic

strategies and show that these strategies allow for choosing an optimal successor.
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Chapter 1

Introduction

At the heart of this thesis lies the problem of approximating and calculating
the least solution of equation systems

X = f(X)

where f is a system of polynomials, or more generally power series, on a spe-
cific algebraic structure called ω-continuous semirings. Polynomial equation
systems on these structures arise naturally in several branches of computer
science, e.g. in formal language theory, in abstract interpretation and static
analysis of recursive programs, or in the analysis of probabilistic systems. Our
approach for approximating the least solution is based on Newton’s method
(cf. Figure 1.1), the 300-year-old technique for computing a zero of a differ-
entiable function, i.e., we generalize the idea of linearization to the setting
of ω-continuous semirings, and approximate the least solution of X = f(X)
by solving a sequence of linear equation systems. We start with an illustra-
tion of the use of systems of polynomial equations in computer science, and
discuss at hand of this example the results of this thesis in more detail.

1.1 Interprocedural Dataflow-Analysis

Systems of polynomial equations are a natural way of describing the dataflow
of a program. One of the first to consider this approach to dataflow analysis
have been Sharir and Pnueli in 1981, with many refinements and adaptions of
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Let f : R→ R be a continuously differentiable function, and let f ′|x denote the derivative
of f at some x ∈ R. We may approximate the function f at x by its linearization

lf ;x(z) := f(x) + f ′|x(z − x).

Let z be a zero of f , and x some point close to z with f ′|x 6= 0. We then may approximate
z by means of the zero of the linearization lf ;x, yielding the Newton operator Nf (x)
defined by

Nf (x) := x− f ′|−1
x f(x).

By repeatedly applying Nf to the current approximation starting with x we obtain the

Newton sequence.

Figure 1.1: Newton’s method.

their approach in subsequent years ([JM82, KS92, RHS95, SRH96, NNH99,
RSJM05]). In this section, we give a short recap on the approach by Sharir
and Pnueli to dataflow analysis. We then slightly generalize their approach
which allows us to illustrate the problems considered in this thesis and the
results we obtain on them.

Let us start with sketching the approach by Sharir and Pnueli to dataflow
analysis ([SP81, JM82, KS92, RHS95, SRH96, NNH99, RSJM05]). As it
better suits the results to follow, we state their approach using the duality
principle of lattice theory, i.e., we use join-semilattices rather than meet-
semilattices, deviating from the classical dataflow analysis literature such as
[Kil73, KU77, SP81]. As a consequence, we also replace greatest fixed points
by least fixed points, meet-over-all-paths by join-over-all-paths, etc. This
change is purely notational (cf. Figure 1.2 for a short recap on the definition
of semilattice and complete lattice, duality and fixed points).

Sharir and Pnueli assume that the complete lattice (1) 〈L,v〉 of values is
chosen in such a way that values, i.e., the elements of the lattice, capture the
information one is interested in. Further, their approach requires a mapping φ
assigning to every program instruction a value, and a concatenation operator ·
that, given the values a and b of two program instructions, returns the value
a · b corresponding to their sequential execution a; b. Finally, they assume
that the concatenation operator · distributes over the lattice’s join t, i.e.,

1More precisely, in [SP81] meet-semilattices L are considered which have both a least
and a greatest element, and, further, satisfy the ascending chain condition, i.e., every
monotonically increasing sequence becomes stationary eventually. But the authors note
themselves: “However, since we will assume that L is finite [. . .] in any practical application
of this approach [. . .]”. This means, Sharir and Pnueli consider finite, and thus complete
lattices.
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Let L be some set and v a partial order on L. Then 〈L,v〉 is a meet-semilattice, resp.
join-semilattice if for every two elements a, b of L their greatest lower bound (meet),
resp. their least upper bound (join) denoted by a u b, resp. a t b exists in L. Every
meet-semilattice 〈L,v〉 is dual to the join-semilattice 〈L,w〉 with w the reverse of v.
The semilattice is complete if the greatest lower bound uA, resp. least upper bound tA
of arbitrary subsets A of L exists. If a semilattice is complete, then meet, resp. join can
be represented by its dual:

uA = t{b ∈ L | ∀a ∈ A : b v a}, resp. tA = u{b ∈ L | ∀a ∈ A : a v b}.

A complete semilattice is therefore called complete lattice. In particular, every meet-,
resp. join-semilattice 〈L,v〉 with L finite is a complete lattice if it possesses a greatest
element, resp. least element.
Obvious, but still important examples of (meet-)semilattices are the integers with the
canonical order, i.e., 〈Z,≤〉, or the for any given set A the powerset lattice on A given by
〈2A,⊆〉 with 2A the powerset of A. Their dual give natural examples of join-semilattices.

For any meet-semilattice 〈L,v〉, let f : L → L be a map on L. We then have that the

least fixed point of f exists w.r.t. 〈L,v〉 if and only if the greatest fixed point of f exists

w.r.t. to its dual 〈L,w〉.

Figure 1.2: Lattice – basic definition and examples.

a ·(btc) = (a ·b)t(a ·c) (2). This is a restriction, as not all program analyses
are distributive [NNH99], but we will also use this assumption for the largest
part of this section. With this at hand, Sharir and Pnueli define a system of
abstract data flow equations, containing one variable for each program point
n:

If n is the initial program point of a procedure then it contributes
the equation vn = 1, where vn denotes n’s variable. Otherwise, it
contributes the equation

vn =
⊔

m∈pred(n)

vm · h(m,n)

where pred(n) denotes the set of immediate predecessors of n
w.r.t. the flowgraph of the procedure, and h(m,n) is defined
as follows: if (m,n) is a call edge calling, e.g., procedure X,
then h(m,n) is the variable for the return node of X; otherwise
h(m,n) = φ(m,n). See also the following Example 1.1.1.

They show that for every procedure P of the program and for every program

2Actually, in [SP81] the value of a program instruction is the function describing its
effect on program variables, and the extension operator is function composition. However,
the extension to an arbitrary distributive concatenation operator is unproblematic.
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n0

proc X:

n1

n2

n3

b

a

call X

call Y

n4

proc Y :

n5 n6

n7

c d

call X call Y

Figure 1.3: Flowgraphs of three procedures

point p of P , the least solution of the system is the join of the values of
all valid program paths starting at the initial node of P and leading to p.
(Sharir and Pnueli’s result was later extended by [KS92] to programs with
local variables.) This least solution is usually referred to as meet on all paths
or short MOP. (3)

Example 1.1.1. Consider a program consisting of two procedures X and Y whose (control)
flow graphs are shown in Figure 1.3. Nodes ni correspond to program points, and edges
to program instructions. For instance, procedure X can execute an instruction with value
φ(n0, n3) = b and terminate, or execute an instruction with value φ(n0, n1) = a, call itself
recursively, and, after the recursive call has terminated, call Y . The system of equations
for Figure 1.3 can be represented more succinctly if variables for all program points other
than return points are eliminated by substitution. Only two equations remain, namely
those for the return point n3 of procedure X, resp. n7 of procedure Y . If moreover, and
abusing language, we reuse X and Y to denote the variables for these points, and a, b, c, d
to denote the values φ(n0, n1), φ(n0, n3), φ(n4, n5), φ(n4, n6), respectively, we obtain the
system

X = a ·X · Y t b Y = c ·X t d · Y (1.1.1)

Since the right-hand-sides of the equations are monotonic mappings, and · distributes over
t, the existence of the least fixed point is guaranteed by Kleene’s fixed-point theorem (see
Theorem 2.2.12). �

We slightly generalize Sharir and Pnueli’s setting. Loosely speaking, we allow
to replace the join operator t with any operator satisfying the same alge-
braic properties but possibly idempotence. In algebraic terms, we extend the
framework from the class of lattices considered in [SP81] to an ω-continuous
semiring [Kui97] (see also Definition 2.2.2), an algebraic structure with two
operations, usually called sum and product. The interest of this otherwise

3By dualization, meet becomes join in our presentation.
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simple extension is that our framework now encompasses equations over the
semiring of the nonnegative reals with addition and multiplication. This al-
lows us to compare the efficiency of generic solution methods for dataflow
analysis when applied to the reals, with the efficiency of methods applied by
numerical mathematics, in particular Newton’s method.

It is well-known that Newton’s method, when it converges to a solution,
usually converges much faster than classical fixed-point iteration (see e.g.
[OR70]). Furthermore, Etessami and Yannakakis have recently proved that
Newton’s method is guaranteed to converge for an analysis concerning the
probability of termination of recursive programs [EY05]. These results were
the motivation for our research into the question whether Newton’s method
can be generalized to the more abstract dataflow setting, where values are
arbitrary entities, while preserving these good properties.

1.1.1 From Semilattices to Semirings

Let us examine the properties of the join operator t. First of all, since the
lattice is complete, it is defined for arbitrary, finite or countably infinite, sets
of lattice elements. Furthermore, it is associative, commutative, idempotent,
and concatenation distributes over it. If we use the symbols 0 for the bottom
element of the lattice (corresponding to an abort operation) and 1 for the
element corresponding to a NOP instruction, then we have 0t a = at 0 = a
and 1 ·a = a ·1 = a for every a. It is argued in [SF00] that one can transform
every program analysis to an essentially equivalent one that satisfies 0 · a =
a · 0 = 0. So the lattice, together with the two operations t and · and the
elements 0 and 1, constitutes an idempotent semiring. In the following we
write ‘+’ for ‘t’ to conform with the standard semiring notation.

Idempotence of the join operator is not crucial for the existence of the least
fixed point; it can be replaced by a weaker property. Consider the relation
v on semiring elements defined as follows: a v a+ b for all elements a, b. A
semiring is naturally ordered if this relation is a partial order, and a naturally
ordered semiring in which infinite sums exist and satisfy standard properties
is called ω-continuous. Using Kleene’s fixed-point theorem it is easy to show
that systems of equations over ω-continuous semirings still have a least fixed
point with respect to the partial order v (see Theorem 2.2.12 taken from
[Kui97]).

We now study several examples encompassed by this more general setting.
This gives us also the opportunity to introduce several of the questions stud-
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ied in this thesis, resp. related to these. For this recall that different inter-
esting pieces of information correspond to the least solution of the dataflow
equations when instantiated over different semirings. In the following we
will denote by Σ the set of actions or operations the program consists of,
e.g. Σ = {a, b, c, d} for the program considered in Example 1.1.1, and let σ
denote an arbitrary element of Σ.

Language interpretation: We start with an analysis which also shows
the connection of our results to formal language theory. Consider the fol-
lowing semiring. The carrier is 2Σ∗ (i.e., the set of languages over Σ). The
semiring element σ is interpreted as the singleton language {σ}. The sum
and product operations are union and concatenation of languages, respec-
tively. We call it the language semiring over Σ. Instantiating the abstract
dataflow-equations on this semirings, the dataflow-equations merely become
a context-free grammar, and their least solution corresponds to the context-
free language represented by the grammar, see the following example.

Example 1.1.2. Under the language interpretation, Equations (1.1.1) become the following
context-free grammar:

X → aXY | b Y → cX | dY

The least solution of (1.1.1) is then the pair (L(X), L(Y )), where, for U ∈ {X,Y }, L(U)
denotes the set of terminating executions of the program with U as main procedure, or,
in language-theoretic terms, the language of the associated grammar with U as axiom. In
particular, by means of this interpretation of the dataflow-equations as grammar, deriva-
tion trees, as known from formal language theory, can be associated with every system of
polynomial equations. For example, the terminating run abcb corresponds to this deriva-
tion tree:

X

a

b c

b

X
Y

X

�

As we will see in Chapter 3, when applying our generalized Newton’s method
to context-free grammars, the Newton approximants can be characterized
by means of subsets of derivations trees associated with the context-free
grammar under consideration. This in turn allows us to show a sur-
prising connection between Newton’s method, and the notion of finite-
index languages which have been extensively investigated under different
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names by Salomaa, Gruska, Yntema, Ginsburg and Spanier, among others
[Sal69, Gru71, Ynt67, GS68].

Counting interpretation: Assume that an action σ ∈ Σ corresponds
either to an allocation or a deallocation of some resource, and we want to
check that the number of allocations and deallocations match. The problem
we are facing is therefore to count how many as, bs, etc. we can observe
in a (terminating) execution of the program, but we are not interested in
the order in which they occur. In the terminology of abstract interpretation,
we abstract an execution w ∈ Σ∗ by the vector (na, nb, nc, nd) ∈ N|Σ| where
na, . . . , nd are the number of occurrences of a, . . . , d in w. We call (na, . . . , nd)
the Parikh image of w. In order to obtain the Parikh images of the sets of
terminating runs, we then instantiate the dataflow-equations on the following
semiring: The carrier is 2N|Σ| , where the j-th action of Σ is interpreted as the
singleton set {(0, . . . , 0, 1, 0 . . . , 0)} with the “1” at the j-th position. The
sum operation is set union, and the product operation is given by

S · T = {(sa + ta, . . . , si + ti) | (sa, . . . , si) ∈ S, (ta, . . . , ti) ∈ T} .

As we have seen, the sets of terminating runs correspond to context-free
languages. By virtue of the well-known result by Parikh there exist regular
languages whose Parikh image coincides with the ones of the sets of termi-
nating runs. See the following example.

Example 1.1.3. We assume the natural lexicographical order on Σ, i.e., we identify a
with the set {(1, 0, 0, 0)}, and so forth. Our running example then becomes the following
equations:

X = {(1, 0, 0, 0)} ·X · Y ∪ {(0, 1, 0, 0)} Y = {(0, 0, 1, 0)} ·X ∪ {(0, 0, 0, 1)} · Y

with multiplication defined as stated above. As we will see, our generalized Newton’s
method reaches the least solution of this system after already two steps (cf. Theorem 3.4.6).
From this result we obtain that the languages represented by the following regular expres-
sions have the same Parikh image as the least solution of the above equation system:

X =
(
ad∗cb+ a(abd∗c)∗bd∗c

)∗
b Y =

(
d+ c(ad∗cb)∗a(abd∗c)∗b

)∗
cb �

We show in Section 3.4 that Newton’s method always reaches the least so-
lution of a polynomial equation system under the counting interpretation.
In particular, we show that Newton’s method reaches the least solution in
at most n steps where n is the number of variables the polynomial system
consists of (see Theorem 3.4.6), and that every Newton approximant is given
by a regular expression, thus obtaining a new, constructive proof of Parikh’s
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theorem. Further, we identify a method proposed by Hopkins and Kozen
in [HK99] as Newton’s method, thereby improving the upper bound of O(3n)
given in [HK99] on the number of steps needed to reach the least solution.

Throughput: Assume that with each of the actions of Σ some measure
of the work done by them is associated, for simplicity let this be a function
w : Σ→ N such that w(σ) is the work done by action σ in some fixed unit
of measurement. Further, assume that every action needs exactly one time
unit to execute. Given a run σ1σ2 . . . σl of a program we then may define the
throughput of this run to be ∑l

i=1w(σi)

l
.

Caucal et al. consider in [CCFR07] the problem of determining the through-
put of a program, i.e., the greatest lower bound on the throughputs of all
runs. In our terms, the algorithms of [CCFR07] obtains this throughput by
repeatedly adapting the function w and instantiating the abstract dataflow
equations on the (min,+)-semiring with the reals extended by ±∞ as car-
rier, minimum as addition, and plus as multiplication. We refer the reader
to Subsection 4.3.2 for more details. There we also show how to improve the
algorithm of [CCFR07].

Example 1.1.4. We consider the easier, yet underlying problem of calculating the infimum
on the work done along the executions of the program, i.e., we want to calculate for
U ∈ {X,Y }

WU := inf

{
l∑
i=1

w(σi) | σ1 . . . σl is a terminating run of procedure U

}
.

Then the vector (WX ,WY ) is the least solution of the dataflow equations 1.1.1 instantiated
on the (min,+)-semiring:

X = min{w(a) +X + Y,w(b)} Y = min{w(c) +X,w(d) + Y }

Assuming that all weights w(a), . . . , w(d) are nonnegative, one easily realizes that the least
solution of this system is simply

X = w(b) Y = w(b) + w(c)

as the final action in every terminating run is b. �

Regarding the more general setting where w takes also negative values, we
show in Chapter 4 how polynomial systems on so called star-distributive
semirings, which encompass the (min,+)-semiring, can be reduced to a linear
system without changing the least solution. The least solution of such a linear
system can then be easily calculated:
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Example 1.1.5. In Example 1.1.2 we have already introduced the idea that a polynomial
system corresponds to a context-free grammar when addition is idempotent. Consider the
following linear system on the (min,+)-semiring:

X = min{1, 2 +X,−1 + Y }
Y = min{1 +X,−1 + Y }.

Because semiring multiplication (+) is commutative, this linear system corresponds to the
following regular grammar (without explicit axiom):

X → a | bX | cY
Y → aX | cY

Formally, we use the morphism h from the language semiring generated by Σ = {a, b, c}
into the (min,+)-semiring uniquely determined by h(a) = 1, h(b) = 2, and h(c) = −1.

From this regular grammar we now can easily deduce regular expressions φX , resp. φY
representing the language we obtain when taking X, resp. Y as axiom:

φX = (b+ cc∗a)∗a resp. φY = (ab∗c+ c)∗aa.

By means of the morphism h one can now obtain from these the least solution of the
original equation system on the (min,+)-semiring (4). Let us explicitly calculate the
image of b∗ and c∗ under h:

h
(⋃

k≥0{bk}
)

= inf{h(b) · k | k ≥ 0} = inf{2 · k | k ≥ 0} = 0

h
(⋃

k≥0{ck}
)

= inf{h(c) · k | k ≥ 0} = inf{−k | k ≥ 0} = −∞.

In this way one can calculate that the least solution of the original equation system is
given by X = Y = −∞. The reader might want to check this result by applying the
standard fixed point iteration to the right-hand side starting from (∞,∞). �

Probabilistic interpretations: Assume that the choices between actions
are stochastic. For instance, actions a and b are chosen with probability p
and (1−p), respectively. The probability of termination, i.e., the probability
that a given procedure eventually terminates, is given by the least solution
of Equation (1.1.1) when interpreted over the real semiring (see [EKM04,
EY05]): The carrier is the set of nonnegative real numbers R≥0 extended
by ∞; semiring addition and multiplication result from suitably extending
the canonical addition and multiplication on the reals to R≥0 ∪ {∞}. The
semiring element σ is interpreted as the probability of choosing σ among all
enabled actions.

Example 1.1.6. A particular instantiation of the program of Figure 1.3 as an probabilistic
program is shown in Figure 1.4. The semiring operations are addition and multiplication

4One can show that h preserves the least fixed point.
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n0

proc X:

n1

n2

n3

0.6

0.4

call X

call Y

n4

proc Y :

n5 n6

n7

0.8 0.2

call X call Y

Figure 1.4: Probabilistic flowgraphs

over the nonnegative reals. Notice that addition is not idempotent. The semiring is ω-
continuous if an ∞-element with the usual properties is added. As just stated, the least
solution of the system

X = 0.4 ·X · Y + 0.6 Y = 0.8 ·X + 0.2 · Y

is the vector of termination probabilities. In our example, we can easily obtain all solutions
as the second equation is linear, in particular, we can transform it to Y = X. We thus
may substitute X for Y in the first equation, leading to the equation 0 = 0.4 ·X2−X+0.6
with solutions X = 1 and X = 1.5. The least solution is thus X = 1, Y = 1, i.e., both
procedures terminate with probability 1. �

Of course, in general neither calculating termination probabilities can be
reduced to solving an univariate problem nor do the termination probabilities
need to be rational, let alone representable by radicals. For the latter consider
the following example:

Example 1.1.7. . Consider the equation X = 1/6X6 + 1/2X5 + 1/3. The solutions of
this equation are exactly the roots of the polynomial p(X) = 1/6X6 + 1/2X5 −X + 1/3.
The polynomial p is reducible, and can be written as p(X) = 1/6 · (X − 1) · q(X) with
q(X) = X5 + 4X4 + 4X3 + 4X2 + 4X−2. Obviously, the greatest common divisor of the
coefficients of q is one, i.e., q is a primitive polynomial in Q[X]. By Eisenstein’s criterion
it then immediately follows that q is also irreducible in Q[X], i.e., it cannot be written
as the product of two non-constant polynomials of Q[X]. The roots of its derivative d

dX q
can be exactly determined by means of the formula by Ferrari. From this one sees that q
has exactly two inflection points, and one can argue that q has exactly three roots in R.
Using Galois theory (see e.g. theorem 10 in section 6.1 of [Bos01]) it then follows that the
roots of q cannot be represented by means of radicals. �

As calculating the probabilities of termination is not possible in general,
the question of the convergence speed of Newton’s method for these kind of
systems naturally arises. This means, how many approximation steps does
one need to do such that the current approximant coincides with the exact
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solution in at least the k highest bits (5). This thesis is only marginally
concerned with these important problems; only in Chapter 6 we study some
properties of polynomial systems on the nonnegative reals. We refer the
reader to [KLE07, EKL08a, EKL09a] for a detailed treatment, and only
illustrate one of the main results regarding the convergence speed of Newton’s
method in the following example:

Example 1.1.8. Consider the following system of polynomials on the nonnegative reals:

X = f1(X,Y ) := 1
2X

2 + 1
4Y

2 + 1
4

Y = f2(X,Y ) := 1
4X + 1

4XY + 1
4Y

2 + 1
4 .

We may also write this as

q1(X,Y ) := 1
2X

2 + 1
4Y

2 + 1
4 −X = 0

q2(X,Y ) := 1
4X + 1

4XY + 1
4Y

2 + 1
4 = 0.

Let [qi = 0] denote the set of zeros of the equation qi(X,Y ) = 0. Then [qi = 0] is an
implicit surface, in our example a quadric, and the least nonnegative solution µf of the
above equation system is the least nonnegative point common to both surfaces:

(a) (b)

Figure 1.5: The surfaces of Example 1.1.8.

In our examples, q1 defines a parabola, and q2 corresponds to a ellipse. The reader can
guess this by looking at Figure 1.5(a). One can show that the Newton approximants are
all located in the region

R := {x ∈ Rn≥0 | x ≤ f(x) ∧ x ≤ µf},

and that R is exactly the region enclosed by the coordinate axes and the surfaces. See
for example Figure 1.5(b), where the Newton approximants of above equation system are
depicted by crosses.

5Assuming that, for instance, 1/2 is written as 0.1, and not as 0.0111 . . . = 0.01̄.



12 Introduction

The convergence speed of Newton’s method is then essentially determined by the angle
between the tangents at the quadrics in µf (6): the narrower the angle the slower Newton’s
method converges. An intuitive understanding of this can be obtained by considering
another method of approximating µf :
Looking at Figure 1.5(b), assume we are given some point x inside the region enclosed by
the coordinate axes and the quadric surfaces. We then may move from x to the quadric
defined by qi by following the ray x+R≥0 · ei (with eij = 0 for i 6= j and eii = 1) yielding
the point pi; and take the tangent in pi at the quadric as an approximation of the quadric
of itself. This is shown in Figure 1.6.

Figure 1.6

Figure 1.6 then suggests to take the intersection y of the tangents as the next approximant.
Let us call this the tangent method. One can show that the tangent method always
converges to µf , and it does so at least as fast as Newton. We discuss the connection
between Newton’s method and this tangent method in more detail in Chapter 6. The
advantage of the tangent method is that one has an intuitive understanding of its behavior
when looking at the surfaces.

Figure 1.7 shows two steps of the tangent method when starting in 0 = (0, 0). In Fig-
ure 1.7(a), the tangents at µf intersect, whereas in Figure 1.7(b) they only touch with

6When considering the convergence speed, one can reduce the system f to subsystem
where µf is positive in every component, and “every variable depends on every other vari-
able”, which basically means that if we improve an approximation of µf in one component,
we can increase it in all components. For this class of systems, the characterization by
means of the angle holds true. Our example satisfies these properties.
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(a) (b)

Figure 1.7

the common tangent drawn by dots. When comparing the second pair of tangents used
in Figure 1.7(a) to the pair used in Figure 1.7(b), one sees that in (b) the surfaces bend
away from the tangents stronger than in (a). In other words, the second pair of tangents
in (a) approximates the surfaces better than the second pair in (b) does. From this, it
is not surprising that the convergence speed depends on the angle of the tangents in µf ;
the smaller this angle gets relative to the initial angle enclosed by the tangents in 0, the
closer we have to get to µf in order for the tangents to approximate the surfaces well. We
therefore should expect the worst convergence speed of the tangent method, and Newton’s
method, if the surfaces are only tangent to each other in µf .

In fact, as long as the surfaces do not touch in µf , one can show that eventually Newton’s
method converges exponentially. This means that there is some threshold, i.e., a natural
number kf determined by the coefficients of f such that the kf+i-th Newton approximant
coincides with µf in at least the 2i highest bits.

Somewhat surprisingly, one can show that even in the worst case, i.e., both surfaces
being tangent to each other in µf , Newton’s method, and the tangent method, eventually
converge at least linearly. That is, there is again a constant kf such that the kf + i-th
approximant coincides with µf in the i highest bits. In particular in [KLE07] the following
result is shown:
Let z be the first intersection with one of the coordinate axes of the ray starting in µf
heading along the tangent towards the origin. Then for every point x which is at least
as great as z in every component, Newton’s method converges linearly when started in x.
We therefore have kf = 0 for the system depicted in Figure 1.7(b), i.e., Newton’s method
converges linearly right from the start. �

Up to now we have considered sequential programs where we assumed that
for every branching point of the given program we know, or at least have
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obtained an approximation of the probability with which a given branch is
taken.

We conclude this paragraph by taking a detour to parallel programs. Here
a surprising connection exists between the speed at which Newton’s method
converges to the least solution, and the space-efficient scheduling of parallel
programs (cf. [BEKL09]):

Example 1.1.9. Assume we are given a parallel program which is made up of two types
of tasks. Let X and Y denote these two types. For simplicity, every task takes one time
unit to complete and spawns at its end a finite number of child tasks. For this example,
assume that a task of type X either terminates with probability 0.6 without spawning any
children, or it terminates with probability 0.4 spawning two new tasks, one of type X, and
one of type Y . Similarly, a task of type Y – after finishing its workload – either spawns
a task of type X with probability 0.8, or a task of type Y with probability 0.2. We may
succinctly represent the described behavior as a stochastic context-free grammar:

X
0.6−−→ ε Y

0.8−−→ X

X
0.4−−→ XY Y

0.2−−→ Y.

Suppose we are given an initial task of type X. Then again we want to know if this task
will eventually terminate almost surely. Let tX (tY ) be the probability that a single task
of type X (Y ) eventually terminates. It is not hard to see that the vector (tX , tY ) is then
the least solution of the equation system of Example 1.1.6. We therefore know that in our
example both task types terminate almost surely.

We turn to the question of scheduling. For this example, we assume that all tasks are
executed on a single CPU, i.e., in every time unit only a single task can be executed, and
all tasks are assumed to be executable independently of each other, so the CPU is free
to choose which task to execute next. Starting from an initial tasks of type, say X, after
each time step the CPU adds the newly spawned children to the pool of tasks waiting for
execution, and chooses then from this pool by some strategy the next task to be executed.
For instance, consider the following run of the described program:

X

X Y

X

X Y

This means the initial task of type X spawns two children, one of type X, one of type
Y . The child of type X then terminates, whereas the child of type Y again spawns a
child of type X, and so on. Consider now the strategy where the CPU first completes the
tasks originating from the first task of type Y . In this case, we will have to store up to
three tasks waiting for execution. On the other hand, if the CPU first schedules the tasks
of type X, then a at most two tasks have to be remembered along the execution of the
parallel program.
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Naturally the question arises if there is some optimal strategy for the CPU to schedule the
tasks in order to minimize the number of tasks waiting for execution at any given point
of time, i.e., in order to minimize the needed space. As we will see in Theorem 3.2.11,
the Newton approximants correspond to a particular class of derivations trees (w.r.t. to
the interpretation of the dataflow equations as context-free grammar, motivated in Ex-
ample 1.1.2). This class of trees correspond to the most space-efficient scheduling. From
this, one can obtain the surprising result that when using the optimal scheduling strategy,
then the probability that at most k units of space are used is equal to the k-th Newton
approximant (cf. [BEKL09]). �

1.2 Solving Systems of Equations

Current generic algorithms for solving Sharir and Pnueli’s equations, like
the classical worklist algorithm of dataflow analysis, are based on variants
of Kleene’s fixed-point theorem [Kui97] (cf. Theorem 2.2.12). The theorem
states that the least solution µf of a system of equations X = f(X) over
an ω-continuous semiring is equal to the supremum of the sequence (κ(i))i∈N
of Kleene approximants given by κ(0) = ~0 and κ(i+1) = ~f(κ(i)). This yields
a procedure (let us call it Kleene’s method) to compute or at least approxi-
mate µf . If the domain satisfies the well-known ascending chain condition
[NNH99], then the procedure terminates, because there exists an i such that
κ(i) = κ(i+1) = µf .

Kleene’s method is generic and robust: it always converges when started
at the vector 0 of 0-elements, for any ω-continuous semiring and for any
system of equations. On the other hand, it often fails to terminate, and it
can converge very slowly to the solution. We illustrate this point by means
of two simple examples. Consider the equation X = a ·X + b over the lattice
of subsets of the language {a, b}∗. The least solution is the regular language
a∗b, but we have κ(i) = {b, ab, . . . , ai−1b}, i.e., the solution is not reached in
any finite number of steps. For our second example consider a very simple
probabilistic procedure that can either terminate or call itself twice, both
with probability 1/2. The probability of termination of this program is given
by the least solution of the equation X = 1/2 + 1/2X2. It is easy to see
that the least solution is equal to 1, but we have κ(i) ≤ 1 − 1

i+1
for every

i ≥ 0, i.e., in order to approximate the solution within i bits of precision
we have to compute about 2i Kleene approximants. For instance, we have
κ(200) = 0.9990, i.e., 200 iterations produce only three digits of precision.

After our slight generalization of Sharir and Pnueli’s framework, quantita-
tive analyses like the probability of termination fall within the scope of the
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approach. So we can look at numerical mathematics for help with the ineffi-
ciencies of Kleene’s method.

As could be expected, faster approximation techniques for equations over
the reals have been known for a long time. In particular, Newton’s method,
suggested by Isaac Newton more than 300 years ago, is a standard efficient
technique to approximate a zero of a differentiable function, and can be
adapted to our problem. Since the least solution of X = 1/2 + 1/2X2 is a
zero of 1/2+1/2X2−X, the method can be applied, and it yields ν(i) = 1−2−i

for the i-th Newton approximant. So the i-th Newton approximant already
has i bits of precision, instead of log i bits for the Kleene approximant.

However, Newton’s method also has a number of disadvantages, at least at
first sight. Newton’s method on the real field is by far not as robust and
well behaved as Kleene’s method on semirings. The method may converge
very slowly, converge only locally (only when started in a small neighborhood
of the zero), or even not converge at all [OR70]. So we face the following
situation. Kleene’s method, a robust and general solution technique for arbi-
trary ω-continuous semirings, is inefficient in many cases. Newton’s method
is usually very efficient, but it is only defined for the real field, and it is not
robust.

Motivated by their work on Recursive Markov Chains, [EY05] showed that a
variant of Newton’s method is robust for certain systems of equations over the
real semiring : the method always converges when started at zero. In other
words, moving from the real field to the real semiring (only nonnegative
numbers) makes the instability problems disappear.

Naturally the question arises if Newton’s method can be lifted from the real
semiring to the general class of ω-continuous semirings. This question was
the starting point for this thesis and the results obtained therein.

1.3 Contribution and Related Work

Chapter 3 studies the question if and how Newton’s method can be extended
to arbitrary ω-continuous semirings. Starting from the original definition of
Newton’s method on the reals, we generalize it step-by-step and prove that its
robustness on the real semiring is preserved by the generalization. This means
that the generalized Newton’s method always converges to the least solution,
and that it always does so at least as fast as standard fixed point iteration.
We then proceed to further analyze our generalized Newton’s method. We
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provide a characterization of the Newton approximants, amongst others by
means of derivation trees as known from formal language theory, and apply
it to idempotent semirings, the structures of classical program analysis. We
first study the language semiring, where equation variables are interpreted
over languages of finite words, sum is interpreted as union of languages, and
product as concatenation. The least solutions of fixed-point equations are the
context-free languages, and so our generalized Newton’s method can be seen
as a tool for approximating context-free languages. We show that the New-
ton approximants are the context-free languages of finite index, a well-known
class studied since the 1960s in language theory [Ynt67, GS68, Sal69, Gru71].
We then proceed to study the case of commutative and idempotent semirings.
Loosely speaking, these semirings correspond to counting analysis, in which
one is interested in how often program points are visited, but not in which
order. These semirings do not always satisfy the ascending chain condition,
and Kleene’s method may not terminate. We show that a very elegant it-
erative solution method for these semirings, obtained by [HK99], is exactly
Newton’s method, and always terminates in a finite number of steps. As
mentioned above, we further use our characterization of Newton approxi-
mants to show that the least fixed point is reached after at most n iterations,
a tight bound, improving on the O(3n) bound of [HK99]. Chapter 3 consists
of material previously published in [EKL07b, EKL07a, EKL09b].

Chapter 4 is based on the results published in [EKL08b], and is devoted
to the proof principle used for showing the convergence speed of Newton’s
method in case of commutative and idempotent semirings, and the char-
acterization of the Newton approximants by means of derivation trees. We
generalize this principle, and prove its usefulness by identifying several classes
of semirings which allow for an efficient calculation of the least fixed point of
polynomial systems. We introduce star-distributive semirings, a subclass of
semirings with idempotent addition and commutative multiplication includ-
ing, for instance, the semiring on the reals with min as addition, and + as
multiplication – the semiring underlying shortest-path problems. We then
show that for any non-linear polynomial system on star-distributive semi-
rings, one can efficiently construct a linear polynomial system preserving the
least solution – the latter a well-known and solvable problem. Our result on
star-distributive semirings is then used to improve an algorithm by Caucal
et al. [CCFR07]. Further, we study lossy semirings, a subclass of semirings
with idempotent addition, but not necessarily commutative addition. This
subclass of semirings contains e.g. the semiring used in [BEM97] for modeling
lossy channel systems, i.e., systems which communicate via channel which are
not reliable and therefore can lose parts of the messages. We show that sim-
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ilar to star-distributive semirings solving non-linear polynomial system can
be reduced to solving linear systems. This allows us to show that the least
solutiontion of polynomial systems on lossy semirings can also be computed,
and not only approximated.

In Chapter 5 we consider semirings whose natural order is total. On such
semirings, both join and meet always are defined, i.e., one can say that such
semirings exhibit two additions. It is thus natural to consider the extension of
polynomials built up from both kind of additions, and multiplication. A nat-
ural example of such semirings are integers where join and meet become max
and min, and multiplication is given by addition on the integers. We therefore
call systems consisting of polynomials using both meet and join (polynomial)
min-max-systems. Min-max-systems on the integers arise e.g. in interval
analysis introduced by Cousot and Cousot [CC76, CC91] (7). As a direct con-
sequence of our result on star-distributive semirings, we obtain in Section 5.2
that on these semirings the least solution of min-max systems can be obtained
by solving a linear polynomial system using only the join operator. In Sec-
tion 5.3 we study strategy iteration, a well-known approach for solving min-
max-systems. There are many different algorithms based on strategy itera-
tion, for instance, by Gawlitza and Seidl for interval analysis [GS07, GS08],
by Jurdzinski and Vöge for parity games [VJ00], or by Björklund, Sandberg,
and Vorobyov for mean-payoff and parity games [BSV02, BSV03, BSV04].
We identify a class of semirings, encompassing the special cases just men-
tioned, for which strategy iteration always allows to obtain the least solution
of a polynomial min-max-system. As an application of our results, we show
in Section 5.5 how our results can be applied to parity games. This chapter
is loosely based on [Lut08].

Finally, in Chapter 6 we study some properties of polynomials systems on
the nonnegative reals. We give a characterization of the region the New-
ton approximants are located in. From this characterization, we obtain a
new method, generalizing Newton’s method, for approximating the least so-
lution (see Example 1.1.8). We also study the existence of a second non-
negative fixed point, a question motivated by the study of Galton-Watson
processes [WG75].

7The goal in this analysis is to obtain for each variable and each program point of a
given program intervals as tight as possible bounding the range of the variable.
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1.4 Outline

This thesis is organized as follows. Section 2.2 introduces ω-continuous semi-
rings, systems of fixed-point equations, and some semirings investigated in
the rest of the paper. Section 3.1 recalls Newton’s method, and generalizes
it to arbitrary ω-continuous semirings. Section 3.2 characterizes the Newton
approximants in terms of derivation trees, a generalization of the derivation
trees of language theory. Section 3.3 considers the particular case of idem-
potent semirings and applies the characterization to the language semiring.
Section 3.4 applies the characterization to idempotent and commutative semi-
rings. Finally, Section 3.5 shows that Newton’s method can also be applied
to non-distributive program analyses.

In Chapter 4, we turn on to applying the proof principle underlying the
Sections 3.3 and 3.4 to more specialized classes of semirings, thereby obtain-
ing more efficient methods for calculating the least solution of polynomial
systems. In particular, we introduce and study star-distributive semirings
(Section 4.3, lossy semirings (Section 4.4), and 1-bounded semirings (Sec-
tion 4.5).

Section 5.2 studies the special case of star-distributive semirings whose nat-
ural order is total, and the extension of polynomial equation systems to min-
max-systems. From there we move on to study when strategy iteration can
be used for solving min-max-systems, leading to the definition of si-semirings
and nondeterministic strategy iteration (Section 5.3. In Section 5.5 we then
exemplify our results by applying them to parity games.

The tangent method as described in Example 1.1.8 is discussed in Section 6.3.
Section 6.4 contains a treatment of the problem when a system of polynomials
on the nonnegative reals possesses a second finite fixed point.

Some of the more technical proofs have been moved to the appendix. Instead
proof sketches are given in the hope of improving readability.
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Chapter 2

Preliminaries

This chapters introduces definitions and notations used throughout the fol-
lowing chapters. We first recall standard definitions from literature and then
introduce more specific definitions about semirings.

2.1 Basic Definitions and Notations

Logical Operators: We use ∧,∨,⇒,⇐,⇔,¬ to denote the standard log-
ical operators.

Sets: We use N to denote the set of natural numbers, and assume 0 ∈ N.
For a natural number n ≥ 1 we write [n] for {1, 2, . . . , n}. The real numbers
are denoted by R, and we refer to the nonnegative real numbers by R≥0.
Operations on sets are denoted as usual by ∪ (set union), ∩ (set intersection)
and \ (set difference). Let A be a set. We write |A| for the cardinality of
A. Its power set is denoted by 2A. For B another set, we write AB for the
set of all functions from B to A. The value of a function f ∈ AB at some
b ∈ B is denoted either by f(b) or fb. In particular, for k ∈ N we call Ak

the set of sequences or words of length k on A where ε denotes the sequence
of length 0, i.e., A0 = {ε}. The set of finite sequences on A is denoted by
A∗ :=

⋃
k∈NA

k. Instead of AN we stick to the more frequently used notation
Aω for denoting the set of countably infinite sequences or words on A.
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Regular Expressions: The regular expressions generated by a finite al-
phabet Σ are denoted by RExpΣ and defined inductively as usual for 0, 1 6∈ Σ:

RExp0
Σ := Σ ∪ {0, 1}

RExpi+1
Σ := RExpiΣ

∪ {φψ, (φ+ ψ), (φ)∗ | φ, ψ ∈ RExpiΣ}
RExpΣ :=

⋃
i∈N RExp

i
Σ.

We assume that the Kleene star has the highest priority, followed by con-
catenation, and set union having the lowest priority, and drop parenthesis
if no ambiguity arises. The canonical interpretation of a regular expression
φ ∈ RExpΣ as language is denoted by LΣ(φ):

LΣ : RExpΣ → 2Σ∗

0 7→ ∅
1 7→ {ε}
Σ 3 a 7→ {a}
φψ 7→ LΣ(φ) · LΣ(ψ)
(φ+ ψ) 7→ LΣ(φ) ∪ LΣ(ψ)
(φ)∗ 7→ LΣ(φ)∗,

with LΣ(φ) · LΣ(ψ) the concatenation of languages, i.e.,

LΣ(φ) · LΣ(ψ) := {uv | u ∈ LΣ(φ), v ∈ LΣ(ψ)}

and LΣ(φ)∗ =
⋃
k∈N LΣ(φ)k. We drop the subscript, and simply write L(φ)

if Σ is known from the context.

Binary Relations: Let A and B be sets. Then R ⊆ A × B is binary
relation. We also write aRb for (a, b) ∈ R. The set {b ∈ B | aRb} of
successors of a w.r.t. R is denoted by aR. Analogously, we write Rb for the
set {a ∈ A | aRb} of predecessors of b. A binary relation R ⊆ A × A is a
partial order if it is reflexive (∀a ∈ A : aRa), antisymmetrical (∀a, b, c ∈ A :
(aRb ∧ bRa)⇒ a = b) and transitive (∀a, b, c ∈ A : (aRb ∧ bRc)⇒ aRc). A
partial order R ⊆ A is a total order if ∀a, b ∈ A : aRb ∨ bRa.

Partial Orders: A partial order or poset is a pair 〈A,≤〉 with A a set, and
≤ a partial order on A. As usual we write a ≥ b for b ≤ a, and a < b for
a ≤ b∧ a 6= b. An ω-chain in 〈A,≤〉 is any ascending sequence (ai)i∈N ∈ Aω,
i.e., ai ≤ ai+1 for all i ∈ N. We call 〈A,≤〉 ω-chain complete if the supremum
of any ω-chain (ai)i∈N exists in A. Sometimes ω-chains are also defined
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to be countable subsets of A on which ≤ is total. This latter definition
obviously encompasses the former. The following proposition shows that
both definitions are equivalent w.r.t. the notion of ω-chain completeness.

Proposition 2.1.1.
Let 〈A,≤〉 be a ω-chain complete poset, and B ⊆ A a countable set such
that ≤ restricted to B is total. Then the supremum of B exists in A. �.

Proof. As B is countable, there is a bijection β : N→ B. We define the sequence (ik)k∈N
inductively. We set i0 := 0 for i = 0. For k ≥ 0 we first define Ik := {j > ik | β(j) > β(ik)}.
Then we set ik+1 := ik if Ik = ∅; otherwise ik+1 := minN \ Ik.

By construction (ik)k∈N, resp. (β(ik))k∈N is an ascending sequence in N, resp. A. We claim

that the supremum b̄ of (β(ik))k∈N is the supremum of B. A straightforward induction

shows that for any k ∈ N we have ∀j ≤ ik : β(j) ≤ β(ik). So take any b ∈ B. We then

find a k ∈ N such that β−1(b) ≤ ik. From this it follows that b ≤ β(ik) also holds. Hence,

b̄ is an upper bound of B. On the other hand there cannot be an upper bound c of B with

c < b̄ as this would mean that there is a k ∈ N with β(ik) > c.

A partial order is an ω-complete partial order (short: ω-cpo) if it is ω-chain
complete and it has a least element. (1)

A map f : A1 → A2 between two posets 〈A1,≤1〉, and 〈A2,≤2〉 is monotone
if

∀x, y ∈ A1 : x ≤1 y ⇒ f(x) ≤2 f(y).

For both 〈A1,≤1〉, and 〈A2,≤2〉 ω-chain-complete, we say that f is ω-
continuous if for any ω-chain (ai)i∈N ∈ Aω1 we have that

sup≤2

i∈N f(ai) = f
(
sup≤1

i∈N ai
)

where sup≤i denotes the supremum w.r.t. the partial order ≤i. Note that
every ω-continuous map is monotone.

Fixed points: Let 〈A,≤〉 be a poset , and let f be a map on 〈A,≤. We
call a ∈ A a fixed point if f(a) = a holds; a is a prefixed point if f(a) ≤ a, and
it is a postfixed point if a ≤ f(a). By µf we denote the least fixed point (LFP)
(w.r.t. ≤) if it exists. Similarly, the greatest fixed point (GFP) is denoted by
νf if it exists.

Let 〈A,≤〉 be a ω-cpo with least element ⊥, and f : A→ A an ω-continuous
map. Then the Kleene sequence (κ(i))i∈N of f is inductively defined by κ(0) :=

1The definition of ω-cpo varies with literature. The same structure is also called cpo,
dcpo, or ω-dcpo by other authors. Our definition here is in the spirit of [Ési08].
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f(⊥), and κ(i+1) := f(κ(i)) for all i ∈ N (2). Because f is monotone, the
Kleene sequence is an ω-chain in 〈A,≤〉. Hence, its supremum sup≤i∈N κ

(i)

exists. Because of ω-continuity this supremum is also a fixed point of f . A
straightforward inductions show that sup≤i∈N κ

(i) is the least fixed point µf .
This well-known result is called Kleene fixed-point theorem, or sometimes
simply fixed-point theorem:

Theorem 2.1.2.
Let f : A → A be a ω-continuous function on the ω-cpo 〈A,≤〉. Then the
least fixed point µf exists and is given by sup≤i∈N κ

(i). �

2.2 ω-Continuous Semirings

Semirings: We have already introduced (ω-continuous) semirings infor-
mally in the introduction by means of several examples. Let us recall two of
them:

Example 2.2.1. We described the language semiring, or free semiring, generated by some
finite alphabet Σ which consisted of the set 2Σ∗ with set union as addition, and language
concatenation as multiplication.

We also considered the question of determining the probability of termination for a given
recursive program. Here, the dataflow equations were instantiated on the so called real
semiring, i.e., the nonnegative real numbers extended by∞. Addition, and multiplication
on the real semiring were given by the natural extension of the canonical addition, and
multiplication on R to encompass∞, i.e., a+∞ =∞, 0 ·∞ = 0, and a ·∞ =∞ for a > 0,
otherwise. �

One arrives quite naturally at the formal definition of ω-continuous semiring
by taking the similarities of these two examples. Note that this definition is
more in the spirit of [Ési08] then the one found in [Kui97]. (See the following
remark for more details.)

Definition 2.2.2.
A semiring S is an algebraic structure 〈S,+, ·, 0, 1〉 satisfying the following
four properties:

(1) 〈S,+, 0〉 is a commutative monoid.

(2) 〈S, ·, 1〉 is a monoid.

(3) 0 · a = a · 0 = 0 for all a ∈ S.

(4) a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ S.

2Defining κ(0) = 0 would be more straightforward, but less convenient for this thesis.



2.2 ω-Continuous Semirings 25

A semiring S is naturally ordered if it satisfies:

(5) The relation v := {(a, b) ∈ S × S | ∃d ∈ S : a + d = b} is a partial
order.

We call a semiring totally ordered if its natural order is a total order.

For a naturally ordered semiring S we write
⊔
A for the v-supremum of a

set A ⊆ S if it exists in S. A naturally ordered semiring is ω-chain complete
if it satisfies:

(6) For all ω-chains (ai)i∈N the supremum
⊔
i∈N ai exists (3).

For an ω-chain complete semiring we define the sum of a sequence (ai)i∈N on
S as follows: ∑

i∈N

ai :=
⊔
{a0 + a1 + . . .+ ai | i ∈ N}.

We refer to
∑

as countable summation or ω-summation.

An ω-chain complete semiring is ω-continuous if:

(7) For any sequence (ai)i∈N, any c ∈ S, and every partition (Ij)j∈J of N:

c ·
(∑

i∈N ai
)

=
∑

i∈N(c · ai) ,
(∑

i∈N ai
)
· c =

∑
i∈N(ai · c) ,∑

j∈J

(∑
i∈Ij aj

)
=
∑

i∈N ai .

In an ω-continuous semiring we define the Kleene star ∗ : S → S by

a∗ :=
∑
k∈N

ak =
⊔
{1 + a+ a · a+ . . .+ ak|k ∈ N} for a ∈ S.

A semiring is idempotent if a+a = a holds for all a ∈ S. It is commutative if
a · b = b · a for all a, b ∈ S. We use io-semiring, resp. cio-semiring as short-
hands for idempotent ω-continuous semiring, resp. commutative idempotent
ω-continuous semiring. �

In the following we often write ab instead of a · b.
Remark 2.2.3.
(a) Note that in [Kui97] an ω-continuous semiring is defined to have an
infinitary sum operator

∑
which is defined for any index set I and any

family (ai)i∈I of semiring elements. It is then additionally required that for
I = N we have

∑
i∈N ai =

⊔
{a0 + a1 + . . . + ai | i ∈ N}. From this it then

3This means that 〈S,v〉 is a ω-cpo with least element 0.



26 Preliminaries

immediately follows that the supremum of any ω-chain also has to exists (see
(b)). As we only need

∑
to be defined for countable index sets I in the

following, we chose to require (6) instead, and define
∑

directly.

(b) In any ω-chain complete semiring we can write the supremum
⊔
i∈N ai of

an ω-chain (ai)i∈N as the sum
∑

i∈N di of its “differences” di with d0 := a0, and
di+1 defined by ai + di+1 = ai+1. As (ai)i∈N is an ω-chain, we are guaranteed
to find such di. Note that di does not need to be uniquely determined.

(c) The sum
∑

i∈N ai of a sequence (ai)i∈N is independent of the enumera-
tion of the elements appearing in (ai)i∈N. (The reader may compare this
to the notion of absolute convergence known from calculus.) That is for
any bijection β : N → N we have

∑
i∈N ai =

∑
i∈N aβ(i). In particular, by

Definition 2.2.2(7) we have(∑
i∈N

ai

)
·

(∑
j∈N

bj

)
=
∑
j∈N

∑
i∈N

(ai · bj) =
∑
k∈N

(aI(k) · bJ(k))

for any bijection (I, J) : N → N × N using the partition (Ij)j∈N with Ij =
{k ∈ N | J(k) = j}. We therefore simply write

∑
i,j∈N ai ·bj for the right-hand

side in the following. Similarly, for any countable (multi)set A of elements
of S we define

∑
A to be the sum of any sequence enumerating the elements

of A.

(d) Every naturally ordered semiring S with idempotent addition is a bounded
join-semilattice, i.e., for any two elements a, b of S the least upper bound⊔
{a, b} exists, as

⊔
{a, b} = a+ b, and there is a least element, namely 0. In

particular, if v is total, then addition and supremum coincide. If additionally
S is also countable, then S itself is an ω-chain and, thus, a complete lattice. �

The next proposition shows that multiplication and addition are themselves
ω-continuous on an ω-continuous semiring.

Proposition 2.2.4.
In any ω-continuous semiring we have

c · (
⊔
i∈N ai) =

⊔
i∈N(c · ai) , (

⊔
i∈N ai) · c =

⊔
i∈N(ai · c) ,

c+ (
⊔
i∈N ai) =

⊔
i∈N(c+ ai) .

for any ω-chain (ai)i∈N and any c ∈ S. �

Proof. We use part (b) of Remark 2.2.3. Let (di)i∈N be a sequence of differences of the
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ω-chain (ai)i∈N. We then have:

c · (
⊔
i∈N

ai) = c · (
∑
i∈N

di) (Rem. 2.2.3(b))

=
∑
i∈N

(c · di) (Def. 2.2.2(7))

=
⊔
i∈N

(c · d0 + . . .+ c · di) (Def. of
∑

)

=
⊔
i∈N

(
c · (d0 + . . .+ di)

)
(Def. 2.2.2(4))

=
⊔
i∈N

(c · ai) (Rem. 2.2.3(b)).

Analogously, (
⊔
i∈N ai) · c =

⊔
i∈N(ai · c) follows.

For the last equation we first define the sequence (bi)i∈N with b0 := c, b1 := a0, and bi is
a difference of ai−1 and ai−2, i.e., ai−2 + bi = ai−1 for all i > 1. Further, set J := {0, 1},
I0 := {0}, and I1 := N \ {0}. We then have

c+ (
⊔
i∈N

ai) = b0 +
∑
i∈I1

bi (Rem. 2.2.3(b))

=
∑
j∈J

∑
i∈Ij

bi (a+ b =
⊔
{a, a+ b})

=
∑
i∈N

bi (Def. 2.2.2(7))

=
⊔
i∈N

(b0 + b1 + . . . bi) (Rem. 2.2.3(b))

=
⊔
i∈N

(c+ ai).

Remark 2.2.5.
In [Ési08] an ω-continuous semiring is defined as a semiring which is an ω-
cpo w.r.t. the natural order (4) and whose addition and multiplication are
ω-continuous. The sum of a (countable) sequence (ai)i∈N is then defined by
taking the supremum of the ω-chain consisting of all sums of finite subse-
quences, i.e., ∑

i∈I

ai :=
⊔{∑

i∈F

ai | F ⊆ I, |F | ≤ |N|

}
. (2.1)

Using ω-continuity of multiplication and addition one then can show that
the equations of Definition 2.2.2 (7) are satisfied, see for example [Kar92].

4In fact, in [Ési08] an ω-continuous semiring are not restricted to only the natural
order, but a broader class of partial orders called positive orders.
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So every naturally ordered ω-continuous semiring w.r.t. [Ési08] is also an ω-
continuous semiring w.r.t. Definition 2.2.2. On the other hand, from Propo-
sition 2.2.4 if follows that every semiring which is ω-continuous in our sense,
is also ω-continuous w.r.t. [Ési08]. We therefore may freely use the results
stated in [Ési08]. �
Definition 2.2.6.
Given two semirings S and S ′ with carrier S, resp. S ′, a map h : S → S ′ is
a semiring (homo)morphism if it respects addition and multiplication, and
preserves the neutral elements, i.e.,

h(a+ b) = h(a+ b), h(a · b) = h(a) · h(b), h(0) = 0, h(1) = 1. �

Proposition 2.2.7.
Given two ω-continuous semirings S and S ′ with carrier S, resp. S ′, a semiring
morphism h : S → S ′ is ω-continuous iff it respects countable summation,
i.e., h(

∑
i∈N ai) =

∑
i∈N h(ai) holds. �

Proof. If h is ω-continuous, we may write

h(
∑
i∈N

ai) = h(
⊔
{a1 + . . .+ ai | i ∈ N}) =

⊔
{h(a1) + . . .+ h(ai) | i ∈ N} =

∑
i∈N

h(ai).

If h respects countable summation, then given some ω-chain (ai)i∈N we turn it into a
sequence (di)i∈N with

∑
i∈N di =

⊔
i∈N ai as described in Remark 2.2.3 (b). We then have

h(
⊔
i∈N

ai) = h(
∑
i∈N

di) =
∑
i∈N

h(di) =
⊔
{h(d0) + . . .+ h(di) | i ∈ N} =

⊔
i∈N

h(ai).

Definition 2.2.8.
A semiring morphism h between two ω-continuous semirings is a morphism of
ω-continuous semirings if it is ω-continuous or, equivalently, respects count-
able summation. �

Obviously, every morphism of ω-continuous semirings preserves the Kleene
star, i.e., h(a∗) = h(a)∗.

We illustrate the definitions by means of the semirings encountered in the
introduction:

Example 2.2.9. The language semiring SΣ generated by a set Σ is given by 〈2Σ∗ ,∪, ·, ∅, {ε}〉
where · denotes the concatenation of languages. Its natural order is given by the subset
relation. Countable summation is set union. We embed RExpΣ into 2Σ∗ by means of
LΣ. It is well-known that the language semiring is (isomorphic to) the free io-continuous
semiring generated by Σ (see [Ési08]), i.e., given some other io-semiring S with carrier
S and some map h : Σ → S, there is a unique extension of h to an homomorphism of
ω-continuous semirings from the language semiring to S.
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The counting semiring Ck has the signature 〈2Nk ,∪, ·, ∅, {0}〉 with k ∈ N, and 0 =
(0, . . . , 0) ∈ Nk. As already mentioned, we set

A ·B = {a+ b | a ∈ A, b ∈ B} for A,B ⊆ Nk.

As in the case of the language semiring, natural order, resp. countable summation coincides
with the subset relation, resp. set union. Similar to the language semiring, the counting
semiring Ck is (isomorphic to) the free cio-semiring generated by k.

The free ω-continuous semiring generated by some set Σ is (isomorphic to) 〈(N ∪
{∞})Σ∗ ,+, ·,0,1〉 where 0 : Σ∗ → {0}, resp. 1 : Σ∗ → {0, 1} with 1(ε) = 1, and
otherwise 1(w) = 0 for all w ∈ Σ+. Addition, natural order and countable summation
are extended pointwise to (N∪ {∞})Σ∗ . Multiplication is defined by means of the cauchy
product [Ési08]., i.e.,

(a · b)(w) :=
∑

Σ∗3u,v :uv=w

a(u) · b(v) for all w ∈ Σ∗.

The (min,+)-semiring is defined by 〈R ∪ {±∞},min,+,∞, 0〉. Unlike to the preceding
examples, the natural order is the reverse of the canonical order on R unlike to the pre-
ceding examples. Countable summation is the infimum. In particular, the Kleene star is
given by a∗ = min{k · a | k ∈ N} with a∗ = 0 for a ≥ 0, and ∗∗ = −∞ otherwise.

The real semiring is defined by 〈R≥0 ∪ {∞},+, ·, 0, 1〉. Addition and multiplication in
this semiring are obtained from the corresponding operations on R by adding the axioms
a +∞ = ∞, 0 · ∞ = 0, and b · ∞ = ∞ for all a ≥ 0, and b > 0. The natural order
is again given by the canonical order on the carrier. Countable summation is given by
limn→∞

∑n
i=0 ai. All series converge because of the inclusion of ∞. The Kleene star is

again easy to evaluate. We have a∗ = 1
1−a for a < 1, and a∗ =∞ otherwise. �

Vectors: Let S = 〈S,+, ·, 0, 1〉 be an ω-continuous semiring. We use X
for denoting a finite set of variables. The elements of SX are then called
vectors and are printed in boldface. We simply write V for SX if S and X
are clear from the context. A vector v ∈ SX assigns to a variable X ∈ X
the value vX , or (v)X if necessary for avoiding ambiguities. For example,
given a sequence of vectors, like (vi)i∈N, we write vi for denoting the ith
vector in the series, and (vi)X for the value vi maps X to. If there is some
canonical total order given on X like e.g. the lexicographic order in the case
X = {X, Y, Z}, or the total order on the indices in the case X = {X1, X2, X3}
we will also write a vector v as a (traditional) column vector of dimension |X |
enumerating the values starting with the variable of lowest rank. Addition on
S is lifted componentwise to V , i.e., (u+v)X := uX+vX , and (

∑
i∈N vi)X :=∑

i∈N(vi)X . Similarly, we lift the natural order on S to V by defining u v
v :⇔ ∀X ∈ X : uX v vX . Then V is also ω-chain complete, as for any
ω-chain (vi)i∈N the supremum

⊔
i∈N vi is given by (

⊔
i∈N vi)X =

⊔
i∈N(vi)X

for all X ∈ X .
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Monomials, Polynomials, and Power-Series: Fix some finite set X
of variables. A monomial in X is a finite product a1X1a2X2 · · · akXkak+1 ,
where k ≥ 0, a1, . . . , ak+1 ∈ S and X1, . . . , Xk ∈ X . We assume that for
k ≥ 1 all coefficients a1, . . . , ak+1 are different from 0.

Note that this more general definition of monomial is necessary as we do
not require that multiplication is commutative. A polynomial in X is an
expression of the form m1 + . . . + mk where k ≥ 0 and m1, . . . ,mk are
monomials in X . A power series in X is an expression of the form

∑
i∈I mi,

where I is a countable set and mi is a monomial in X for every i ∈ I.

Given a monomial f = a1X1a2X2 . . . akXkak+1 and a vector ~v, we define
f(~v), the value of f at ~v, as a1vX1a2vX2 · · · akvXkak+1. We extend this to
any power series f =

∑
i∈I fi by f(~v) =

∑
i∈I fi(~v).

A vector of power series is a mapping f that assigns to each variable X ∈ X
a power series f(X). Again we write fX for f(X). Given a vector ~v, we
define f(~v) as the vector satisfying (f(~v))X = fX(~v) for every X ∈ X , i.e.,
f(~v) is the vector that assigns to X the result of evaluating the power series
fX at ~v. So, f naturally induces a mapping f : V → V .

As addition and multiplication are ω-continuous on an ω-continuous semiring,
one can show that (vectors of) power-series are ω-continuous maps.

Proposition 2.2.10 ([Kui97]).
Let S be an ω-continuous semiring, and f a system of power-series in X .
Then f is an ω-continuous and, thus, monotone map from V to V . �

We refer the reader to [Kui97] for a formal proof. As every ω-continuous
semiring is an ω-cpo, we may instantiate Kleene’s fixed-point Theorem 2.1.2
for our setting:

Definition 2.2.11.
Let f be a vector of power series. The Kleene sequence (κ(i))i∈N (w.r.t. f)
is defined by κ(0) := f(0), and κ(i+1) := f(κ(i)) for all i ∈ N. �
Theorem 2.2.12.
Let f be a vector of power series. Then its Kleene sequence (κ(i))i∈N is an
ω-chain. The supremum

⊔
i∈N κ

(i) is the least fixed point µf of f . �

We introduce two properties of vectors of power series:

Definition 2.2.13.
Let f be a vector of power series. We say that f is clean if µf is greater
than zero in every component, i.e., 0 @ (µf)X for all X ∈ X holds. �
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Definition 2.2.14.
Let f be a vector of power series given in the variables X . The dependency
graph of f is the directed graph which has X as its nodes, and there is an
edge from X to Y if there is a monomial m appearing in fX such that Y is
a variable of m. We say that X depends on Y if there is a finite path from
X to Y in the dependency graph. f is strongly-connected if its dependency
graph is strongly-connected. �

We can easily decide whether f is strongly-connected. The following lemma
shows that we can also determine whether f is clean:

Lemma 2.2.15.
Let f be a vector of power series given in the variables X with n = |X | on a
ω-continuous semiring without zero divisors, i.e., a · b = 0 ⇒ a = 0 ∨ b = 0
for all a, b ∈ S. Then f is clean iff 0 @ κ(n−1)

X for all X ∈ X . �

Proof. By Theorem 2.2.12 we have only to show the implication from left to right. So

assume that f is clean. Again by Theorem 2.2.12 we obtain that for every variable X

there has to exist a least kX ∈ N such that 0 @ κ
(kX)
X Obviously, we have either kX = 0

or there is some subset A of X such that kX = 1 + max{kY | Y ∈ A}. As kX = 0 has to

hold for at least one X ∈ X , we have kX < n for all X ∈ X .

Viewing vectors of power series as maps we define the product f ◦ g of two
vectors f , g of power series to be the composition of the two maps, i.e.,

(f ◦ g)(v)X := fX(g(v)).

Note that f ◦ g is also a vector of power series, as the underlying semiring
is required to be ω-continuous. Defining the addition of two vectors f , g of
power series by

(f + g)X := fX + gX

we therefore obtain the semiring of vectors of power series over S w.r.t. X .
The neutral elements are given by the vector assigning zero to every variable
and the vector assigning each variable X the monomial X. Further, as S is
ω-continuous, the semiring of vectors of power series is ω-continuous, too.

Example 2.2.16. Consider the following polynomial system f w.r.t. X = {X,Y }:

fX := aX + bY fY := cX + dY,

or equivalently

f =

(
aX + bY
cX + dY

)
.
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We can write f as

f =

(
a b
c d

)
︸ ︷︷ ︸

=:M

(
X
Y

)
︸ ︷︷ ︸
=:X

= MX

using standard matrix-vector-multiplication assuming here that the elements of X are
multiplied from the right to the elements of M . The Kleene-star f∗ of f , formally defined
by

f∗ : V → V : v 7→
∑
k∈N

fk(v) =
∑
k∈N

f(f(. . .f(v)))︸ ︷︷ ︸
k applications of f

,

can then be written as

f∗ : V → V : v 7→
∑
k∈N

(
a b
c d

)k
v = M∗v.

So, f∗ can be identified with the Kleene-star of the matrix M . Specifically, we can think
of M as the adjacency matrix of finite graph GM with nodes X and Y where every edge
is weighted by a semiring element. Then the entries of Mk correspond to the weight of all
paths of length exactly k between two states, i.e., M∗ is the reflexive-transitive closure.

For example, let S be the language semiring generated by Σ = {a, b, c, d}. Then we can
calculate M∗ in the same way in which we obtain regular expressions describing all finite
paths between two states from a finite automata, e.g. by means of the Floyd-Warshall
algorithm. For this example we obtain

M∗ =

(
(a+ bc∗d)∗ b(c+ da∗b)∗

d(a+ bc∗d)∗ (c+ da∗b)∗

)
.

Assume we are given some particular matrix A = (ai,j)i,j=1,2 on some io-semiring. Then
the map h(a) = a1,1, h(b) = a1,2, h(c) = a2,1, h(d) = a2,2 uniquely determines a morphism
of io-semirings as the language semiring is freely generated by Σ. We simply call this
homomorphism also h. As h respects the Kleene star, we therefore obtain A∗ by applying
h to the entries of M∗. See also Example 1.1.5. This observation yields the well-known fact
that for all io-semirings S we can obtain regular expressions of the entries of M∗ efficiently
by calculating M∗ on the language semiring generated by the matrix coefficients.

In the case of the real semiring there is another interpretation of M∗ coming from analysis
(or functional analysis), as M∗ corresponds to the geometric series (|X | = 1), or the
Neumann series (|X | > 1). Here, we have that M∗ equals (Id − M)−1 if the spectral
radius, i.e., the largest absolute value of an eigenvalue of M , is less than 1 (assuming the
M exists in R2×2). �



Chapter 3

Newton’s Method on
ω-Continuous Semirings

3.1 Generalizing Newton’s Method

We introduce our generalization of Newton’s method for ω-continuous semi-
rings. We first consider only equations in a single variable, i.e., the univariate
case. This allows us to introduce the underlying ideas while reducing the
amount of additional notation. We first recall Newton’s method for approx-
imating a zero of a differentiable univariate function. We then take a close
look at the analytical definition, and identify those parts of the definition
which do not carry over directly to ω-continuous semirings. Finally, we mo-
tivate our “translations” of these parts to ω-continuous semirings. This is
done in Section 3.1.1. In Section 3.1.2 we then lift our generalization of New-
ton’s method to the multivariate case, while Sections 3.1.3 and 3.1.4 finally
present the proofs that our generalization of Newton’s method is well-defined
and converges to the least fixed point.

3.1.1 The Univariate Case

Given a differentiable function g : R→ R, Newton’s method computes a zero
of g, i.e., a solution of the equation g(X) = 0. The method starts at some
value ν(0) “close enough” to the zero, and proceeds iteratively: given ν(i), it
computes a value ν(i+1) closer to the zero than ν(i). For that, the method
linearizes g at ν(i), i.e., computes the tangent to g passing through the point
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(ν(i), g(ν(i))), and takes ν(i+1) as the zero of the tangent (i.e., the x-coordinate
of the point at which the tangent cuts the x-axis). One therefore may say
that Newton’s method reduces the problem of finding the zero of a non-linear
function to the problem of finding the zeros of a sequence of linear functions.

It is convenient for our purposes to formulate Newton’s method in terms
of the differential (form) of g at a given point v ∈ R. Recall that the
differential of g is basically the mapping Dg|v : R → R that assigns to
each v ∈ R the linear function describing to the tangent of g at (v, g(v)),
represented in the coordinate system having (v, g(v)) as origin (1). If we
denote the differential of g at v by Dg|v, then we have Dg|v(X) = g′(v) ·X
(for example, if g(X) = X2 + 3X + 1, then Dg|3(X) = 9X). In terms of
differentials, Newton’s method is formulated as follows. Starting at some
ν(0), compute iteratively ν(i+1) = ν(i) + ∆(i), where ∆(i) is the solution of
the linear equation Dg|ν(i)(X) + g(ν(i)) = 0 (assume for simplicity that the
solution of the linear system is unique).

Computing the solution of a fixed-point equation, f(X) = X amounts to
computing a zero of g(X) = f(X) − X, and so we can apply Newton’s
method. Since for every real number v we have Dg|v(X) = Df |v(X) − X,
the method looks as follows:

Starting at some ν(0), compute iteratively

ν(i+1) = ν(i) + ∆(i) (3.1)

where ∆(i) is the solution of the linear equation

Df |ν(i)(X) + f(ν(i))− ν(i) = X . (3.2)

So Newton’s method “breaks down” the problem of finding a solution to a
non-linear system f(X) = X into finding solutions to the sequence (3.2) of
linear systems.

Generalization

Generalizing Newton’s method to arbitrary ω-continuous semirings requires
to overcome two obstacles. First, the notion of differential seems to require

1More precisely, in differential geometry the differential (form) is defined as an one-
form. For instance, let f : R → R : x 7→ f(x) be a differentiable map. Then its
differential df is given by df = f ′ · dx with f ′ the derivative of f w.r.t. x, and dx the
coordinate differential one-form. Evaluating the differential at some point p ∈ R yields
then the one-form df |p = f ′(p) · dx, which describes the tangent at f in p w.r.t. the origin
(p, f(p)).
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a richer algebraic structure than a semiring: differentials are usually defined
in terms of derivatives, which are the limit of a quotient of differences, which
requires both the sum and product operations to have inverses. Second,
equation (3.2) contains the term f(ν(i))−ν(i), which again seems to be defined
only if summation has an inverse.

The first obstacle Differentiable functions satisfy well-known algebraic
rules with respect to sums and products of functions. We take these rules
as the definition of the differential of a power series f over an ω-continuous
semiring S. We remark that this definition of differential generalizes the
usual algebraic definition of derivatives.

Definition 3.1.1.
Let f be a power series in one variable X over an ω-continuous semiring
S. The differential of f at the point v is the mapping Df |v : S → S
inductively defined as follows for every b ∈ S:

Df |v(b) =


0 if f ∈ S
b if f = X

Dg|v(b) · h(v) + g(v) · Dh|v(b) if f = g · h∑
i∈I Dfi|v(b) if f =

∑
i∈I fi(b) .

�
Example 3.1.2. Consider first a polynomial f over some commutative ω-continuous semi-
ring. Because of commutative multiplication, we may write any monomial as a · Xk for
some k ∈ N and a ∈ S, and so f =

∑n
k=0 ak ·Xk for suitable n ∈ N and ak ∈ S. Let f ′

denote the usual algebraic derivative of f w.r.t. X, i.e., f ′ =
∑n
k=1 k · ak · Xk−1 where

k · ak is an abbreviation of ak ·
∑k
i=1 1. We then have

Df |v(b) =

n∑
k=0

D(ak ·Xk)|v(b)

=

n∑
k=0

(Dak|v(b) · (Xk)(v) +

k−1∑
j=0

ak · (Xj)(v) ·DX|v(b) · (Xk−1−j)(v))

=

n∑
k=0

k−1∑
j=0

ak · vj ·DX|v(b) · vk−1−j

= (

n∑
k=1

k · ak · vk−1) · b

= f ′(v) · b.

So, on commutative semirings, we have Df |v(b) = f ′(v) · b for all v, b ∈ S.
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Now, assume that multiplication is not commutative, and consider the simple case of a
quadratic monomial m = a0Xa1Xa2. We then have

Dm|v(b) = a0 ·DX|v(b) · a1 · v · a2 + a0 · v · a1 ·DX|v(b) · a2

= a0 · b · a1 · v · a2 + a0 · v · a1 · b · a2.

The important point here is that the differential “remembers” the position of the variables,
and therefore not simply “appends” the value b. �

The second obstacle Profiting from the fact that 0 is the unique minimal
element of S with respect to v, we fix ν(0) = f(0), which guarantees that
ν(0) satisfies ν(0) v f(ν(0)). We guess that with this choice ν(i) v f(ν(i)) will
hold not only for i = 0, but for every i ≥ 0 (the correctness of this guess is
proved in Theorem 3.1.10). If the guess is correct, then, by the definition of
v, the semiring contains an element δ(i) such that f(ν(i)) = ν(i) + δ(i). We
replace f(ν(i))− ν(i) by any such δ(i). This leads to the following definition:

Definition 3.1.3.
Let f be a power series in one variable. A Newton sequence (ν(i))i∈N is given
by:

ν(0) = f(0) and ν(i+1) = ν(i) + ∆(i) (3.3)

where ∆(i) is the least solution of

Df |ν(i)(X) + δ(i) = X (3.4)

and δ(i) is any element satisfying f(ν(i)) = ν(i) + δ(i). �

In Section 3.1.3 we show that Newton sequences always exist (i.e., there is
always at least one possible choice for δ(i)), and that they all converge at
least as fast as the Kleene sequence. More precisely, we show that for every
i ≥ 0

κ(i) v ν(i) v ν(i+1) v µf .

Since we have µf =
⊔
i∈N κ

(i) by Kleene’s theorem, Newton sequences con-
verge to µf .

In general, there might be more than one choice for δ(i). In Section 3.1.4 we
show, however, that the Newton sequence (ν(i))i≥0 itself is uniquely deter-
mined by f (and S). In other words, the choice of δ(i) does not influence the
Newton approximants ν(i).

Before proving these results, let us consider some examples.
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Examples

We compute the Newton sequence for a program that can execute a and
terminate, or execute b and then call itself twice, recursively (the abstract
scheme of a divide-and-conquer procedure). The abstract dataflow equation
of the program is

X = a+ b ·X ·X. (3.5)

Example 3.1.4 (The real semiring). Consider the case a = b = 1/2 (we can interpret a
and b as probabilities). We have Df |v(X) = v ·X, and one single possible choice for δ(i),
namely δ(i) = f(ν(i))− ν(i) = 1/2 + 1/2 (ν(i))2 − ν(i). Equation (3.4) becomes

ν(i)X + 1/2 + 1/2 (ν(i))2 − ν(i) = X

with ∆(i) = (1− ν(i))/2 as unique solution. We get

ν(0) = 1/2 ν(i+1) = (1 + ν(i))/2

and therefore ν(i) = 1− 2(i+1). So the Newton sequence converges to 1 and gains one bit
of accuracy per iteration. �
Example 3.1.5 (The language semiring). Consider the language semiring with Σ =
{a, b}. The product operation is concatenation of languages, and hence non-commutative.
So we have Df |v(X) = bvX + bXv. We show in Proposition 3.3.1 that when sum is
idempotent (as in this case, where it is union of languages) the definition of the Newton
sequence can be simplified to

ν(0) = f(0) and ν(i+1) = ∆(i), (3.6)

where ∆(i) is the least solution of

Df |ν(i)(X) + f(ν(i)) = X . (3.7)

With f = a+ b ·X ·X from Equation (3.5), Equation (3.7) becomes

bν(i)X + bXν(i)︸ ︷︷ ︸
Df |

ν(i)
(X)

+ a+ bν(i)ν(i)︸ ︷︷ ︸
f(ν(i))

= X . (3.8)

Its least solution (which by (3.6) is equal to (i+1)-th Newton approximant) is a context-free
language. Let G(i) be a grammar with axiom S(i) such that ν(i) = L(G(i)). Since ν(0) =
f(0), the grammar G(0) contains one single production, namely S(0) → a. Equation (3.8)
allows us to define G(i+1) in terms of G(i), and we get:

G(0) = {S(0) → a}
G(i+1) = G(i) ∪ {S(i+1) → a | bS(i+1)S(i) | bS(i)S(i+1) | bS(i)S(i)}

Let G = {S → a | bSS} be the grammar derived from Equation (3.5). We have L(G) =⋃n
i=1 L(G(i)). It is easy to see that L(G(i)) contains the words of L(G) of index i + 1.



38 Newton’s Method on ω-Continuous Semirings

Loosely speaking, the index of a word w ∈ L(G) is the least number i such that some
derivation of w contains no intermediate word having more than i occurrences of variables
[Sal69]. Formally, the index of w ∈ L(G) is the least number i for which a derivation
X = α0 ⇒ · · · ⇒ αr = w exists such that for every i ∈ {0, . . . , r} the projection of αi onto
{X1, . . . , Xn} has at most length i. In Section 3.3.1 we show that this characterization
of the Newton approximants holds in general, i.e., the i-th Newton approximant of the
language generated by a grammar G contains the words of L(G) of index at most i+ 1. �
Example 3.1.6 (The counting semiring). Consider the counting semiring with ra =
{(1, 0)} and rb = {(0, 1)}. Since the sum operation is union of sets of vectors, it is idempo-
tent and Equations (3.6) and (3.7) hold. Since the product operation is now commutative,
we obtain for our example

b · ν(i) ·X + a+ b · ν(i) · ν(i) = X (3.9)

Using Kleene’s fixed-point theorem (Theorem 2.2.12), it is easy to see that the least
solution of a linear equation X = u ·X + v over a commutative ω-continuous semiring is
u∗ · v, where u∗ =

∑
i∈N u

i. The least solution ∆(i) of Equation (3.9) is then given by

∆(i) = (rb · ν(i))∗ · (ra + rb · ν(i) · ν(i))

and we obtain:

ν(0) = ra = {(1, 0)}
ν(1) = (rb · ra)∗ · (ra + rb · ra · ra) = {(n, n) | n ≥ 0} · {(1, 0), (2, 1)}

= {(n+ 1, n) | n ≥ 0}
ν(2) = ({(n, n) | n ≥ 1})∗ · ({(1, 0)} ∪ {(2n+ 2, 2n+ 1) | n ≥ 0})

= {(n+ 1, n) | n ≥ 0}

So the Newton sequence reaches a fixed point after one iteration. In Section 3.4 we show
that the Newton sequence of a system of n equations over any commutative and idempotent
semiring converges after at most n iterations. Further note that the counting semiring does
not satisfy the ascending-chain property, i.e. there are monotonically increasing sequences
in the counting semiring which do not become stationary. Therefore, the Kleene sequence
(and possible variations) does not reach µf after a finite number of steps in general. �

3.1.2 The Multivariate Case

Newton’s method can be easily generalized to the multivariate case. Given
differentiable functions g1, . . . , gn : Rn → R, the method computes a solution
of g(X) = 0, where g = (g1, . . . , gn). Starting at some ν(0), the method
computes ν(i+1) = ν(i) + ∆(i), where ∆(i) is the solution of the system of
linear equations

Dg1|ν(i)(X) + g1(ν(i)) = 0
...

Dgn|ν(i)(X) + gn(ν(i)) = 0
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and Dgj|ν(i)(X) is the differential of gj at ν(i), i.e., the function corresponding
to the tangent hyperplane of gj at the point (ν(i), gj(ν

(i)).

Given a function g : Rn → R differentiable at a point v, there exists a function
DXg|v for each variable X ∈ X such that Dg|v =

∑
X∈X DXg|v. These

functions are closely related to the partial derivatives, more precisely we
have DXg|~v(X) = ∂Xg|~v ·X.

We denote the system above by Dg|ν(i)(X)+g(ν(i)) = 0. For the problem of
computing a solution of a system of fixed-point equations, the method looks
as follows:

Starting at some ν(0), compute iteratively

ν(i+1) = ν(i) + ∆(i) (3.10)

where ∆(i) is the least solution of the linear system of fixed-point
equations

Df |ν(i)(X) + f(ν(i))− ν(i) = X . (3.11)

Generalization

Again, we use the algebraic definition of differential:

Definition 3.1.7.
Let f be a power series over an ω-continuous semiring S and let X ∈ X
be a variable. The differential of f w.r.t. X at the point v is the mapping
DXf |v : V → S inductively defined as follows:

DXf |v(b) =


0 if f ∈ S or f ∈ X \ {X}
bX if f = X

DXg|v(b) · h(v) + g(v) · DXh|v(b) if f = g · h∑
i∈I DXfi|v(b) if f =

∑
i∈I fi .

Further, we define the differential of f at v as the function

Df |v :=
∑
X∈X

DXf |v.

Finally, the differential of a vector of power series f at v is defined as the
function Df |v : V → V with

(Df |v(b))X := DfX |v(b) . �
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Remark 3.1.8.
The differential is additive, i.e. for any v, b, b′ ∈ V , and f we have

Df |v(b+ b′) = Df |v(b) + Df |v(b′) .

If multiplication is commutative, then the differential is even a linear oper-
ator for any fixed v. Further, for commutative multiplication we can again
represent the differential of a power series f w.r.t. X by means of deriva-
tives: we have DXf |v(b) = ∂Xf |v · bX with ∂Xf |v the (algebraic) partial
derivative of the power series f w.r.t. X. Similarly, the differential can be
represented by means of the gradient of a power series f , or more generally,
by the Jacobian of a vector f of power series. �

As in the univariate case we guess that ν(i) v f(ν(i)) will hold for every
i ≥ 0. If the guess is correct, then the semiring contains an element δ(i) such
that f(ν(i)) = ν(i) + δ(i), and Equation (3.11) becomes

Df |ν(i)(X) + δ(i) = X . (3.12)

This leads to the following definition:

Definition 3.1.9.
Let f : V → V be a vector of power series. For i ∈ N, an i-th Newton
approximant ν(i) is inductively defined by

ν(0) = f(~0) and ν(i+1) = ν(i) + ∆(i) ,

where ∆(i) is the least solution of Equation (3.12) and δ(i) is any vector
satisfying f(ν(i)) = ν(i) + δ(i).

A sequence (ν(i))i∈N of Newton approximants is called Newton sequence. �

3.1.3 Fundamental Properties of the Newton Se-
quences

In the rest of the section we prove the following theorem, showing that there
exists exactly one Newton sequence, that it converges to the least fixed point,
and does so at least as fast as the Kleene sequence.

Theorem 3.1.10.
Let f : V → V be a vector of power series. Then, the Newton sequence
(ν(i))i∈N is uniquely determined. Further, the Newton sequence increases
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monotonically, converges to the least fixed point, and does so at least as fast
as the Kleene sequence. More precisely, it satisfies

κ(i) v ν(i) v f(ν(i)) v ν(i+1) v µf =
⊔
j∈N

κ(j) for all i ∈ N. �

We split the proof Theorem 3.1.10 in two propositions. Proposition 3.1.16 in
Section 3.1.4 states that there is only one Newton sequence. The following
proposition covers the rest of Theorem 3.1.10:

Proposition 3.1.11.
Let f : V → V be a vector of power series. For every Newton approxi-
mant ν(i) there exists a vector δ(i) such that f(ν(i)) = ν(i) + δ(i). So there
is at least one Newton sequence. Moreover, every Newton sequence (ν(i))i∈N
satisfies

κ(i) v ν(i) v f(ν(i)) v ν(i+1) v µf =
⊔
j∈N

κ(j) for all i ∈ N. �

The proof of Proposition 3.1.11 is based on two lemmata. The first one, an
easy consequence of Kleene’s theorem, provides a closed form for the least
solution of a linear system of fixed-point equations in terms of the Kleene
star operator, defined as follows:

Definition 3.1.12.
Let g : V → V be a monotone map. The map g∗ : V → V is defined as
g∗(v) :=

∑
i∈N g

i(v), where g0(v) := v, and gi+1(v) := g(gi(v)) for every
i ≥ 0. Similarly, we set for all j ∈ N: g≤j(v) :=

∑
0≤i≤j g

i(v). �

The existence of g∗(v) is guaranteed by the properties of ω-continuous semi-
rings. Observe that v v g∗(v) and g∗(v) = v + g(g∗(v)) hold.

Lemma 3.1.13.
Let f : V → V be a vector of power series, and u,v ∈ V . Then the least
solution of Df |u(X) +v = X is Df |∗u(v). In particular, a Newton sequence
from Definition 3.1.9 can be equivalently defined by setting ν(0) = f(0) and
ν(i+1) = ν(i) + Df |∗

ν(i)(δ
(i)). �

Proof. Set g(X) := Df |u(X)+v. The vector g is a power series in every component and

thus a monotone map from V to V . By Kleene’s fixed-point theorem, the least solution

of g(X) = X is given by
⊔
{gi(0) | i ∈ N} =

⊔
{Df |≤iu (v) | i ∈ N} = Df |∗u(v).

The second lemma, which is interesting by itself, is a generalization of Tay-
lor’s theorem to arbitrary ω-continuous semirings.
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Lemma 3.1.14.
Let f : V → V be a vector of power series and let u,v be two vectors. We
have

f(u) + Df |u(v) v f(u+ v) v f(u) + Df |u+v(v) . �

Proof. It suffices to show those inequations for each component separately, so let w.l.o.g.
f = f : V → S be a power series. We proceed by induction on the construction of f . The
base case (where f is a constant) and the case where f is a sum of polynomials are easy,
and so it suffices to consider the case in which f is a monomial. So let

f = g ·X · a

for a monomial g, a variable X ∈ X and a constant a. We have

f(u) = g(u) · uX · a and Df |u(v) = g(u) · vX · a+ Dg|u(v) · uX · a .

By induction we obtain:

f(u+ v) = g(u+ v) · (uX + vX) · a
w
(
g(u) + Dg|u(v)

)
· (uX + vX) · a

= g(u) · uX · a+ g(u) · vX · a+ Dg|u(v) · (uX + vX) · a
w f(u) + g(u) · vX · a+ Dg|u(v) · uX · a
= f(u) + Df |u(v)

and

f(u+ v) = g(u+ v) · (uX + vX) · a
v
(
g(u) + Dg|u+v(v)

)
· (uX + vX) · a

= g(u) · uX · a+ g(u) · vX · a+ Dg|u+v(v) · (uX + vX) · a
v f(u) + g(u+ v) · vX · a+ Dg|u+v(v) · (uX + vX) · a
= f(u) + Df |u+v(v)

We can now proceed to prove Proposition 3.1.11.

Proof of Proposition 3.1.11. First we prove for all i ∈ N that a suitable δ(i) exists
and, at the same time, that the inequality κ(i) v ν(i) v f(ν(i)) holds. We proceed by
induction on i. The base case i = 0 is easy. For the induction step, let i ≥ 0.

κ(i+1) = f(κ(i)) (definition of κ(i))

v f(ν(i)) (induction: κ(i) v ν(i))

= ν(i) + δ(i) for some δ(i) (induction)

v ν(i) + Df |∗ν(i)(δ
(i)) (v v g∗(v))

= ν(i+1) (Lemma 3.1.13)

= ν(i) + δ(i) + Df |ν(i)(Df |∗ν(i)(δ
(i))) (g∗(v) = v + g(g∗(v)) )
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= f(ν(i)) + Df |ν(i)(Df |∗ν(i)(δ
(i))) (definition of δ(i))

v f(ν(i) + Df |∗ν(i)(δ
(i))) (Lemma 3.1.14)

= f(ν(i+1)) (Lemma 3.1.13)

Since ν(i+1) v f(ν(i+1)), there exists a δ(i+1) such that ν(i+1) + δ(i+1) v f(ν(i+1)). Next
we prove f(ν(i)) v ν(i+1):

f(ν(i)) = ν(i) + δ(i) (as shown above)

v ν(i) + Df |∗ν(i)(δ
(i)) (v v g∗(v))

= ν(i+1) (Lemma 3.1.13)

It remains to prove
⊔
j∈N κ

(j) = µf and ν(i) v µf for all i. The equation
⊔
j∈N κ

(j) = µf

holds by Kleene’s theorem (Theorem 2.2.12). To prove ν(i) v µf for all i we need a
technical lemma.

Lemma 3.1.15.
Let f(x) w x. For all i ≥ 0 there exists a vector r(i)(x) such that

fd(x) + r(i)(x) = f i+1(x) and

r(i)(x) w Df |f i−1(x)(Df |f i−2(x)(. . .Df |x(r(0)(x)) . . .))

w Df |ix(r(0)(x)) . �

Proof of the lemma. By induction on i. For i = 0 there is an appropriate r(0)(x) by
assumption. Let d ≥ 0.

f i+2(x) = f(f i(x) + r(i)(x)) (induction)

w f i+1(x) + Df |f i(x)(r
(i)(x)) (Lemma 3.1.14)

w f i+1(x) + Df |f i(x)(. . .Df |x(r(0)(x)) . . .) (induction)

Therefore, there exists an r(i+1)(x) w Df |f i(x)(. . .Df |x(r(0)(x)) . . .). Since Df |y is

monotone in y and x v f(x) v f2(x) v . . ., the second inequality also holds.

Notice that Lemma 3.1.15 holds for x = ν(i) and r(0)(ν(i)) = δ(i), because we have already
shown ν(i) v f(ν(i)). Now we can prove ν(i) v µf by induction on i. The case i = 0 is
trivial. Let i ≥ 0. We have:

ν(i+1) = ν(i) + Df |∗ν(i)(δ
(i)) (Lemma 3.1.13)

= ν(i) +
∑
d∈N

Df |dν(i)(δ
(i)) (definition of Df |∗ν(i))

v ν(i) +
∑
d∈N

r(d)(ν(i)) (Lemma 3.1.15)

=
⊔
d∈N

fd(ν(i)) (ω-continuity)

v µf (induction: fd(ν(i)) v µf)

This completes the proof of Proposition 3.1.11.
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3.1.4 Uniqueness

In the previous subsection we have seen that, given a vector f of power
series, there indeed exists a Newton sequence (ν(i))i∈N in the sense of Defi-
nition 3.1.9. because for each ν(i) there exists a δ(i) such that ν(i) + δ(i) =
f(ν(i)). However, recall that the “difference” δ(i) in Definition 3.1.9 might
not be uniquely determined. (2) Thus, the Newton sequence (ν(i))i∈N could,
in principle, depend on the choice of δ(i). We show now that this is not the
case, i.e., there is only one Newton sequence (ν(i))i∈N, independent of the
choice of δ(i):

Proposition 3.1.16.
Let f : V → V be a vector of power series. There is exactly one Newton
sequence (ν(i))i∈N. �

Theorem 3.1.10 follows directly by combining Proposition 3.1.11 and Propo-
sition 3.1.16. So for Theorem 3.1.10 it remains to prove Proposition 3.1.16,
which we do in the rest of this section.

It is convenient for the proof to introduce substitutionals, a notion related to
differentials, see the following Proposition 3.1.19.

Definition 3.1.17.
Let f be a power series over an ω-continuous semiring S and let s ∈ N+. The
substitutional of f w.r.t. s at the point v is the mapping $sf |v : V → S
defined as follows:
If f is a monomial, i.e., of the form f = a1X1 · · · akXkak+1, then

$sf |v(b) =

{
a1vX1 · · · as−1vXs−1asbXsas+1vXs+1 · · · akvXkak+1 if 1 ≤ s ≤ k

0 otherwise.

If f is a power series, i.e., of the form f =
∑

i∈I fi, then

$sf |v(b) =
∑
i∈I

$sfi|v(b).

In words: if f is a monomial with at least s variables then $sf |v(b) is obtained
from f by replacing the s-th variable Xs by bXs and all other variables by the
corresponding component of v. If f is a monomial with less than s variables
then $sf |v(b) = 0. If f is a power series then the substitutional of f is the
sum of the substitutionals of f ’s monomials.

2For example, consider the language semiring generated by some finite alphabet Σ.
For any two languages A,B ⊆ Σ∗ with A ⊆ B we might take any language D satisfying
B \A ⊆ D ⊆ B as a “difference”.
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Analogously to differentials, we extend the definition of substitutionals to
vectors of power series by applying the substitution componentwise. For-
mally, we define the substitutional of a vector of power series f at v as the
function $sf |v : V → V with

($sf |v(b))X := $sfX |v(b) . �

Observe that, like the differential (see Remark 3.1.8), the substitutional is
“additive”, i.e., $sf |v(b+ b′) = $sf |v(b) + $sf |v(b′).
Definition 3.1.18.
For any j ∈ N and any sequence s = (s1, . . . sj) ∈ Nj

+ we write $sf |v(b) for
$s1f |v($s2f |v(· · · $sjf |v(b) · · · )), and $sf |v(b) = b if j = 0. �

The following proposition states the connection between the differential and
the substitutional.

Proposition 3.1.19.
Let f be a monomial. Then

DXf |v(b) =
∑
{$sf |v(b) | X is the s-th variable in f} .

Let f be a vector of power series. Then:

(1) Df |v(b) =
∑

s∈N+
$sf |v(b).

(2) Df |jv(b) =
∑

s∈Nj+
$sf |v(b).

(3) For all s ∈ N+ we have f(v) w $sf |v(v). �

The proposition roughly says that the differential Df |v can be obtained by
replacing in all possible ways all occurrences of variables, except one by the
values supplied by v:

Example 3.1.20. Consider the polynomial f = aXY X + cY . Then

$1f |v(b) = abXvY vX + cbY
$2f |v(b) = avXbY vX
$3f |v(b) = avXvY bX
DXf |v(b) = abXvY vX + avXvY bX
DY f |v(b) = avXbY vX + cbY .

Observe that Df |v(b) = DXf |v(b) +DY f |v(b) = $1f |v(b) + $2f |v(b) + $3f |v(b) and that
f(v) = avXvY vX + cvY w $sf |v(v) holds for all s ∈ N+. �

For the proof of Proposition 3.1.16 we need the following two lemmata.



46 Newton’s Method on ω-Continuous Semirings

Lemma 3.1.21.
Let f be a vector of power series. Let ν + δ = f(ν). Let j ∈ N and
(s1, . . . , sj+1) ∈ Nj+1

+ . Then ν + Df |≤jν (δ) w $(s1,...,sj+1)f |ν(ν). �

Proof. By induction on j. For j = 0 we have ν +Df |≤0
ν (δ) = ν + δ = f(ν) w $s1f |ν(ν)

by Proposition 3.1.19.3. Let j ≥ 0. We have:

ν + Df |≤j+1
ν (δ) = ν + Df |≤jν (δ) + Df |j+1

ν (δ)

w $(s1,...,sj+1)f |ν(ν) + Df |j+1
ν (δ) (induction)

w $(s1,...,sj+1)f |ν(ν) + $(s1,...,sj+1)f |ν(δ) (Prop. 3.1.19.2.)

= $(s1,...,sj+1)f |ν(f(ν)) (ν + δ = f(ν))

w $(s1,...,sj+1)f |ν($sj+2f |ν(ν)) (Prop. 3.1.19.3.)

= $(s1,...,sj+1,sj+2)f |ν(ν)

Lemma 3.1.22.
Let f be a vector of power series. Let ν + δ = ν + δ′ = f(ν). Then
ν + Df |∗ν(δ) = ν + Df |∗ν(δ′). �

Proof. We show ν + Df |≤jν (δ) = ν + Df |≤jν (δ′) for all j ∈ N. Then the lemma follows
by ω-continuity. We proceed by induction on j. The induction base (j = 0) is clear. Let
j ≥ 0. We immediately obtain:

ν + Df |≤j+1
ν (δ) = ν + Df |≤jν (δ) + Df |j+1

ν (δ)

= ν + Df |≤jν (δ′) + Df |j+1
ν (δ) (induction)

= ν + Df |≤jν (δ′)︸ ︷︷ ︸
=:u

+
∑

s∈Nj+1
+

$sf |ν(δ) (Prop. 3.1.19.2.)

With u := ν + Df |≤jν (δ′), it follows from Lemma 3.1.21 that u w $sf |ν(ν) holds for all
s ∈ Nj+1

+ . In other words, for all s ∈ Nj+1
+ there is a u′ such that u = u′ + $sf |ν(ν).

Hence, for all s ∈ Nj+1
+ , we have

u+ $sf |ν(δ) = u′ + $sf |ν(ν) + $sf |ν(δ)
= u′ + $sf |ν(f(ν))
= u′ + $sf |ν(ν) + $sf |ν(δ′)
= u+ $sf |ν(δ′).

One might say that u acts like a “catalyst” in the above equation, as we can replace δ
by δ′ due to the “presence” of u. With this at hand, we may continue with the induction
step:

ν + Df |≤j+1
ν (δ) = ν + Df |≤jν (δ′) +

∑
s∈Nj+1

+

$sf |ν(δ)

= ν + Df |≤jν (δ′) +
∑

s∈Nj+1
+

$sf |ν(δ′) (as argued above)

= ν + Df |≤jν (δ′) + Df |j+1
ν (δ′) (Prop. 3.1.19.2.)

= ν + Df |≤j+1
ν (δ′)
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Now Proposition 3.1.16 follows immediately from Lemma 3.1.22 by a straight-
forward inductive proof.

3.2 Derivation Trees and the Newton

Approximants

In the previous section we used the relation between substitutions and dif-
ferentiation to show the uniqueness of the Newton sequence. In this section
we study the relation between the Newton sequence, substitutions and dif-
ferentiation in more detail. For this we will use the concept of derivation tree
for representing sequences of substitutions as known from formal language
theory. For instance, in the case of a context-free grammar a derivation tree
describes how a word is obtained via a finite number of substitutions starting
from the axiom of the grammar. In a similar way as context-free grammars
and derivation trees are related to each other, we associate with every system
of power series sets of derivation trees. We have already sketched this idea
in Example 1.1.2.

Our main goal is then the characterization of the Kleene and Newton approx-
imants by means of derivation trees. In the case of the Kleene approximants
κ(i) the corresponding set of derivation trees can easily be characterized by
means of the height of a tree. Regarding the Newton approximants, we intro-
duce the notion of dimension of a tree, see Definition 3.2.9 below. We show
that the purely graph theoretical notion of tree dimension exactly describes
the Newton approximants, i.e., the k-th Newton approximant coincides with
the derivation trees of dimension at most k. This result is used in subsequent
sections. In Section 3.3.1 the characterization of the Newton approximants
by means of the tree dimension allows us to show that our generalization
of Newton’s method and the notion of languages of finite index [Ynt67] are
deeply connected; in Section 3.4 we show that the Newton sequence reaches
µf already after n steps (with n the number of variables) which in turn
allows us to improve a result by Hopkins and Kozen [HK99].

For the rest of the section we fix a vector f of power series over a fixed but
arbitrary ω-continuous semiring. Without loss of generality, we assume that
fX =

∑
j∈J mX,j holds for every variable X ∈ X , i.e., we assume that for all

variables the sum is over the same countable set J of indices.

Consider the set of ordered trees whose nodes are labeled by pairs (X, j),
where X ∈ X and j ∈ J . For convenience, we often identify a tree and its
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root. In particular, we say that a tree t is labeled by (X, j) if its root is
labeled by (X, j). The mappings λ, λv and λm are defined by λ(t) := (X, j),
λv(t) := X, and λm(t) := j. Given a set T of trees, we denote by TX the set
of trees t ∈ T such that λv(t) = X.

We define the set of derivation trees of f , and show how to assign to each
tree a semiring element called the yield of the tree. For technical reasons, our
definition differs slightly from the straightforward generalization of derivation
trees for grammars.

Definition 3.2.1 (derivation tree, yield).
The derivation trees of f and their yields are inductively defined as follows:

• For every monomial mX,j of fX , if no variable occurs in mX,j, then the
tree t consisting of one single node labeled by (X, j) is a derivation tree
of f . Its yield Y(t) is equal to mX,j.

• Let mX,j = a1X1a2X2 . . . akXkak+1 for some k ≥ 1, and let t1, . . . , tk
be derivation trees of f such that λv(ti) = Xi for 1 ≤ i ≤ k. Then
the tree t labeled by (X, j) and having t1, . . . , tk as (ordered) chil-
dren is also a derivation tree of f , and its yield Y(t) is equal to
a1 Y(t1) . . . ak Y(tk)ak+1.

We call an derivation tree t of f an X-tree if λv(t) = X (X ∈ X ). The set
of all X-trees is denoted by T fX . We simply write T f for all derivation trees
associated with f . If f is given by the context, then we drop the superscript.

The yield Y(T ) of a countable set T of derivation trees is defined by

Y(T ) =
∑
t∈T

Y(t).

In the following, we mean derivation tree whenever we say tree. �
Example 3.2.2. Figure 3.1(a) shows a system of equations and Figure 3.1(b) a derivation
tree associated with it. Consider the node labeled by (Y, 1) (the right child of the root).
Since the first monomial of the equation for Y is cY Z, the node has two children, say n1, n2

with λv(n1) = Y and λv(n2) = Z. As λm(n2) = 2, the children of n2 are determined by
the second monomial of the equation for Z. Since this monomial is constant, n2 has no
children. The Figure 3.1(c) shows the result of labeling each node of the tree with the
yield of the subtree rooted at it. �

Remark 3.2.3.
As we assume that fX =

∑
j∈J mX,j for some fixed index set J and all vari-

ablesX, we formally have to pad polynomials by adding monomialsmX,j = 0.
Hence, derivation trees might have yield 0. This allows for a more convenient
notation in the proofs to follow. Aside from this purely technical aspect, these
trees can be neglected for determining µf . �
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X = aXY + b
Y = cY Z + dY X + e
Z = gXh+ i

(a)

(X, 1)

(X, 2) (Y, 1)

(Y, 2) (Z, 2)

(Y, 3) (X, 2)

(b)

abcdebi

b cdebi

deb i

e b

(c)

Figure 3.1: (a) A system of equations, (b) a derivation tree associated with it, (c) and
(the recursive calculation of) its yield.

3.2.1 Kleene Sequence and Height

As a warm-up for the Newton case, we characterize the Kleene sequence
(κ(i))i∈N in terms of the derivation trees of a certain height.

Definition 3.2.4 (height).
Let t be a derivation tree. The height of t, denoted by h(t), is the length
(number of edges) of a longest path from the root to some leaf. We denote
by Hi the set of derivation trees of height at most i. �
Proposition 3.2.5.(
κ(i)
)
X

= Y(Hi
X), i.e., the X-component of the i-th Kleene approximant κ(i)

is equal to the yield of Hi
X . �

Remark 3.2.6.
Notice that Proposition 3.2.5 no longer holds if nodes are only labeled with a
variable, and not with a pair. Consider for instance the equation X = a+ a,
for which κ(0) = a+ a. There are two derivation trees t1, t2 of height 0, both
consisting of one single node: t1 is labeled by (X, 1), and t2 by (X, 2). We
get Y(t1) + Y(t2) = a + a = κ(0). If we labeled nodes only with variables,
then there would be one single derivation tree t, and we would get Y(t) = a,
which in general is different from a+ a. �
Example 3.2.7. Consider again the equation X = 1/2 · X2 + 1/2 over the real semiring.
We have κ(2) = 89/128. Figure 3.2 shows the five derivation trees of height at most 2. It
is easy to see that their yields are 1/2, 1/8, 1/32, 1/32, 1/128, which add up to 89/128. �

By Kleene’s theorem we obtain that the least solution of the equation system
is equal to the yield of the set of all trees.
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(X, 2)

(X, 1)

(X, 2) (X, 2)

(X, 1)

(X, 2) (X, 1)

(X, 2) (X, 2)

(X, 1)

(X, 1) (X, 2)

(X, 2) (X, 2)

(X, 1)

(X, 1) (X, 1)

(X, 2) (X, 2) (X, 2) (X, 2)

Figure 3.2: Trees of height at most 2 for the equation X = 1/2 ·X2 + 1/2.

Corollary 3.2.8.
For all X ∈ X : (µf)X = Y(TX). �

Proof. By Kleene’s Theorem (Theorem 2.2.12) we have (µf)X =
⊔
i∈N(κ(i))X . The

result then follows from Proposition 3.2.5.

3.2.2 Newton Sequence and Dimension

We introduce a second parameter of a tree, namely its dimension. Like the
height, it depends only on the tree structure, and not on the labels of its
nodes. Loosely speaking, a tree has dimension 0 if it consists of just one
node; a tree has dimension i if there is a path from its root to some node
which has at least 2 children with dimension i − 1 and all subtrees of the
path that are not themselves on the path have dimension at most i− 1. The
path is called the backbone of the tree. Figure 3.3 illustrates this idea.

Formally, we use an inductive definition of dimension that is more convenient
for proofs.

Definition 3.2.9 ((dimension)).
The dimension d(t) of a tree t is inductively defined as follows: If t has no
children, we set d(t) := 0. Otherwise let d be the maximal dimension of
a child of t, and let k be the number of children of t which have exactly
dimension d. We set d(t) := d+ 1 if k > 1, and d(t) := d otherwise.

We denote by Di the set of derivation trees of dimension at most i. �
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t<i

t<i

t<i

ti−1 ti−1

(a) (b) (c)

Figure 3.3: (a) shows the general structure of a tree of dimension i, where t<i (resp. ti−1)
represents any tree of dimension < i (resp. = i − 1). (b) and (c) give some idea of the
topology of one-, resp. two-dimensional trees.

Remark 3.2.10.
It is easy to prove by induction that h(t) ≥ d(t) holds for every derivation tree
t. In particular, the trees of height 0 and the trees of dimension 0 coincide. �

In the rest of the section we show that the i-th Newton approximant ν(i) is
equal to the yield of the derivation trees of dimension at most i:

Theorem 3.2.11 (Tree Characterization of the Newton Sequence).
Let (ν(i))i∈N be the Newton sequence of f . For every X ∈ X and every
i ≥ 0 we have

(
ν(i)
)
X

= Y(DiX), i.e., the X-component of the i-th Newton
approximant is equal to the yield of DiX . �

The proof is as follows. We define, in terms of trees, a sequence (τ (i))i∈N
satisfying τ

(i)
X = Y(DiX) (Lemma 3.2.14), and we prove that it is a Newton

sequence (Lemma 3.2.15). As the Newton sequence is unique by Proposi-
tion 3.1.16, we have τ (i) = ν(i) and Theorem 3.2.11 follows. For this, we
need the following definition.

Definition 3.2.12.
A tree t is proper if d(t) > d(t′) for every child t′ of t. For every i ≥ 0, let

P i be the set of proper trees of dimension i, and set δ
(i)
X := Y(P i+1

X ) for all
X ∈ X . Then the sequence (τ (i))i∈N is defined by τ (0) := f(0) and

τ (i+1) := τ (i) + Df |∗τ (i)(δ
(i)) for all i ≥ 0. �

Remark 3.2.13.
Note that P 0

X = D0
X = H0

X . �
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Lemma 3.2.14.
For every variable X ∈ X and every i ≥ 0: τ

(i)
X = Y(DiX). �

Lemma 3.2.15.
The sequence (τ (i))i∈N is a Newton sequence as defined in Definition 3.1.9,
i.e., the δ(i) of Definition 3.2.12 satisfy f(τ (i)) = τ (i) + δ(i). �

The proofs of Lemma 3.2.14 and Lemma 3.2.15 are technically involved, and
can be found in Appendix A.1. Here we briefly sketch the main ideas of these
proofs by means of an example:

Example 3.2.16. Recall the abstract dataflow equations describing the recursive program
depicted in Figure 1.3:

X = a ·X · Y + b
Y = c ·X + d · Y.

As usual, we write f(X,Y ) for the right-hand side. We then have for every v ∈ V :

Df |v(X) =

(
a · vX · Y + a ·X · vY

c ·X + d · Y

)
.

We instantiate Definition 3.1.9 for this f . As ν(0) = f(0), we have ν
(0)
X = b and ν

(0)
Y = 0.

By Proposition 3.2.5, ν
(0)
X , resp. ν

(0)
Y is exactly the yield of the X-, resp. Y -trees of height 0.

The reader can easily check that this is the case, as there is exactly one X-tree of height 0
associated with the system; and, no Y -tree of height 0 exists (neglecting trees of yield 0,
see Remark 3.2.3).

We now try to get an idea which trees correspond to ν(1). By definition we have

ν(1) = ν(0) + Df |∗ν(0)(δ
(0)) with ν(0) + δ(0) = f(ν(0)).

We already have characterized ν(0) by means of derivation trees associated with f . So, it
remains to consider Df |∗

ν(0)(δ
(0)).

Recall that δ(0) is only required to satisfy ν(0) + δ(0) = f(ν(0)). Now, as ν(0) = f(0),
we have that f(ν(0)) = κ(0), which by Proposition 3.2.5 corresponds to the trees H1 of

height at most 1. A natural choice for δ
(0)
X is thus the yield of the trees H1

X \ H0
X . The

reader can check that this corresponds to the set P 1
X in Definition 3.2.12. Similarly, the

proof of Lemma 3.2.15 relies on characterizing the trees yielding f(ν(i)), and removing
those yielding already ν(i).

We turn to Df |∗
ν(0)(δ

(0)), which is by definition the least solution of the linear system

X = a · ν(0)
X · Y + a ·X · ν(0)

Y + δ
(0)
X

Y = c ·X + d · Y + δ
(0)
Y .

(3.13)

Assume for a moment that besides the coefficients {a, b, c, d} of f , also

{ν(0)
X ,ν

(0)
Y , δ

(0)
X , δ

(0)
Y } are distinct semiring elements, i.e., we move for a short moment

to the free semiring generated by all these eight symbols. Here, every derivation tree asso-
ciated with Equation 3.13 is obviously a chain as every inner node has exactly one child.
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The crucial point is that from every such X-, resp. Y -tree associated with Equation 3.13
we obtain an X-, resp. Y -tree by replacing every occurrence of (a monomial corresponding

to) a symbol of {ν(0)
X ,ν

(0)
Y , δ

(0)
X , δ

(0)
Y } by some tree associated with the respective symbol.

This is shown in the following figure where we label nodes directly by the monomial itself
as every monomial occurs at most once in f , resp. Equation 3.13:

(X, aν
(0)
X Y )

(Y, dY )

(Y, δ
(0)
Y )

(a)

(X, b)

(Y, cX)

(X, b)

(b)

(X, aXY )

(Y, dY )

(Y, cX)

(X, b)

(X, b)

(c)

Figure 3.4

Part (a) of Figure 3.4 shows an X-tree of Equation 3.13. In (b) the trees (w.r.t. f) yielding

ν
(0)
X , resp. δ

(0)
Y are shown. We obtain the tree shown in (c) as follows: First recall that

the monomial aν
(0)
X Y of Equation 3.13 originates from the monomial aXY of f via the

differential; we relabel the root of (a) accordingly; we then may add the upper tree of (b)

with yield ν
(0)
X as the (unique) X-child; similarly, we replace the leaf labeled by (Y, δ

(0)
Y )

directly with the tree lower tree of (b). The reader can check that the tree of (c) is indeed
a derivation tree w.r.t. f . In particular, the tree of (c) has dimension 1 with its backbone
resulting from the tree of (a). In a similar manner, all trees (w.r.t. f) yielding ν(1) can be
obtained, and all of them have dimension 1.

The proof of Lemma 3.2.14 builds up on this idea of obtaining the trees yielding ν(i+1)

by means of substituting the trees yielding ν(i), resp. δ(i) into the trees w.r.t. the linear
system determined by the differential. In particular it is shown that this yields exactly
the trees of dimension i+ 1. �

3.3 Idempotent Semirings

In this and the next section we focus on io-semirings, i.e., ω-continuous semi-
ring whose summation operator is idempotent. Here, the natural order can
be characterized as follows: a v b holds if and only if a + b = b (3). This
extends analogously to vectors.

3By definition, we have a v b if there is a d such that a + D = b. This implies
a+ b = a+ a+ d = a+ d = b.
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The following proposition shows that the definition of the Newton sequence
(ν(i))i∈N can be simplified in the idempotent case.

Proposition 3.3.1.
Let f be a vector of power series over an io-semiring. The Newton sequence
(ν(i))i∈N of f satisfies the following equations for all i ∈ N:

(a) ν(i+1) = Df |∗
ν(i)(f(ν(i)))

(b) ν(i+1) = Df |∗
ν(i)(ν

(i))

(c) ν(i+1) = Df |∗
ν(i)(f(0)) �

Proof. We first show (a). By Theorem 3.1.10 we have ν(i) v f(ν(i)), hence with idem-

potence ν(i) + f(ν(i)) = f(ν(i)). So we can choose δ(i) = f(ν(i)) and have ν(i+1) =
ν(i) + Df |∗

ν(i)(f(ν(i))) = Df |∗
ν(i)(f(ν(i))), because ν(i) v f(ν(i)) v Df |∗

ν(i)(f(ν(i))). So
(a) is shown.

Again by Theorem 3.1.10 we have f(0) = ν(0) v ν(i) v f(ν(i)). So we have
Df |∗

ν(i)(f(0)) v Df |∗
ν(i)(ν

(i)) v Df |∗
ν(i)(f(ν(i))). Hence, for (b) and (c), it remains

to show Df |∗
ν(i)(f(ν(i))) v Df |∗

ν(i)(ν
(i)) and Df |∗

ν(i)(ν
(i)) v Df |∗

ν(i)(f(0)), respectively.
For (b) we have:

Df |∗ν(i)(f(ν(i)))

v Df |∗ν(i)(f(0) + Df |ν(i)(ν(i))) (Lemma 3.1.14)

= Df |∗ν(i)(f(0)) + Df |∗ν(i)(Df |ν(i)(ν(i)))

v Df |∗ν(i)(ν
(i)) + Df |∗ν(i)(Df |ν(i)(ν(i))) (f(0) v ν(i))

v Df |∗ν(i)(ν
(i)) + Df |∗ν(i)(ν

(i)) (Lemma 3.1.13)

= Df |∗ν(i)(ν
(i)) (idempotence)

So (b) is shown.

For (c) it remains to show Df |∗
ν(i)(ν

(i)) v Df |∗
ν(i)(f(0)). We proceed by induction on i.

The base case i = 0 is easy because ν(0) = f(0). Let i ≥ 1. We have:

Df |∗ν(i)(ν
(i))

= Df |∗ν(i)(Df |∗ν(i−1)(ν
(i−1))) (by (b))

v Df |∗ν(i)(Df |∗ν(i−1)(f(0))) (by induction)

v Df |∗ν(i)(Df |∗ν(i)(f(0))) (Theorem 3.1.10: ν(i−1) v ν(i))

= Df |∗ν(i)(f(0)) (see explanation below)

For the last step we used that in the idempotent case we have g∗(g∗(x)) = g∗(x) for any
linear map g : V → V . Recall that Remark 3.1.8 states that Df |ν(i) is additive.

g∗(g∗(x)) =
∑
j∈N

gj

(∑
k∈N

gk(x)

)
(Definition 3.1.12)
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=
∑
j∈N

∑
k∈N

gj(gk(x)) (linearity)

=
∑
l∈N

gl(x) (idempotence)

= g∗(x) (Definition 3.1.12)

This concludes the proof.

3.3.1 Language Semirings

Now we consider language semirings, the typical example of idempotent
semirings. Let SΣ be the language semiring over a finite alphabet Σ. Let
f be a vector of polynomials over X whose coefficients are elements of Σ.
Then, for each X0 ∈ X , there is a naturally associated context-free grammar
Gf ,X0 = (X ,Σ, P,X0), where the set of productions is

P = {X → m | m is a monomial of fX}.

We write L(Gf ,X0) for the language represented by this grammar. In particu-
lar, we have L(Gf ,X0) =

(
µf
)
X0

. This follows directly from Proposition 3.2.5
as the derivation X0-trees w.r.t. f are in one-to-one correspondence with
the derivation trees associated with Gf ,X0 . Analogously, each grammar is
naturally associated with a vector of polynomials. In the following we use
grammars and vectors of polynomials interchangeably.

We show in this section that the Newton approximants ν(i) are strongly linked
with the finite-index approximations of L(G). Finite-index languages have
been extensively investigated under different names by Salomaa, Gruska,
Yntema, Ginsburg and Spanier, among others [Sal69, Gru71, Ynt67, GS68]
(see [FH97] for historical background).

Definition 3.3.2.
Let G be a grammar, and let D be a derivation X0 = α0 ⇒ · · · ⇒ αr = w
of w ∈ L(G). For every i ∈ {0, . . . , r} let βi be the projection of αi onto the
variables of G. The index of D is the maximum of {|β0|, . . . , |βr|}. The index-
i approximation of L(G), denoted by Li(G), contains the words derivable by
some derivation of G of index at most i. �
Example 3.3.3. Consider the following context-free grammar G:

X → aXY | b Y → cX | dY.

Assume that X is the axiom. Two possible derivations of the word abcabcb are:

X ⇒ aXY ⇒
{
abY ⇒ abcX
aXcX ⇒ aXcaXY

}
⇒ abcaXY ⇒ abcabY ⇒ abcabcX ⇒ abcabcb.
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The upper derivation has index 2, while the lower has index 3. We have already described
in Example 3.1.5 how one can construct from G a grammar representing Li(G). �

We show that for a context-free grammar G in Chomsky normal form (CNF),
the Newton approximations to L(G) coincide with the finite-index approxi-
mations.

Theorem 3.3.4.
Let G = (X ,Σ, P,X0) be a context-free grammar in CNF and let (ν(i))i∈N be
the Newton sequence associated with G. Then

(
ν(i))X0 = Li+1(G) for every

i ≥ 0. �

Proof sketch. The proof builds on the tree-dimension characterization of the Newton

approximants (Theorem 3.2.11). Given a tree of dimension i we can recursively obtain

a derivation of index at most i + 1 by processing a subtree of minimal dimension always

first. For the other direction it can be similarly shown that a derivation of index i + 1

corresponds to a derivation tree of dimension at most i.

In particular, it follows from Theorem 3.3.4 that the (X0-component of the)
Newton sequence for a context-free grammar G converges in finitely many
steps if and only if L(G) = Li(G) for some i ∈ N.

3.4 Commutative Idempotent Semirings

In this section we study Newton’s method on cio-semirings, i.e., ω-continuous
semirings which do not only have an idempotent addition (as in the previous
section), but also a commutative multiplication. The counting semirings Ck
are a prominent example of cio-semirings.

In the previous section we have seen that, even though the Newton sequence
accelerates the Kleene sequence, it does not generally converge in finitely
many steps not even on io-semirings: The language semirings are examples
of idempotent ω-continuous semirings, but the Newton sequence of a context-
free grammar G with start symbol X0 does not reach (µf)X0 = L(G) after
finitely many steps, unless L(G) has finite index.

An instance of the Newton sequence in a cio-semiring has already been pre-
sented in the counting semiring example on page 38. We show another one
here.

Example 3.4.1. Let 〈2{a}∗ ,+, ·, 0, 1〉 denote the cio-semiring 〈2{a}∗ ,∪, ·, ∅, {ε}〉. The mul-
tiplication · is meant to be commutative. For simplicity, we write ai instead of {ai}.
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Consider f(X1, X2) = (X2
2 + a, X2

1 ). We have:

Df |(v1,v2)(X1, X2) =
(
v2X2, v1X1

)
and

Df |∗(v1,v2)(X1, X2) = (v1v2)∗
(
X1 + v2X2, v1X1 +X2

)
.

The first three elements of the Newton sequence are:

ν(0) = (a, 0), ν(1) = (a, a2), ν(2) = (a3)∗(a, a2) .

It is easy to check that ν(2) is a fixed point of f . Hence we have ν(2) = µf , as ν(2) v µf
by Theorem 3.1.10. �

As shown in Proposition 3.3.1 the Newton sequence has several equivalent
descriptions. In particular, the description given in Proposition 3.3.1 exactly
corresponds with the sequence proposed in [HK99] (4). In this article, the
authors discussed the problem of calculating the least fixed point of a system
of regular expressions on a commutative Kleene algebra. For now it suffices
to know that every cio-semiring is also a commutative Kleene algebra. One
of their main results can then be stated for cio-semirings as follows:

Theorem 3.4.2 ([HK99]).
Let f be a vector of power series over a cio-semiring induced by regular ex-
pressions over the variables X with n := |X |. There is a function P : N→ N
with P (n) ∈ O(3n) such that ν(P (n)) = µf . �

This means that the Newton sequence always reaches µf after finitely many
steps.

In Section 3.4.1 we improve Theorem 3.4.2 by showing that it holds with
P (n) = n for all vectors of power series on cio-semirings.

In Section 3.4.2 we discuss the relationship between commutative Kleene
algebras and cio-semirings in more detail. In particular, we lift our result on
the convergence speed of Newton’s method on cio-semirings to commutative
Kleene algebras, thereby improving the result of [HK99].

3.4.1 Analysis of the Convergence Speed

In this section we analyze how many steps the Newton iteration and, equiv-
alently, the Hopkins-Kozen iteration need to reach µf when we consider
cio-semirings.

4The connection to Newton’s sequence was not stated there.
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Recall from Section 3.2 the concept of derivation trees (short: trees). A tree
t has a height h(t), a dimension d(t), and a yield Y (t). We define yet another
tree property.

Definition 3.4.3.
Let t be a tree. We denote by L(t) the number of distinct λv-labels in t. We
call t compact if d(t) ≤ L(t). �

Now we are ready to prove the key lemma of this section, which states that
any tree can be made compact.

Lemma 3.4.4.
For each tree t there is a compact tree t′ with λv(t) = λv(t

′) and
Y (t) = Y (t′). �

We first sketch the proof of the preceding lemma by means of an example:

Example 3.4.5. Consider the following univariate polynomial equation system where f
again denotes the right-hand side:

X = X2 + a+ b.

From f we obtain the following X-tree t: (5)

(X,X2)

(X,X2) (X,X2)

(X, a) (X, b) (X, a) (X, a)

This tree has dimension 2 and is therefore not compact by definition. In order to make it
compact, we have to transform it into a derivation tree of f of dimension 1 while preserving
its yield up to commutativity.

For this, we introduce the notion of pump tree (6): We obtain a pump tree from an X-tree
by removing exactly one X-subtree. The idea is now to reduce the left subtree to a tree
of dimension 0 by reallocating pump trees (encircled in the above figure) into the right
subtree where we then deal recursively with the right subtree. We first remove such a
pump tree from the rest of the tree by deleting the connecting edges and connecting the
remaining parts as depicted here:

5To improve readability in the following illustrations, we replace the node labels (X, 1),
(X, 2), (X, 3) by (X,X2), (X, a), (X, b), respectively.

6The term pump tree stems from the pumping lemma for context free languages.
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(X,X2)

(X,X2) (X,X2)

(X, a) (X, b) (X, a) (X, a)

Next, we reallocate the detached pump tree into the right subtree, e.g. as shown here:

(X,X2)

(X,X2) (X,X2)

(X, a) (X, b) (X, a) (X, a)

It is easy to check that this new tree is indeed a derivation tree of f again and has the
same yield as the original one. Further this tree is already compact. In general, we would
have to proceed recursively in order to make the right subtree compact.

Note that, as we assume multiplication to be commutative, it is not important where we
insert the pump tree into the right subtree. In the following proof we show that we can
always find such pump trees and relocate them, i.e., find insertion points, if the tree under
consideration is not compact. �

We now give a formal proof of Lemma 3.4.4:

Proof. First, let us introduce the following notation: We write t = t1 · t2 to denote that
t is combined from t1 and t2 in the following way: The tree t1 is a “partial” derivation
tree which is a regular derivation tree except for one leaf l missing its children. The tree
t2 is a regular derivation tree with λv(t2) = λv(l). The tree t is obtained from t1 and t2
by replacing the leaf l of t1 by the tree t2.

We proceed by induction on the number of nodes. In the base case, t has just one node,
so d(t) = 0, and hence t is compact and we are done. In the following, let t have more
than one node and assume d(t) > L(t). We give a procedure that constructs a compact
tree from t.

Let s1, s2, . . . , sr be the children of t with d(t) ≥ d(s1) ≥ d(s2) ≥ . . . ≥ d(sr). By induction
we can make every child compact, i.e. d(si) ≤ L(si). We then have by definition of
dimension

L(t) + 1 ≤ d(t) ≤ d(s1) + 1 ≤ L(s1) + 1 ≤ L(t) + 1.

Hence, we have d(t) = d(s1)+1 which, by definition of dimension and compactness, implies
d(s1) = d(s2) = L(t) = L(s1) = L(s2). As h(s2) ≥ d(s2) = L(s2) by Remark 3.2.10, we
find a path in s2 from the root to a leaf which passes through at least two nodes with
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the same λv-label, say Xj . In other words, we may factor s2 into tb1 · (tb2 · tb3) such that
λv(t

b
2) = λv(t

b
3) = Xj . As L(t) = L(s1) = L(s2), we also find a node of s1 labeled by Xj

which allows us to write s1 = ta1 · ta2 with λv(t
a
2) = Xj .

Now we move the middle part of s2 to s1, i.e., let s′1 = ta1 · (tb2 · ta3) and let s′2 = tb1 · tb3. We
then have L(s′1) = L(s1) = L(s2) ≥ L(s′2). By induction, s′1 and s′2 can be made compact,
so d(s′1) ≤ d(s1) = d(s2) ≥ d(s′2). Consider the tree t′ obtained from t by replacing s1

by s′1 and s2 by s′2. By commutativity, t and t′ have the same yield. If d(s′2) < d(s2)
then d(t′) ≤ d(t)− 1 = L(t) = L(t′) and we are done. Otherwise we iterate the described
procedure.

This procedure terminates, because the number of nodes of (the current) s2 strictly de-

creases in every iteration, and the number of nodes is an upper bound for h(s2) and,

therefore, for d(s2).

Now we can prove the main theorem of this section.

Theorem 3.4.6.
Let f be a vector of power series over a cio-semiring S in the variables X
with |X | = n. Then ν(n) = µf . �

Proof. We have for all X ∈ X :

(µf)X =
∑

trees t with λv(t)=X

Y (t) (Corollary 3.2.8)

=
∑

trees t with λv(t)=X

and d(t)≤n

Y (t) (Lemma 3.4.4)

= (ν(n))X (Theorem 3.2.11)

Remark 3.4.7.
The bound of this theorem is tight as the following example shows: If
f(X1, . . . , Xn) = (X2

2 + a,X2
3 , . . . , X

2
n, X

2
1 ), then (ν(k))X1 = a for k < n,

but a2n ≤ (ν(n))X1 = (µf)X1 . �

In terms of languages, combining Theorem 3.4.6 with Theorem 3.3.4 we ob-
tain the following refined statement of Parikh’s theorem:

Corollary 3.4.8.
Let G = (X ,Σ, P,X0) be a context-free grammar in CNF. Let |X | = n. Then
the commutative image of the index-(n + 1) approximation Ln+1(G) equals
the commutative image of L(G). �

In Section 3.4.3 we discuss in more detail how our proof of Parikh’s theorem
is related to previous proofs of it.
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3.4.2 Generalization to Commutative Kleene Algebras

In this subsection we generalize Theorem 3.4.6 to commutative Kleene alge-
bras. A commutative Kleene algebra 〈K,+, ·,∗ , 0, 1〉 is commutative idem-
potent naturally ordered, but not necessarily ω-chain complete semiring
〈K,+, ·, 0, 1〉 where the ∗-operator is only required to satisfy these two axioms
for all a, b, c ∈ K:

1 + aa∗ v a∗ and a+ bc ≤ c→ b∗a v c .

Notice that for a Kleene algebra there may not exist a notion of countable
summation, as the ∗-operator is defined axiomatically. Thus, the axioms
of commutative Kleene algebras are weaker than those of cio-semirings. In
particular, the following example from [Koz90] shows there are commutative
Kleene algebras which are not cio-semirings:

Example 3.4.9. Consider the Kleene algebra with carrier ω2 := N2 ∪ {⊥,>}, i.e., the set
of ordered pairs of natural numbers extended by a bottom and a top element. We assume
that ω2 is totally ordered by ≺ with ⊥ the minimum element, > the maximum element,
and the lexicographic order on N2. Addition is defined to be the supremum of the elements
w.r.t. ≺. Thus, ≺ becomes the natural order, and the additive neutral element is ⊥. Note
that this also gives us a notion of countable summation on ω2. Multiplication is defined
by

x · ⊥ = ⊥ · x = ⊥
x · > = > · x = > (x 6= ⊥)
(a, b) · (c, d) = (a+ c, b+ d)

with neutral element (0, 0). Finally, the Kleene-star is defined by

a∗ =

{
⊥ if a = ⊥ ∨ a = (0, 0)
> else.

This definition satisfies the axioms stated above. But obviously, we do not have a cio-
semiring as ∑

i∈N
(0, 1)n = sup{(0, 1)i|i ∈ N} = (1, 0) ≺ > = (0, 1)∗. �

Thus, the fact that our result carries over to this more general setting is not
obvious.

In the rest of the section we prove the following theorem which improves
Hopkins and Kozen’s result [HK99] from O(3n) to n.

Theorem 3.4.10.
Let f ∈ RExpXK∪X be a vector of regular expressions (7) over a commutative
Kleene algebra 〈K,+, ·,∗ , 0, 1〉. Let |X | = n. Then ν(n) = µf . �

7Recall that RExpM denotes the set of regular expressions generated by the set M .
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We have not yet defined ν(i) over a commutative Kleene algebra. We take the
equations ν(0) = f(0) and ν(i+1) = Df |∗

ν(i)(ν
(i)) (cf. Proposition 3.3.1 (b))

as definition. For convenience, we define the Hopkins-Kozen operator Hf by

Hf (X) = Df |∗X(X) .

Then ν(i) is obtained by applying Hf to f(0) i times:

ν(i) = Hif (f(0)) .

However, we still need to adapt some definitions for ω-continuous semirings
to commutative Kleene algebras. In Kleene algebras, the Kleene star replaces
ω-summation. So we modify the definition of differentials (see Remark 3.1.8)
by replacing the equation for the

∑
-operator by the definition of [HK99]:

∂Xg
∗|v = g∗(v) · ∂Xg|v . (3.14)

(Note that this equation is satisfied by the Kleene star on cio-semirings.)
Further, [HK99] gives, implicitly, a definition of Df |∗u(v) in commutative
Kleene algebras, i.e., without expressing ∗ using ω-summation. As we do not
need the formal definition in the following, we restrict ourselves to this very
brief description.

With those notations, and using the fact that [HK99] shows ν(n) v µf ,
proving Theorem 3.4.10 amounts to showing the equation

f(Hnf (f(0))) = Hnf (f(0)) . (3.15)

In order to prove (3.15) we appeal to Redko’s theorem (see [Con71]). This
theorem essentially states that an equation of terms over any commutative
Kleene algebra holds if it holds under the canonical commutative interpreta-
tion. See Appendix A.3 for a technical justification of this fact. Let Σ be
the finite set of elements of K appearing in f . The canonical commutative
interpretation cΣ : RExpΣ → 2NΣ

is defined by

cΣ(α) = {#w | w ∈ LΣ(α)} ,

where #w is the Parikh-vector of w ∈ Σ∗, i.e., a ∈ Σ appears exactly (#w)a
times in w. We omit the subscript of cΣ in the following. The cio-semiring
of sets of Parikh-vectors CΣ is defined by CΣ = 〈2NΣ

,∪, ·, ∅, {0}〉 with A ·B =
{a + b | a ∈ A, b ∈ B} for all A,B ⊆ NΣ and

∑
S =

⋃
S for all S ⊆ 2NΣ

.
In particular we have c(α∗) =

⋃
i∈N c(α)i. By Redko’s theorem, we can

prove (3.15) by showing c(f(Hnf (f(0)))) = c(Hnf (f(0))) over CΣ.

For g ∈ RExpΣ∪X let gc be its interpretation as map on CΣ, i.e.:
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• If α ∈ X , then αc = α.

• If α ∈ Σ, then αc = c(α).

• If α = β + γ, then αc = βc ∪ γc.

• If α = β · γ, then αc = βc · γc.

• If α = β∗, then αc = (βc)∗ =
⋃
i∈N(βi)c.

Define f c by applying above definition componentwise. Then f c is a vector
of power series on CΣ with c(f(α)) = f c(c(α)) for all α ∈ RExpXΣ .

Assume (Hf )c = Hf c . By Theorem 3.4.6, Hnf c(f c(∅)) solves the equation
system X = f c(X) over CΣ. This implies:

c(f(Hnf (f(0)))) = f c((Hnf )c(f c(∅))) = f c(Hnf c(f c(∅))) = Hnf c(f c(∅))
= c(Hnf (f(0))) .

Then (3.15) follows by Redko’s theorem.

So it remains to show that (Hf )c = Hf c indeed holds, which is equivalent to

c(Df |∗X(X)) = Df c|∗c(X)(c(X)) . (3.16)

First we show the following lemma.

Lemma 3.4.11.
The following equation holds for all u,v ∈ RExpXΣ :

c(Df |u(v)) = Df c|c(u)(c(v)) . �

Proof. One can prove this vector equation for each component separately, so we can
assume f = f ∈ RExpΣ∪X . Moreover, it suffices to show c(DXf |u(v)) = DXf

c|c(u)(c(v))
for all X ∈ X . By Remark 3.1.8 this is equivalent to proving

c (∂Xf |u) = ∂Xf
c
∣∣
c(u) .

We proceed by induction on the structure of f . Only the case f = g∗ is interesting. We
have:

c (∂Xg
∗|u) = c (g∗(u) · ∂Xg|u) (Equation (3.14))

=
⋃
i∈N

c(g(u))i · c (∂Xg|u) (definition of c)

=
⋃
i∈N

c(g(u))i · ∂Xgc
∣∣
c(u) (induction)

=
⋃
i≥1

(
gc(c(u))

)i−1 · ∂Xgc
∣∣
c(u) (definition of gc)
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=
⋃
i∈N

(
∂X(gc)i

∣∣
c(u)

) (idempotence of ∪,
Remark 3.1.8: equation for · )

= ∂X
⋃
i∈N

(gc)i

∣∣∣∣∣c(u) (Remark 3.1.8: equation for + )

= ∂X(g∗)c
∣∣
c(u) (definition of c)

As mentioned above, [HK99] implicitly defines Df |∗u(v) in commutative
Kleene algebras. In particular, their definition satisfies

c (Df |∗u(v)) =
⋃
i∈N

c
(
Df |iu(v)

)
. (3.17)

Now we can prove (3.16):

c (Df |∗X(X)) =
⋃
i∈N

c
(
Df |iX(X)

)
(Equation (3.17))

=
⋃
i∈N

Df c
∣∣i
c(X)(c(X)) (Lemma 3.4.11)

= Df c
∣∣∗
c(X)(c(X)) (Lemma 3.1.13)

This concludes the proof of Theorem 3.4.10.

3.4.3 Comparison with previous proofs of Parikh’s the-
orem

Neglecting the results regarding the convergence speed of the Newton’s se-
quence, Theorem 3.4.6, resp. Theorem 3.4.10 give another proof of Parikh’s
result that the commutative image of a context-free language can be rep-
resented by a regular language. In this subsection we briefly sketch how
our proof relate to the proofs given by Parikh [Par66], resp. Hopkins and
Kozen [HK99], resp. Aceto, Ésik, and Ingólfsdóttir [AEI01].

For a context-free grammar G let L(G) be the language generated by G, and
define L′(G) to be the subset of L(G) such that for every w ∈ L′(G) there is
a derivation tree t such that every variable (non-terminal) of G appears at
least once in t. Parikh reduces the problem of calculating the commutative
image of L(G) to that of L′(G). He then uses the side condition imposed on
L′(G) to show that its commutative image is semi-linear set can be obtained
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from the derivation trees, and the partial derivation trees (representing linear
monomials) of height at most n2 (8).

On the other hand, the proof by Hopkins and Kozen [HK99] relies completely
on the axiomatic definitions of commutative Kleene algebras, and combines
these with generalizations of results known from (vector) calculus. The idea
of using concepts from calculus becomes obvious in the idea of using partial
derivatives, but also the proof of Theorem 5.1 in [HK99] bears similarities to
the proof of the implicit, resp. inverse function theorem.

Finally, Aceto, Ésik, and Ingólfsdóttir identify in [AEI01] a set of axioms
describing the properties of the Kleene star (9) over some given semiring
which allow to show Parikh’s theorem. The interesting point here is that
these axioms are purely equational, while the axioms used in [HK99] involve
inequalities and implications (see the beginning of Subsection 3.4.2).

In comparison, our proof, combining both transformation of derivation trees
and methods motivated from algebra and calculus, can be filed between the
original proof by Parikh, and the one by Hopkins and Kozen. In particular,
Parikh’s side condition that all variables should appear in a derivation tree is
similar to our notion of compact tree introduced in Definition 3.4.3. Further,
the partial derivation trees used by Parikh are in our case obtained via the
differential of f . On the other hand, we borrow from calculus Newton’s
method and the concepts of iterative linearization, similar to [HK99].

Compared to [AEI01], it is still an open question if there is a set of purely
equational axioms which allow to proof that ν(n) = µf .

3.5 Non-Distributive Program Analyses

We have seen in the introduction that system of polynomials naturally arise
in the setting of program analysis. Up to now we have only considered the
case where the maps induced by these systems operate on semirings, thus
assuming that multiplication distributes over addition. As several interesting
analyses of programs are only subdistributive, i.e., only satisfy

a · (b+ c) w a · b+ a · c and (b+ c) · a w b · a+ c · a,
8Here, with partial derivation tree we denote every tree we obtain from a derivation

tree by removing exactly one leaf, i.e., a partial derivation tree yields a linear monomial.
9More precisely, in [AEI01] least fixed-point expressions (µ-terms), like µz.xz + y, are

considered, generalizing the Kleene star.
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we discuss in this section how the Newton sequence generalizes to the alge-
braic structure we obtain from semirings by replacing the axiom of distribu-
tivity by above axiom of subdistributivity. We first give a brief summary of
the role of distributivity in program analysis:

For programs without procedures, distributive program analyses were first
considered in [Kil73]. Recall from the introduction that, given a program
and the distributive transfer functions of a program analysis, one can con-
struct a vector f of polynomials such that, for every program point p, the
p-component of the least fixed point µf coincides with the so-called meet-on-
all-paths value or short MOP-value (10) of p, the sum of the dataflow values
of all program paths leading to p.

The framework of [Kil73] was generalized to non-distributive transfer func-
tions in [KU77]. Non-distributivity means, in our terms, that only sub-
distributivity holds (11). There are interesting program analyses, such as
constant propagation, which are non-distributive, see e.g. [KU77, NNH99].
In those cases, the least fixed point does not necessarily coincide with the
MOP-value, but safely overapproximates it.

For procedural programs, [SP81] considered only distributive analyses.
[KS92] refined this approach for programs with local variables, and also
showed that, like in the case without procedures, the least fixed point is
an overapproximation of the MOP-value.

To be precise we define the MOP-value as the vector M with M p = Y(Tp)
where Tp is the set of trees labeled with p. Notice that a depth-first traversal
of a tree labeled with p precisely corresponds to an interprocedural path
from the beginning of the procedure of p to the program point p, i.e., the
MOP-value M p = Y(Tp) is in fact the sum of the dataflow values of all paths
to p.

Corollary 3.2.8 states for the distributive case that M = µf , and we have
seen in Theorem 2.2.12 and Theorem 3.1.10 that the Kleene and Newton
sequences converge to this value. For the non-distributive case, the least fixed
point overapproximates the MOP-value, i.e., M v µf , cf. [KS92]. In the
following we try to sketch that in a natural extension from semirings to “sub-
distributive semirings”, Newton’s method is defined as well. Moreover, the

10We keep the term MOP-value for historical reasons.
11If addition is idempotent (as for lattice joins) this condition is equivalent to the mono-

tonicity of multiplication, or, in traditional terms, to the monotonicity of the transfer
functions [KU77]. The stricter distributivity condition, on the other hand, amounts to
requiring the transfer functions to be homomorphisms.
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Kleene and Newton sequences both converge to overapproximations of M ,
more precisely, we show M v

⊔
i∈N κ

(i) v
⊔
i∈N ν

(i).

For this we first define subdistributive (ω-chain complete) semirings (12):

Definition 3.5.1.
A subdistributive semiring is given by a tuple 〈S,+, ·, 0, 1〉 where the follow-
ing properties are required to hold:

(1) 〈S,+, 0〉 is a commutative monoid.

(2) 〈S, ·, 1〉 is a monoid.

(3) 0 · a = a · 0 = 0 for all a ∈ S.

(4) a · (b+ c) w a · b+ a · c and (a+ b) · c w a · c+ b · c for all a, b, c ∈ S.

(5) The relation v := {(a, b) ∈ S × S | ∃d ∈ S : a + d = b} is a partial
order.

(6) For all ω-chains (ai)i∈N
⊔
i∈N ai exists.

For any sequence (bi)i∈N define
∑

i∈N bi :=
⊔
{a0 + a1 + . . .+ ai | i ∈ N}. �

Remark 3.5.2.
We obtain the definition of subdistributive semiring from the definition of
ω-continuous semiring by removing (7), and replacing distributivity with
subdistributivity (see (4)). �

In the remainder of this section 〈S,+, ·, 0, 1〉 always denotes a subdistributive
semiring. Polynomials, vectors, differential, etc. are then defined analogously
as in the distributive setting.

Note that we still have in any subdistributive semiring that the following
inequalities hold for all sequences (ai)i∈N, c ∈ S, and partitions (Ij)j∈J of N:

c·

(∑
i∈N

ai

)
w
∑
i∈N

(c·ai),

(∑
i∈N

ai

)
·c w

∑
i∈N

(ai·c),
∑
j∈J

∑
i∈Ij

aj

 w∑
i∈N

ai .

Thus, any polynomial p is still monotone, but not necessarily ω-continuous.
Still, for any sequence (vi)i∈N (of vectors) on a subdistributive semiring we
have p(

∑
i∈N vi) w

∑
i∈N p(vi). Hence, the Kleene sequence of a polynomial

system f still converges, but not necessarily to the least fixed point of f :

12We drop ω-chain-complete in the following.
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Corollary 3.5.3.
For any system f of polynomials we have that the Kleene sequence (κ(i))i∈N
is an ω-chain. If f has a least solution µf , then

⊔
i∈N κ

(i) v µf . �

Still, the limit of the Kleene sequence exists as it is an ω-chain, and this limit
is a safe approximation of the MOP-value:

Proposition 3.5.4.
For any polynomial system f we have

(
κ(i)
)
X
w Y(Hi

X), and, hence,(⊔
i∈N κ

(i)
)
X
w Y(TX) where TX is the set of trees labeled with X. �

We skip the proof of this proposition as it is almost identical to the one of
Proposition 3.2.5. The only difference is that when expanding the compo-
nents of κ(i) into a sum of products of coefficients the subdistributivity only
guarantees that κ(i) is an upper bound. Similarly, subdistributivity only
allows us to generalize the lower bound from Lemma 3.1.14, i.e., we have

f(u) + Df |u(v) v f(u+ v)

for a polynomial system f and vectors u,v.

We now turn to the definition of Newton sequence.

Definition 3.5.5.
For f a polynomial system in the variables X, and a, b vectors we set

Lf ;a;b(X) := b+ Df |a(X). �

Definition 3.5.6.
Let f be a polynomial system. For i ∈ N, an i-th Newton approximant ν(i)

is inductively defined by

ν(0) = f(~0) and ν(i+1) = ν(i) + ∆(i) ,

where ∆(i) has to satisfy
∑

k∈N Df |k
ν(i)(δ

(i)) v ∆(i) v Lf ;ν(i);δ(i)

(
∆(i)

)
. Any

such sequence (ν(i))i∈N of Newton approximants is called Newton sequence. �
Remark 3.5.7.
If δ(i) exists, then possible choices for ∆(i) are∑

k∈N

Df |kν(i)(δ
(i)),

⊔
k∈N

Lk
f ;ν(i);δ(i)(0) or (if it exists) µLf ;ν(i);δ(i) .

Note that in the distributive setting all three values coincide. �
Proposition 3.5.8.
Let f : V → V be a vector of power series.
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• For every Newton approximant ν(i) there exists a vector δ(i) such that
f(ν(i)) = ν(i) + δ(i). So there is at least one Newton sequence.

• Every Newton sequence (ν(i))i∈N satisfies κ(i) v ν(i) v f(ν(i)) v ν(i+1)

for all i ∈ N. �

Proof. First we prove for all i ∈ N that a suitable δ(i) exists and, at the same time, that
the inequality κ(i) v ν(i) v f(ν(i)) holds. We proceed by induction on i. For the base
case i = 0 we have:

ν(0) = f(0) = κ(0) v κ(1) = f(κ(0)) = f(ν(0)).

So, there exists a δ(0) with ν(0) + δ(0) = f(ν(0)), and hence we have:

ν(1) = ν(0) + ∆(0) w ν(0) +
∑
k∈N

Df |kν(0)(δ
(0)) w ν(0) + δ(0) = f(ν(0)).

For the induction step, let i ≥ 0.

κ(i+1) = f(κ(i)) v f(ν(i)) = ν(i) + δ(i) v ν(i) +
∑
k∈N

Df |kν(i)(δ
(i)).

As we require that
∑
k∈N Df |k

ν(i)(δ
(i)) v∆(i), it now immediately follows that

κ(i+1) v ν(i) + ∆(i) = ν(i+1).

By definition of ∆(i) we have ∆(i) v Lf ;ν(i);δ(i)(∆
(i))); it therefore follows:

ν(i+1) = ν(i) + ∆(i) v ν(i) + δ(i) + Df |ν(i)

(
∆(i)

)
= f(ν(i)) + Df |ν(i)

(
∆(i)

)
v f

(
ν(i) + ∆(i)

)
= f(ν(i+1)).

We complete our proof by

f(ν(i+1)) = ν(i+1) + δ(i+1) v ν(i+1) +
∑
k∈N

Df |kν(i+1)(δ
(i+1))

v ν(i+1) + ∆(i+1) = ν(i+2).

Proposition 3.5.9.
Let M be the MOP-value, i.e., the vector M with MX = Y(TX). Then
M v

⊔
i∈N κ

(i) v
⊔
i∈N ν

(i). �

Proof. Follows directly from Propositions 3.5.4 and 3.5.8.

Proposition 3.5.10.
For ∆(i) =

∑
k∈N Df |k

ν(i)(δ
(i)) we have

⊔
i∈N ν

(i) v µf , if µf exists. �

Proof. The proof is almost identical to the one of Proposition 3.1.11. Note that the proof

of Lemma 3.1.15 does not use distributivity.
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Theorem 3.5.11 (Tree Characterization of the Newton Sequence).
Let (ν(i))i∈N be a Newton sequence of f . For every X ∈ X and every
i ≥ 0 we have

(
ν(i)
)
X
w Y(DiX), i.e., the X-component of the i-th Newton

approximant is a safe approximation of the yield of DiX . �

Proof. In the distributive setting we proved this theorem via induction where we ex-

panded the the terms we obtained using distributivity. In the subdistributive case the

same proof still guarantees that
(
ν(i)

)
X
w Y(DiX).



Chapter 4

Derivation Tree Analysis

4.1 Introduction

In the last chapter we showed that on cio-semirings the Newton sequence
reaches the least fixed point after a linear number of steps (cf. Theo-
rem 3.4.6). The principle underlying the proof of this result can be para-
phrased as follows: We first analyzed the structure of the derivation trees cor-
responding to the Newton approximations ν(i) (see Proposition 3.3.1) which
led us to the notion of tree dimension, and the result that ν(i) is given by the
yield of the derivation trees Di of dimension at most i (see Theorem 3.2.11).
By definition, the set Di was a subset of the derivations trees associated with
f , i.e., Di ⊆ T . To obtain Theorem 3.4.6 it then remained to show that we
have Y(t) v Y(DnX) for any tree t ∈ TX , as by idempotence and ω-continuity
of summation(1) we then could conclude that∑

t∈TX

Y(t) v Y(DnX) =
(
ν(n)

)
X
.

The proof of Theorem 3.4.6 can thus be broken down into these two steps:

(1) Identify the derivation trees Di of f corresponding to ν(i).

(2) Show that all derivation trees T of f can be embedded into Dn.

We call this proof principle derivation tree analysis.

1More precisely, for any sequence (ai)i∈N with ai v d we have by idempotence a0 +a1 +
. . .+ ai v d+ d+ . . . d = d for all i ∈ N. Now, as

∑
i∈N ai =

⊔
{a0 + a1 + . . .+ ai|i ∈ N}

it immediately follows that
∑
i∈N ai v d.
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Definition 4.1.1.
Fix a polynomial system f in the variables X (with n := |X |) over some
idempotent ω-continuous semiring. We say that a set TX of X-trees satisfies
the embedding property if Y(t) v Y(TX) holds for every X-tree t. �
Proposition 4.1.2.
Let f be a system of polynomials over an io-semiring, and let X be a variable
of f . If a set TX of X-trees of f satisfies the embedding property, then
(µf)X = Y(TX). �

Derivation tree analysis is used in this chapter for showing that in the follow-
ing special cases of io-semirings the least fixed point of a polynomial system
f can be calculated more efficiently than by means of Newton’s method or
the Kleene sequence where the latter is not guaranteed to reach µf after
a finite number of steps. In particular, we consider the following classes of
idempotent ω-continuous semirings:

Definition 4.1.3.
Let S = 〈S,+, ·, 0, 1〉 be an idempotent ω-continuous semiring.

(1) S is a star-distributive semiring if multiplication is commutative and
the Kleene-star distributes over finite sums, i.e.,

x · y = y · x and (x+ y)∗ = x∗ + y∗

holds for all x, y ∈ S.

(2) S is a lossy semiring, if
1 v x

holds for all x ∈ S \ {0}.

(3) S is a 1-bounded semiring, if

x v 1

holds for all x ∈ S. �

In the case of star-distributive, resp. lossy semirings we show that for any
polynomial system f in n variables X its linearization

fB(X) := fn(0) + Df |fn(0)(X)

inherits the least fixed point from f , i.e.,

µf = µfB = Df |∗fn(0)(f
n(0)).

In the case of 1-bounded semirings we can show that µf is always obtained
after at most n Kleene steps, i.e., µf = fn(0).
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Figure 4.1: An example of the structure of a bamboo: it consists of a stem of unbounded
length from which subtrees of height less than n sprout; on the right it is shown with its
stem straightened.

4.2 Bamboos and their Yield

The difficulty of derivation tree analysis lies in finding a set TX exhibiting a
good balance between the contradictory requirements “easy to compute” and
“relevant”: if TX = ∅ then the yield is trivial to compute, but TX does not
satisfy the embedding property in any interesting case. Conversely, TX = TX
trivially satisfies the embedding property for every io-semiring, but its yield
is not easy to compute. In the case of 1-bounded semirings we will show
that one can take for TX simply the set of X-trees of height at most n. For
star-distributive, resp. lossy semirings surprisingly the same set TX of trees,
called bamboos (see below), can be taken. In this section we define bamboos
and show that their yield is the least solution of a system of linear equations
easily derivable from f . The “easy to compute” part is justified by the fact
that in most semirings used in practice linear equations are far easier to solve
than polynomial equations (e.g. in the real semiring or the language semiring
with union and concatenation as operations). The “relevance” of bamboos
is justified in the next three sections.

Definition 4.2.1.
Let f be a system of polynomials. A tree t ∈ Tf ,X is an X-bamboo if there is
a path leading from the root to some leaf of t, the stem, such that the height
of every subtree of t not containing a node of the stem is at most n− 1. The
set of all X-bamboos of f is denoted by Bf,X , or just by BX if f is clear from
the context. �

Figure 4.1 depicts the basic structure of a bamboo.
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Definition 4.2.2.
Let f be a system of n polynomials. The bamboo system fB associated to f
is the linear system fB(X) = Df |fn(0)(X) +f(0). The least solution of the
system of equations X = fB(X) is denoted by µfB. �

Now we can state the relation between bamboos and bamboo systems.

Theorem 4.2.3.
Let f be a system of polynomials over an io-semiring. For every variable X
of f we have Y(BX) = (µfB)X , i.e., the yield of the X-bamboos is equal to
the X-component of the least solution of the bamboo system. �

Proof sketch. The proof idea is similar to the one sketched in Example 3.2.16: Every

tree t associated with the bamboo system fB is a chain where every inner node of t is

labeled by a monomial of Df |fn(0)(X), and its leaf is labeled by a component of fn(0).

As fn(0) corresponds to the trees Hn−1
X w.r.t. f of height less than n, we may identify t

with the set of trees we obtain from t by “replacing” the semiring element fn(0)X by the

trees of Hn−1
X . It is not hard to show that every such tree is indeed a tree w.r.t. f .

Together with Proposition 4.1.2 we get the following corollary.

Corollary 4.2.4 (derivation tree analysis for bamboos).
Let f be a system of polynomials over an io-semiring. If BX satisfies the
embedding property for all X, i.e., for all X-trees t it holds Y(t) v Y(BX),
then µf = µfB. �

4.3 Star-Distributive Semirings

We first recall the definition of star-distributive semiring:

Definition 4.3.1.
A cio-semiring S is star-distributive if for all a, b ∈ S we have

(a+ b)∗ = a∗ + b∗. �

Proposition 4.3.2.
Any totally ordered cio-semiring is star-distributive. �

Proof. Let w.l.o.g. a v b. Then (a+ b)∗ = b∗ v a∗ + b∗ v (a+ b)∗.

In particular, the (min,+)-semiring is star-distributive.
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We have already considered cio-semirings in Section 3.4, where we showed
that µf can be computed by solving n linear equation systems by means
of a Newton-like method, improving the O(3n) bound of Hopkins and
Kozen [HK99]. In this section we improve this result even further for star-
distributive semirings: One single linear system, the bamboo system fB,
needs to be solved. This leads to an efficient algorithm for computing µf
in arbitrary star-distributive semirings. In Section 4.3.1 we instantiate this
algorithm for the (min,+)-semiring; in Section 4.3.2 we use it to improve
the algorithm of [CCFR07] for computing the throughput of a context-free
grammar.

We start by stating two useful properties of star-distributive semirings.

Proposition 4.3.3.
In any star-distributive semiring the following equations hold:
(1) a∗b∗ = a∗ + b∗, and (2) (ab∗)∗ = a∗ + ab∗. �

We can now state and prove our result:

Theorem 4.3.4.
For any polynomial system f over a star-distributive semiring µf = µfB
holds. �

Proof sketch (see the appendix for a complete proof). The proof is by derivation

tree analysis. So it suffices to discharge the precondition of Corollary 4.2.4. More precisely

we show for any X-tree t that Y(t) v Y(BX) holds. It suffices to consider the case where

t is not an X-bamboo. Then the height of t is at least n, and so t is “pumpable”, i.e.,

one can choose a path p in t from the root to a leaf such that two different nodes on

the path share the same variable-label. So t can be decomposed into three (partial) trees

with yields a, b, c, respectively, such that Y(t) = abc, see Figure 4.2(a). Notice that, by

commutativity of product, ab∗c is the yield of a set of trees obtained by “pumping” t.

We show ab∗c v Y(BX) which implies Y(t) v Y(BX). As t is not an X-bamboo, t has

a pumpable subtree disjoint from p. In this sketch we assume that it is a subtree of

that part of t whose yield is a, see Figure 4.2(b). Now we have a = a1a2a3, and so

ab∗c = a1a2a3b
∗c v a1a

∗
2a3b

∗c = a1a3b
∗c + a1a

∗
2a3c, where we used commutativity and

Proposition 4.3.3(1) in the last step. Both summands in above sum are yields of sets of

trees obtained by pumping pumpable trees smaller than t, see Figure 4.2(c) and (d). An

inductive argument then shows that both a1a3b
∗c and a1a

∗
2a3c are less than Y(BX). As

addition is idempotent, we therefore also obtain a1a3b
∗c+ a1a

∗
2a3c v Y(BX).

We have sketched in Example 2.2.16 how the Kleene star of a matrix on an
io-semiring can be calculated. As star-distributive semirings are commuta-
tive, the bamboo system fB can be represented by means of a matrix, and
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a

b
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(a)
a1

b

c

a2

a3

(b)

a1

b

c

a3

(c)
a1

ca2

a3

(d)

Figure 4.2: “Unpumping” trees to make them bamboos

so its least fixed point fB can be represented by means of a regular expres-
sion interpreted on the underlying star-distributive semiring. The following
subsection shows that on Smin we also may use the Bellman-Ford algorithm
to obtain µfB directly.

4.3.1 The (min,+)-Semiring

Consider the (min,+)-semiring Smin = 〈R ∪ {−∞,∞},u,+,∞, 0〉 with
a u b := min{a, b}. Then the natural order v is the order ≥ on the reals ex-
tended by∞, resp. −∞ as top, resp. bottom element.(2) As Smin is totally or-
dered, Proposition 4.3.2 implies that Smin is star-distributive. Assume for the
rest of this section that f is a polynomial system on Smin.We can apply The-
orem 4.3.4, i.e., µf = µfB holds. This immediately suggests a polynomial
algorithm to compute the least fixed-point: Compute fn(∞) by performing
n Kleene iterations, and solve the linear system X = Df |fn(∞)(X)uf(∞).
The latter can be done by means of the Bellman-Ford algorithm.

Example 4.3.5. Consider the following equation system.(
X, Y, Z

)
=
(
− 2 u (Y + Z), Z + 1, X u Y

)
=: f(X)

We have f(∞) = (−2,∞,∞),f2(∞) = (−2,∞,−2),f3(∞) = (−2,−1,−2). The linear
system X = Df |fn(∞)(X) u f(∞) = fB(X) looks as follows:(

X, Y, Z
)

=
(
− 2 u (−1 + Z) u (Y +−2), Z + 1, X u Y

)
.

This equation system corresponds in a straightforward way to the following graph.

2By symmetry, we could equivalently consider maximum instead of minimum.
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S X
−2

Y

−2

Z

+1

00

−1

We claim that the V -component of µfB is equal to the least weight of any path from S
to V where V ∈ {X,Y, Z}. To see this, notice that (fkB(∞))V corresponds to the least
weight of any path from S to V of length at most k. The claim then follows by Kleene’s
fixed-point theorem. So we can compute µfB with the Bellman-Ford algorithm. In our
example, X,Y, Z are all reachable from S via a negative cycle, so µfB = (−∞,−∞,−∞).
By Theorem 4.3.4, µf = µfB = (−∞,−∞,−∞). �

The Bellman-Ford algorithm can be used here as it handles negative cycles
correctly. The overall runtime of our algorithm to compute µf is dominated
by the Bellman-Ford algorithm. Its runtime is in O(n ·m), where m is the
number of monomials appearing in f . We conclude that our algorithm has
the same asymptotic complexity as the “generalized Bellman-Ford” algorithm
of [GS07]. Note that applying Newton’s method to this problem would result
in solving n linear systems (cf. Theorem 3.4.6) instead of only one.

In Chapter 5 we explore totally ordered star-distributive semirings, like the
(min,+)-semiring considered here, in more detail. On idempotent totally
ordered semirings addition becomes the maximum w.r.t. the natural order,
and we may consider min-max-systems, i.e., polynomial systems which do
not only use maximum (addition) and multiplication, but also minimum.
We study the existence and calculation of the least fixed point of such min-
max-systems in Chapter 5.

4.3.2 Throughput of Grammars

In [CCFR07], a polynomial algorithm for computing the throughput of a
context-free grammar was given. Now we show that the algorithm can be
both simplified and accelerated by computing least fixed-points according to
Theorem 4.3.4.

Let us define the problem following [CCFR07]. Let Σ be a finite alphabet
and ρ : Σ → N a weight function. We extend ρ to words a1 · · · ak ∈ Σ∗ by
setting ρ(a1 · · · ak) := ρ(a1) + . . .+ ρ(ak).

3 The mean weight of a non-empty
word w is defined as ρ(w) := ρ(w)/|w|. The throughput of a non-empty
language L ⊆ Σ+ is defined as the infimum of the mean weights of the words
in L: tp(L) := inf{ρ(w) | w ∈ L}. Let G = (Σ,X , P, S) be a context-free

3We write + for the addition of reals in this section.
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grammar and L = L(G) its language. The problem is to compute tp(L). As
in [CCFR07] we assume that G has at most 2 symbols on the right hand side
of every production and that L is non-empty and contains only non-empty
words.

Note that we cannot simply construct a polynomial system having tp(L) as
its least fixed-point, as the throughput of two non-terminals is not additive.
In [CCFR07] an ingenious algorithm is proposed to avoid this problem. As-
sume we already know a routine, the comparing routine, that decides for a
given t ∈ Q whether tp(L) ≥ t holds. Assume further that this routine has
O(Nk) time complexity for some k. Using the comparing routine we can
approximate tp(L) up to any given accuracy by means of binary search. Let
d = maxa∈Σ ρ(a)−mina∈Σ ρ(a). A dichotomy result of [CCFR07] shows that
O(N + log d) iterations of binary search suffice to approximate tp(L) up to
an ε that allows to compute the exact value of tp(L) in time O(N3). This
is proved by showing that, once a value t has been determined such that
t− ε < tp(L) ≤ t, one can:

• transform G in O(N3) time into a grammar G′ of size O(N3) gener-
ating a finite language, and having the same throughput as G (this
construction does not yet depend on tp(L));

• compute the throughput of G′ in linear time in the size of G′, i.e., in
O(N3) time.

The full algorithm for the throughput runs then in
O(Nk(N + log d)) + O(N3) time.

The algorithm of [CCFR07] and our new algorithm differ in the compar-
ing routine. In the routine of [CCFR07] the transformation of G into the
grammar G′ is done before tp(L) has been determined. Then a linear time
algorithm can be applied to G′ to decide whether tp(L) ≥ t holds. (This al-
gorithm does not work for arbitrary context-free grammars, and that is why
one needs to transform G into G′.) Since G′ has size O(N3), the comparing
routine has k = 3, and so the full algorithm runs in O(N4 +N3 log d) time.

We give a more efficient comparing routine with k = 2. Given a t ∈ Q,
assign to each word w ∈ Σ+ its throughput balance σt(w) = ρ(w) − |w| · t.
Notice that σt(w) ≥ 0 if and only if ρ(w) ≥ t. Further, for two words w, u
we now have σt(wu) = σt(w) + σt(u). So we can set up a polynomial system
X = f(X) over the tropical semiring Smin where f is constructed such that
each variable X ∈ X in the equation system corresponds to the minimum
(infimum) throughput balance of the words derivable from X. More formally,
define a map m by setting m(a) = ρ(a) − t for a ∈ Σ and m(X) = X
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for X ∈ X . Extend m to words in (Σ ∪ X )∗ by setting m(α1 · · ·αk) =
m(α1) + · · · + m(αk). Let PX be the productions of G with X on the left
hand side. Then set fX(X) := min{m(w) | (X → w) ∈ PX}. For instance,
if PX consists of the rules X → aXY and X → bZ, we have fX(X) =
ρ(a)− t+X + Y u ρ(b)− t+ Z.

It is easy to see that the relevant solution of the system X = f(X) is the
least one w.r.t. v, i.e., (µf)S ≥ 0 if and only if tp(L) ≥ t. So we can use
the algorithm from Section 4.3.1 as our comparing routine. This takes time
O(N2) where N is the size of the grammar. With that comparing routine we
obtain an algorithm for computing the throughput with O(N3 + N2 log d)
runtime.

4.4 Lossy Semirings

Definition 4.4.1.
An io-semiring S is called lossy if 1 v a holds for all a 6= 0. �

Note that by definition of natural order the requirement 1 v a is equivalent to
a = a+1. If we interpret this equation on the language semiring generated by
some alphabet Σ, this becomes {a} = {a, ε} which means that we may replace
any letter a by ε. Hence, every language L ⊆ Σ∗ is “downward closed”, i.e.,
for every word w = a1a2 . . . al ∈ L all possible subwords {a′1a′2 . . . a′l | a′i ∈
{ε, ai}} are also included in L. By virtue of Higman’s lemma [Hig52] the
downward-closure of a context-free language is regular. This has been used
in [ABJ98] for an efficient analysis of systems with unbounded, lossy FIFO
channels. Downward closure was used there to model the loss of messages
due to transmission errors.

Recall that a system f of polynomials is clean if µfX 6= 0 for all X ∈ X .
Every system can be cleaned in linear time by removing the equations of all
variables X such that µfX = 0 and setting these variables to 0 in the other
equations. We consider only clean systems, and introduce a normal form for
them.

Definition 4.4.2.
Let f ∈ S[X ]X be a system of polynomials over a lossy semiring. f is in
quadratic normal form if every polynomial fX has the form

c+
∑
Y,Z∈X

aY,Z · Y · Z +
∑
Y ∈X

bl,Y · Y · br,Y
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where (i) c ∈ S \ {0}, (ii) aY,Z ∈ {0, 1}, and (iii) if
∑

Z∈X aY,Z 6= 0, then
bl,Y 6= 0 6= br,Y for all Y, Z ∈ X . �
Lemma 4.4.3.
For every clean g ∈ S[X ]X we can construct in linear time a system f ∈
S[X ′]X ′ in quadratic normal form such that X ⊆ X ′ and µgX = µfX for all
X ∈ X . �

Proof sketch. Note that, as g is clean, we have 1 v µg. Hence, requirement (i) is no

restriction. The transformation that normalizes a system is similar to the one that brings

a context-free grammar into Chomsky normal-form (CNF). The superset X ′ ⊃ X results

from the introduction of new variables by this transformation into CNF.

Our main result in this section is that for strongly-connected systems f (cf.
Definition 2.2.14) in quadratic normal form we again have that µf = µfB.
We then show how this result leads to an algorithm for arbitrary systems.

Theorem 4.4.4.
µf = µfB holds for strongly-connected polynomial systems f in quadratic
normal form over lossy semirings. �

Proof sketch. We consider a concrete example of a tree t that is not a bamboo, and show
how to construct a bamboo t̂ such that Y(t) v Y(t̂). The general procedure for all non-
bamboos can be found in the appendix. Let X = {X,Y }, and f with fX = XY +X+Y +a,
and fY = X + Y + b. Consider the X-tree t depicted on the left of the picture below,
where tr is some bamboo of height at least 2 (we inductively assume that the original
subtree has already been replaced by a bamboo with at least the same yield). Since the
left subtree of t has height 2, t itself is not a bamboo.

(X,XY ) t

tr(X,Y )

(Y,X) r

(X, a) s

(X,XY )

(Y,X)
(X, a)

(X,XY )

(X,Y )

(Y, b)

t̂

t′′

t′

r

tr

Let s denote the left-most leaf of t, and let r be the parent of s. In our example, we
assume that r has s as its only child. Then we proceed as follows:

(i) We remove from t the leaf s, and turn its father r into a leaf. Here, we make use of
the assumption that f is in quadratic normal form, and so every polynomial of f contains
a constant monomial, in our example b. We change the monomial-label of r to b, and
obtain the tree t′, which is a derivation tree of f . Moreover, t′ is a bamboo, because its
left subtree has now height 1, and its right subtree tr is a bamboo.
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(ii) We prepend a (partial) derivation tree on top of tr having two linear chains as subtrees:
the left chain leads to the leaf s, and the right chain leads to t′. This gives us the tree t̂
depicted on the right of the picture above. The proof of Theorem 4.4.4 shows that these
chains exist and have at most length n − 1 (in our example n − 1 = 1). It follows that t̂
is a bamboo itself, and so Y(t̂) v Y(BX).

We have Y(t) = a · Y(tr) and Y(t̂) = a · b · Y(tr). Since the semiring is lossy, we have

1 v b and so Y(t) v Y(t̂). Notice that, since product is not necessarily commutative, it is

important that a is the first factor of both yields.

Because of the preceding theorem, given a strongly connected system f , we
may use the linear system fB(X) = f(0) + Df |fn(0)(X) for calculating
µf . As f is strongly connected, fB is also strongly connected. The least
fixed point of such a strongly connected linear system fB is easily calculated:
all non-constant monomials appearing in fB have the form blXbr for some
X ∈ X , and bl, br ∈ S \ {0}. As fB is strongly connected, every polynomial
(fB)Y is substituted for Y in (fB)X again and again when calculating the
Kleene sequence (fkB(0))k∈N. So, let l be the sum of all left-handed coefficients
bl (appearing in any fX), and similarly define r. We then have

(µfB)X = l∗
(∑
Y ∈X

fY (0)
)
r∗

for all X ∈ X .

If f is not strongly connected, we first decompose f into strongly connected
subsystems, and then we solve these systems bottom-up. Note that sub-
stituting the solutions from underlying SCCs into a given SCC leads to a
new system in normal form. As there are at most n = |X | many strongly
connected components for a given system f ∈ S[X ]X , we obtain the follow-
ing theorem which was first stated explicitly for context-free grammars in
[Cou91].

Theorem 4.4.5.
The least fixed-point µf of a polynomial system f over a lossy semiring is
representable by regular expressions over S. If f is in normal form µf can
be calculated by solving at most n bamboo systems. �

4.5 1-bounded Semirings

Definition 4.5.1.
An io-semiring S is called 1-bounded if a v 1 holds for all a ∈ S. �
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Natural examples are the (min,+)-semiring restricted to the natural
numbers 〈N ∪ {∞},u,+, 0,∞〉 and the “maximum-probability” semiring
〈[0, 1],t, ·, 0, 1〉, where u and t denote minimum and maximum, respec-
tively. Notice that any commutative 1-bounded semiring is star-distributive
(as a∗ = 1 for all a), but not all 1-bounded semirings have commutative
multiplication. Consider for example the semiring of those languages L over
Σ that are upward-closed, i.e., w ∈ L implies u ∈ L for all u such that w is a
subword of u. This semiring is 1-bounded and has Σ∗ as 1-element. Upward-
closed languages form a natural dual to downward-closed languages from the
previous section.

We show that µf can be computed very easily in the case of 1-bounded
semirings:

Theorem 4.5.2.
µf = fn(0) holds for polynomial systems over 1-bounded semirings. �

Proof sketch. Recall that, by Proposition 3.2.5, we have (fn(0))X = Y(H(n−1)
X ), where

H(n−1)
X contains all X-trees of height at most n − 1. We proceed by derivation tree

analysis, i.e., we show that for any X-tree t there is an X-tree t′ of height at most n− 1

with Y(t) v Y(t′). As long as some variable label occurs at least twice along any path, we

can construct from t such a tree t′ by pruning.

Theorem 4.5.2 appears to be rather easy from our point of view, i.e., from
the point of view of derivation trees. However, even this simple result has
very concrete applications in the domain of interprocedural program anal-
ysis [RSJM05]. The main algorithms of [RSJM05], the so-called post∗ and
pre∗ algorithms, can be seen as solvers of fixed-point equations over bounded
semirings, which are semirings that do not have infinite ascending chains.
Those solvers are based on Kleene’s iteration and the complexity result given
there depends on the maximal length of ascending chains in the semiring (cf.
[RSJM05], page 28). Such a bound may not exist, and does not exist for the
tropical semiring over the natural numbers (N∪{∞},u,+,∞, 0) which is con-
sidered as an example in [RSJM05], pages 13 and 18. However, Theorem 4.5.2
can be applied to this semiring, which shows that the program analysis al-
gorithms of [RSJM05] applied to 1-bounded semirings are polynomial-time
algorithms, independent of the length of chains in the semiring.



Chapter 5

Min-Max-Systems and Strategy
Iteration

5.1 Introduction

In the previous chapter we introduced star-distributive semirings, i.e., com-
mutative, idempotent ω-continuous semirings satisfying the additional axiom
(a+ b)∗ = a∗ + b∗ for all semiring elements a, b. We obtained Theorem 4.3.4
saying that in any star-distributive semiring S we have

µf = µ
(
λX.fn(0) + Df |fn(0)(X)

)
= Df |nfn(0)(f

n(0))

for any polynomial system f given in n variables X. Specifically, any totally
ordered cio-semiring, i.e., the natural order v is total, is by Proposition 4.3.2
star-distributive. As an example we have considered the (min,+)-semiring
in Subsection 4.3.1. With v total, one easily confirms that the addition on
the semiring becomes the maximum w.r.t. v, and one may naturally consider
the minimum w.r.t. v as a “dual addition”. In this chapter we study min-
max-systems, i.e., an extension of polynomial systems where both maximum
and miminum is used as semiring addition.

In Section 5.2 we explicitly consider totally ordered cio-semirings. By virtue
of our result on star-distributive semirings, we immediately obtain that the
least fixed point of a min-max-system on a totally ordered cio-semiring exists
and can be calculated. These results serve as motivation for the subsequent
sections. In Section 5.3 we analyze a well-known technique for iteratively
solving min-max-systems, called strategy iteration. We then study the con-
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nection between linear min-max-systems and games in Section 5.4. We illus-
trate our results in Section 5.5 by applying them to parity games.

5.2 Min-Max-Systems on Totally Ordered

cio-Semirings

Assume for this section that S = 〈S,+, ·, 0, 1〉 is a totally ordered cio-
semiring. We then have a + b =

⊔
{a, b}, and emphasize this by writing

at b instead of a+ b and ⊥ instead of 0. We then may define the minimum-
operation u:

Definition 5.2.1.
Let S = 〈S,+, ·, 0, 1〉 be a totally ordered semiring. Then the mimimum aub
of two elements a, b ∈ S is defined by

a u b :=

{
a if a v b
b else

�

We note some easy to check facts about the minimum for ω-continuous semi-
rings. The proofs can be found in the appendix.

Proposition 5.2.2.
Let 〈S,t, ·,⊥, 1〉 be a totally ordered cio-semiring. Define a u b as stated
above. Let a, b, c ∈ S and (ai)i∈N an ω-chain. We then have:

(1) t and u distribute:

a u (b t c) = (a u b) t (a u c), and a t (b u c) = (a t b) u (a t c).

(2) · distributes over u: a · (b u c) = (a · b) u (a · c).

(3) u is ω-continuous (w.r.t. v):

c u

(⊔
i∈N

ai

)
=
⊔
i∈N

(c u ai).

(4) u is monotone: b v c⇒ a u b v a u c. �

As already stated in the introduction, we extend polynomial systems to min-
max-systems by allowing the use of both maximum, i.e., the addition on the
semiring, and minimum as defined above.
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Definition 5.2.3.
Let S = 〈S,t, ·,⊥, 1〉 be a totally ordered semiring, and X be a finite set of
variables. A min-max-system F on S is then defined as follows: For X ∈ X
we either have

FX(X) = m
(X)
1 (X) tm(X)

2 (X) t . . . tmkF (X)(X)

or

FX(X) = m
(X)
1 (X) um(X)

2 (X) u . . . umkF (X)(X)

where m
(X)
i is a monomial, and kF (X) ≥ 1 is the number of distinct mono-

mials m
(X)
i appearing in FX . We assume that at most one monomial m

(X)
i

is constant.

We say that X ∈ X is a min-variable (or u-variable) if FX is non-constant
and the minimum of at least two distinct monomials. Otherwise X is a max-
variable (or t-variable). We write Xt, resp. Xu for the set of max-, resp.
min-variables.

For technical reasons we require that a constant monomial appears explicitly
in FX if X is a max-variable (1).

We say that F is linear if all monomials m
(X)
i have degree at most 1. �

Example 5.2.4. Consider the semiring 〈Z∪{±∞},max,+,−∞, 0〉. Then aub = min{a, b}
for all a, b ∈ Z ∪ {±∞}. On this semiring we may consider the min-max-system

F = (FX ,F Y ) =
(
min{Y, 1},max{X +X,−1}

)
.

Note that F is non-linear, as + is the multiplication of the semiring. The least fixed point
of this systems is X = −1, Y = −1. �

We use capital letters for min-max-systems in order to emphasize that these
are not simple polynomial systems. Again, we are interested in calculating
µF . By Proposition 5.2.2 we know that min-max-Systems are ω-continuous
and monotone. So, Kleene’s fixed-point theorem also holds for these, i.e., µF
always exists with µF =

⊔
k∈N F

k(⊥). Consider now the equation F (µF ) =
µF . By definition of u, we then find for every X ∈ Xu a monomial mX of
FX such that FX(µF ) = mX(µF ) = (µF )X . Define G by GX = FX for
X ∈ Xt, and GX = mX for X ∈ Xu. We then have F v G on SX by
construction, and so µF v µG follows. On the other hand, we also have
G(µF ) = µF by construction. This yields µF = µG. As G is a polynomial
system, i.e., u does not appear in G, we know by Theorem 4.3.4 how to

1We may always add the constant ⊥ if necessary.
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calculate µG efficiently. From this we obtain the result that µF can be
represented by means of regular expressions.

In order to formalize the results we have just sketched, we introduce deter-
ministic u-strategies which capture the construction of G.

Definition 5.2.5.
For a given min-max-system F a deterministic (2) u-strategy (or min-
strategy) τ chooses for any X ∈ Xu exactly one monomial of FX . Given
a u-strategy τ we denote by F τ the operator we obtain from F by replacing
the component FX by the monomial m

(X)
τ(X) for any X ∈ Xu, i.e.,

∀X ∈ X : (F τ )X :=

{
FX if X ∈ Xt
τ(X) if X ∈ Xu

We say that τ is optimal if µF = µF τ . �
Remark 5.2.6.
Deterministic t-strategies are defined analogously. �
Example 5.2.7. Consider the min-max-system of Example 5.2.4. Here, we only have two
possibilities for defining a deterministic u-strategy, i.e., τ chooses for X either the mono-
mial Y or the monomial 1. In the latter case we obtain the system

X = 1 Y = max{X +X,−1}).

Obviously, the least solution is X = 1, Y = 2. Assume now that τ chooses Y for X, i.e.,

X = Y Y = max{X +X,−1}.

Here, the least solution is X = −1, Y = −1, i.e., the optimal u-strategy is to choose Y for
X. �

Our result on the existence of µF can therefore be stated as follows:

Theorem 5.2.8.
Let F : SX → SX be min-max-system on a totally ordered cio-semiring with
carrier S and n := |X |. Then there exists an optimal u-strategy τ with

µF = µF τ = DF τ |nFnτ (⊥) (F n
τ (⊥)). �

As there are only finitely many u-strategies, we always can find an optimal
u-strategy. A bound on the number of u-strategies is e.g.

∏
X∈Xu

kF (X) ≤
(
kuF
|Xu|

)|Xu|
with kuF :=

∑
X∈Xu

kF (X).

2We drop “deterministic” for the rest of this section.
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Instead of naively enumerating all u-strategies, one approach often used
is called strategy iteration or strategy improvement. In our setting of u-
strategies, this approach can be described in its basic form as follows:

Given a (u-)strategy τ , one tries to deduce from the µF τ a new strategy
τ ′ yielding a “better” approximation, i.e., µF τ ′ v µF τ . For this, consider
F (µF τ ). If µF τ is a fixed-point of F , then we stop; otherwise we have
F (µF τ ) @ µF τ , i.e., there is at least one u-variable X with F (µF τ )X @
(µF τ )X (equality has to hold for all t-variables obviously). So, we may
change τ on these u-variables where equality does not hold, and obtain a
new strategy τ ′ with F τ ′(µF τ ) @ µF τ . We then calculate µF τ ′ in order to
obtain a new and better approximation of µF .

This iteration is guaranteed to terminate, as there are only finitely many u-
strategies, and every u-strategy is considered at most once, as the sequence
of approximations µF τ is strictly decreasing. The weak spot here is that the
end result is some fixed point of F , but not necessarily the least fixed point,
as shown in the following example taken from [GS07]:

Example 5.2.9. We return to the min-max-system of Example 5.2.4

F = (FX ,F Y ) =
(
min{Y, 1},max{X +X,−1}

)
with µF = (−1,−1).

Consider the u-strategy τ which chooses 1 for the min-variable X. This yields the poly-
nomial system

F τ =
(
1,max{X +X,−1}

)
with µF τ = (1, 2).

Further, µF τ is already a fixed point of F . So, µF τ does not indicate any improvements
of τ , i.e., the strategy iteration terminates yielding a fixed point of F , but not the least. �

In the next section we discuss how the heuristic of strategy iteration may be
refined in order to yield the least fixed point.

Before doing so, a short remark on the usefulness of strategy iteration is due,
as strategy iteration itself might still lead to inspecting all, i.e., exponen-
tially many strategies, thus gaining no advantage over inspecting all possible
strategies by a brute-force approach:
The technique of strategy iteration is encountered quite often in literature,
especially in the context of games, like Markov decision processes [How60],
stochastic games [HK66], discounted payoff games [Pur95], mean payoff
games [ZP96], or parity games [VJ00, Sch07], but also in the context of
static analysis [GS07, GS08]. Judging by the experiments done in these ar-
ticles, it seems that “hard” instances of min-max-systems are quite rare in
practice. For example, in [GS08] it is reported that all instances encoun-
tered in their experiments needed only O(|X |) many iterations. It was also
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a long standing problem if the strategy improvement algorithm by Jurdzin-
ski and Vöge [VJ00] runs in polynomial time. Only recently, it was shown
in [Fri09] that there is indeed a family of parity games where both the al-
gorithm of [VJ00] and the algorithm of [Sch07] require a superpolynomial
number of iterations until µF is reached. On the other hand, for parity
games it is only known that solving parity games is included in NP∩co-NP,
or more precisely UP∩co-UP [Jur98], but it is still an open problem whether
parity games can be solved within polynomial time. As we will see, parity
games are a special case of min-max-system (see Section 5.5), so solving min-
max-systems in general is at least as hard as solving parity games. In absence
of an efficient algorithm and motivated by the applicability of strategy iter-
ation in practice, it therefore seems worthwhile to study the question of how
and when strategy iteration may be used for solving min-max-systems.

5.3 Strategy Iteration and Semirings

In the previous section we have introduced the idea of iteratively improving
a strategy in order to calculate the least fixed point of a min-max-system.
We have also seen that the most basic realization of this idea does not work
in general. In the following we consider a class of totally ordered semirings,
which we simply call strategy-iteration semirings or short si-semirings, and
we show that on these t-strategies can be iteratively improved in order to
calculate µF . We give a formal definition later on, for now we only like to
remark that si-semirings are not required to be ω-continuous. Hence, the
existence of the least fixed point of a min-max-system is not guaranteed.
We also note that the semiring 〈Z ∪ {±∞},max,+,−∞, 0〉 is a semiring.
From Example 5.2.9 it therefore follows that also on si-semirings (u-)strategy
iteration in its basic form does not yield the least fixed point in general.

The strategy iteration proposed in this section is based on the work by Gawl-
itza and Seidel [GS08] for solving min-max-systems on the integers. We ex-
tend their approach to the more general setting of si-semirings, and further
consider a more permissive class of (t-)strategies in contrast to [GS08]: We
allow that a t-, resp. u-strategy not only selects exactly one monomial of
FX for every X ∈ Xt, resp. X ∈ Xu, but we allow that it selects a nonempty
subset of these monomials. We call these strategies nondeterministic (see
Definition 5.3.10) and denote by F σ again the min-max-system induced by
σ.

We proceed as follows: In the next Subsection 5.3.1 we define si-semirings
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formally, and discuss several properties of min-max-systems on this particular
class of semirings. We then turn to nondeterministic strategies and introduce
the subclass of reasonable strategies. A reasonable strategy σ has several nice
properties: Its greatest fixed point νF σ exists and can be easily calculated;
further νF σ is a lower bound on any fixed point of the given min-max-system
F . This is done in Subsection 5.3.2. In Subsection 5.3.3 we then describe
our strategy iteration and show that the strategies appearing in a strategy
iteration are all reasonable. From this we then obtain our main result that
the least fixed point of a min-max-system on a si-semiring exists and can be
calucated by means of the proposed strategy iteration.

5.3.1 Si-Semirings and Min-Max-Systems

We start with the definition of si-semiring:

Definition 5.3.1.
S = 〈S, ·,v, 1,⊥,>〉 is a si-semiring if it satisfies the following conditions:

(1) 〈S,v〉 is a totally ordered set with ⊥,> ∈ S such that

⊥ v a v > for all a ∈ S.

(2) 〈S, ·, 1〉 is a commutative monoid with

(a) ⊥ · a = ⊥ for all a ∈ S.

(b) > · a = > for all a ∈ S \ {⊥}.

(c) a v b⇒ c · a v c · b for all a, b, c ∈ S.

(d) a @ b⇒ c · a @ c · b for all a, b ∈ S and c ∈ S \ {⊥,>}.

We denote by a t b, resp. a u b the maximum, resp. minimum of a, b ∈ S
w.r.t. the total order v on S. �
Remark 5.3.2.
Note that (c) and (d) together imply that

c · a = c · b⇒ a = b if c 6= ⊥,>.

This means that 〈S \ {⊥,>}, ·, 1〉 has the cancellation property. As mul-
tiplication is commutative it can therefore be embedded into a linearly-
ordered abelian group via the Grothendieck construction [Ati67]. It is known
that linearly-ordered abelian groups which have the Archimedean property3

3I.e., there are no elements x, y s.t. xn < y for all n ∈ N
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are isomorphic to a subgroup of 〈R,+, 0〉. In general, si-semirings are not
Archimedean, for an example see Definition 5.5.4. In particular, there are
no zero divisors in a si-semiring. Please not that for most of the following
proofs we only need this weaker version of (d):

1 v b⇒ c v c · b for b ∈ S, c ∈ S \ {⊥,>}. �

The following properties of si-semirings can easily be checked by the reader.
A proof can be found in the appendix.

Proposition 5.3.3.
Every si-semiring 〈S, ·,v, 1,⊥,>〉 has the following properties:

(1) · distributes both over t and u:

a · (b t c) = (a · b) t (a · c) and a · (b u c) = (a · b) u (a · c).

(2) t and u distribute:

a t (b u c) = (a t b) u (a t c) and a u (b t c) = (a u b) t (a u c).

(3) (1 @ a ∧ a · x v x)⇒ x ∈ {⊥,>}

(4) x @ a · x⇒ (x ∈ S \ {⊥,>} ∧ 1 @ a). �
Remark 5.3.4.
Every si-semiring is a totally-ordered idempontent and commutative semi-
ring w.r.t. maximum t as addition. In particular, min-max-systems (Defini-
tion 5.2.3) on si-semirings are monotone, but not necessarily ω-continuous.
So we may not apply Kleene’s fixed point theorem in the following in order
to reason about the least fixed point. �

We next extend the definition of the dependency relation (see Defini-
tion 2.2.14) to min-max-systems and introduce a graphical representation
of it.

Definition 5.3.5.
Let F : SX → SX be a min-max-system. The dependency graph GF of F
is the directed, edge labeled graph whose nodes are given by X . There is
an edge from X to Y labeled by m (short: X

m−→ Y ) if m is a non-constant
monomial of the polynomial FX and Y appears in m. �
Remark 5.3.6.
The shape of a node is used to encode whether it corresponds to a t-variable
( ) or to a u-variable ( ). See Figure 5.1 for an example. �
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YX

Y

X +X

Figure 5.1: The dependency graph of the min-max-system F = (FX ,F Y ) =(
min{Y, 1},max{X + X,−1}

)
. Circular nodes represent t-variables, box shaped nodes

u-variables.

Assume that we are given a min-max-system F and that its least fixed point
µF exists. Then we can find a t-strategy σ wich chooses for every X ∈ Xt a
monomial m from FX such that m(µF ) = (µF )X . The dependency graph of
F σ is then a subgraph of GF , and, as we will see, calculating µF boils down
to identifying the cycles of GF which also exists in GF σ . The following lemma
shows that we can immediately solve a min-max-system whose dependency
graph is acyclic.

Lemma 5.3.7.
Let F : SX → SX be a min-max-system on some si-semiring such that GF is
acyclic. Then F has a unique fixed point which is given by F |X |(v) for any
v ∈ SX . �

Proof. We proceed by induction on n := |X |.

(n = 1). Let X = {X}. If GF is acyclic, then FX is the minimum or maximum of some
finite number of constant monomials. Obviously, we then have F (v) = µF = νF for all
v ∈ SX .

(n→ n+ 1). Let |X | = n+ 1. As GF is acyclic, there exists some variable X which does

not have any incoming edges in GF , i.e., there is no monomial in F in which X appears.

We therefore may remove FX from F , and obtain a system G given in the variables

X ′ = X \ {X}. By induction we have µG = νG = Gn(v). Obviously, we then have that

µF = νF = F n+1(v), too.

In order to be able to control all cycles of GF by means of max-strategies, we
often assume in the following that there are no cycles which only consist of
min-variables.

Definition 5.3.8.
A min-max-system F is min-cycle-free if GF restricted to Xu is acyclic. �
Remark 5.3.9.
In Lemma 5.3.23 we show that w.l.o.g. we may assume that any min-max-
system is min-cycle-free. �
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5.3.2 Nondeterministic and Reasonable Strategies

We define nondeterministic t-strategies. In contrast to deterministic strate-
gies, a nondeterministic t-strategy σ is allowed to choose a nonempty subset
σ(X) of the monomials appearing in FX .

Definition 5.3.10.
Let F be a min-max-system. A nondeterministic max-strategy σ (min-
strategy τ) maps every max-variable X ∈ Xt (every min-variable X ∈ Xu)
to a nonempty subset σ(X) (τ(X)) of the monomials of FX . We call σ deter-
ministic if |σ(X)| = 1 for all X ∈ Xt. Similarly, deterministic min-strategies
are defined.

We denote by F σ the min-max-system induced by the max-strategy σ, i.e.:

(F σ)X :=

{
tσ(X) if X ∈ Xt
FX else

Similarly, a min-strategy τ induces the min-max-system F τ . �

We next introduce a particular class of max-strategies σ called reasonable
which have the particular property that νF σ exists, is given by F |X |σ (>) and
is always a lower bound on any fixed point of F (cf. Lemma 5.3.12).

Definition 5.3.11.
Let F be a min-max-system. A max-strategy σ is reasonable, if there is some
witness v ∈ SX such that:

(1) v v a for any fixed point a of F .

(2) For any cycle X0
m0−→ . . . Xl

ml−→ Xl+1 (with X0 = Xl+1) in GF σ :

⊥ @ vX0 and 1 @
l∏

i=0

DXi+1
mi|v.

(3) If F σ is nonlinear, then v v F σ(>)k for all k ∈ N. �
Lemma 5.3.12.
Let F be a min-max-system with n := |X |. For a reasonable max-strategy
σ with witness v ∈ SX it holds that F n

σ(>) is the greatest fixed point of F σ,
i.e., νF σ = F n

σ(>). Further, νF σ v a for any fixed point a of F . �

Proof. We first show that F nσ(>) is indeed the greatest fixed point of F σ. For this, we
define a context-free grammar G with non-terminals X , terminals the coefficients of F σ
extended by {>,t}, and rules as follows:
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(X, aY Y t b)

(Y, cX)(Y, d)

(X, aY Y t b)

(Y, d)(Y, d)
(c)

X = aY Y t b
Y = cX u d.

(a)

X → aY Y t b | >
Y → cX | d | >.

(b)

Figure 5.2: From the min-max-system depicted in (a) we obtain the rules of (b). An
X-tree of height 3 with yield adc(addt b)t b is shown in (c). The dashed arrows indicate
a possible factorization of this tree into three trees th, tg and tr with g(Y ) = adY t b,
h(Y ) = c(adY t b) and r = d. As we know that vY v d, we also have h(Y ) w cavY · Y .
By condition (2) we then may conclude that cavY A 1, i.e., h(Y ) w Y .

• For every X ∈ X there is the rule X → >.

• If X ∈ Xu, then for every monomial m of FX (= (F σ)X) we have a rule X → m.

• If X ∈ Xt, then there we have the rule X → (F σ)X .

We use this grammar to associate with F σ derivation trees as defined Chapter 3. The
yield Y(t) of a (derivation) tree t is defined to be the value we obtain by evaluting the
functions represented by the nodes of the tree in a bottom-up manner. See Figure 5.2 for
an example. For X ∈ X , let HkX denote the X-trees of height at most k. Similarly, we
write HkX,α for all X-trees of height at most k whose root is labeled by the rule (X,α).

We claim that
F k+1
σ (>) = u{Y(t) | t ∈ HkX}︸ ︷︷ ︸

=:Y(HkX)

for all k ∈ N.

Note that the minimum on the right-hand side always exists, as HkX is a finite set.

We proceed by induction on k:

• (k = 0):

Consider any min-variable X ∈ Xu. There are at most two distinct X-trees of
height 0, namely (X,>) and (X, c) with c the constant in FX . So, uY(H0

X) =
> u c = c = FX(>) = F σ(>)X .

Similarly, for X ∈ Xt there also at most two distinct X-trees, this time (X,>) and
(X,F σ(>)X). Obviously, we have uY(H0

X) = F σ(>)X , too.

• (k → k + 1):

We write uY(Hk) for the vector whose X-component is given by uY(HkX).

Consider first a min-variable X ∈ Xu and let m be a (non-constant) monomial of
FX . As multiplication is assume to be commutative, we may write m as cX1 · · ·Xr

for some ⊥ @ c and r ≥ 1 with X1, . . . , Xr ∈ X . We then have

m(uY(Hk)) = c ·
(
uY(HkX1

)
)
· · ·
(
uY(HkXr )

)
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=
(
u{c · Y(t1) | t1 ∈ HkX1

}
)
·
(
uY(HkX2

)
)
· · ·
(
uY(HkXr )

)
=
(
u{c · Y(t1) ·

(
uY(HkX2

)
)
| t1 ∈ HkX1

}
)
· · ·
(
uY(HkXr )

)
=
(
u{c · Y(t1) · Y(t2) | t1 ∈ HkX1

, t2 ∈ HkX2
}
)
· · ·
(
uY(HkXr )

)
= . . .

= u{c · Y(t1) · · ·Y(tr) | t1 ∈ HkX1
, . . . , tr ∈ HkXr}

= uY(Hk+1
X,m).

It now immediately follows that for X ∈ Xu:

F k+2
σ (>)X = FX(F k+1

σ (>))

= FX(uY(Hk))

= u{m(uY(Hk)) | m is a non-constant monomial of FX} u FX(>)

= u{uY(Hk+1
X,m) | m is a non-constant monomial of FX} u Y(H0

X)

= uY(Hk+1
X ).

Let us now consider a max-variable X ∈ Xt. Here, we have

F k+2
σ (>)X = (F σ)X(uY(Hk))

We want to show that

(F σ)X(uY(Hk)) = uY(Hk+1
X,(F σ)X

).

This follows by structural induction on (F σ)X : If (F σ)X is a constant, then any
X-tree has height 0. We have also already consider the case that it is a non-constant
monomial. If (F σ)X is the maximum of at least two monomials, we split it up into
two shorter functions f and g such that (F σ)X = f t g. By induction we then have

f(uY(Hk)) = uY(Hk+1
X,f ) and g(uY(Hk)) = uY(Hk+1

X,g ) (4).

As t distributes over u, we then obtain

(F σ)X(uY(Hk)) = u{Y(t) t Y(t′) | t ∈ Hk+1
X,f , t

′ ∈ Hk+1
X,g } = uY(Hk+1

X,(F σ)X
).

With this at hand, we are going to show that for every X-tree t of height at least n there
is an X-tree t′ of height at most n − 1 with Y(t′) v Y(t). This in turn then implies that
uY(HnX) = uY(Hn−1

X ), i.e., F n+1
σ (>) = F nσ(>).

Consider now any X-tree t of height h ≥ n. Then there is a path n0, . . . , nh of length h
from the root of t to one of its leaves. Along this path h+ 1 variables appear, i.e., we find
two nodes nI and nJ (I < J) labeled by the same variable, say Y .

4HereHk+1
X,f denotes the set of trees whose root is labeled by (X, f) and every occurrence

of a variable Y in f gives rise to a Y -(sub)-tree of height at most k. Analogously, Hk+1
X,g

is defined. Technically, the trees of Hk+1
X,f , resp. Hk+1

X,g are no derivation trees w.r.t. F σ,

but we may “factorize” any tree of Hk+1
X,(F σ)X

into two trees t and t′ with t ∈ Hk+1
X,f and

t′ ∈ Hk+1
X,g .
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n0

nI

nJ

nh

tr

th

tg

Let tg denote the tree we obtain from t by removing the subtree rooted in nI (including
the node nI ; tg might therefore be empty). Further, let tr denote the subtree of t with
root nJ . Finally, let th be the rest of t after removing both tg and tr. Note that tg and
th then both represent functions g(Y ), resp. h(Y ) depending only on Y , while tr yields
some constant Y(tr) = r. (If tg is empty, then set g(Y ) := Y .) In particular, we have
Y(t) = g(h(r)). See also Figure 5.2. We show that h(Y ) w Y :

Consider the path from the root of tg to the node which links to tr, i.e., the subpath
nI , . . . , nJ−1. Let Y0, . . . , Yl be the sequence of variables encountered along this path
nI , . . . , nJ−1. For every Yj we choose a monomial mj as follows: if Yj ∈ Xu, then mj is
simply the monomial represented by the node nI+j ; otherwise we choose from σ(Yj) the
unique monomial giving rise to the subtree rooted in nI+j+1. We then have that mj is a
non-constant monomial depending on variable Yj+1 for j = 0, . . . , l with Yl+1 = Y0 = Y .
Further, the yield of the subtree having root nI+j is then always at least the value we
obtain from mj by evaluating the variables of mj according to yields of the subtrees
originating from mj .

Assume first that some of the monomials mj are nonlinear. Then by condition (3) of

Definition 5.3.11 we know that v is a lower bound on F kσ(>) for all k ∈ N, i.e., vX is a
lower bound on the yield of any X-tree. We therefore may underapproximate the yield of
any subtree originating from some monomial mj , whose root is not located on the path
nI , . . . , nJ−1, by means of v. It follows that

h(Y ) w Y ·
l∏

j=0

DYj+1mj |v

holds. By condition (2) it also follows that

1 @
l∏

j=0

DYj+1
mj |v.

On the other hand, if all monomials mj are linear, then we do not need to underapprox-
imate the value of any subtree. In particular, DYj+1

mj |v is simply the coefficient of mj

and thus idependent of the value of v. In this case we therefore do not need to require
that v is a lowerbound on F kσ(>).
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Hence, h(Y ) w Y on S, and so

Y(t) = g(h(r)) w g(r).

In particular, by removing the tree th from t we obtain a tree t′ having exactly yield g(r).
We now may prune t′ again in this way, if it has height at least n, while not increasing its
yield. Eventually, we obtain a tree of height at most n− 1, whose yield is a lower bound
on the yield of the original tree t. So, uY(Hn−1

X ) = uY(HX) which concludes the first
part of the proof that F nσ(>) is a fixed point of F σ. By monotonicity of F σ, it is also the
greatest fixed point νF σ.

We next show that νF σ is a lower bound on any fixed point of F . For this assume that
a is some fixed point of F . Recall that condition (1) requires that v v a holds.

We now choose some deterministic u-strategy τ satisfying

F στ (a) = F σ(a).

Then GF στ is a subgraph of GF σ and our first goal is to show that for any X ∈ X which
is located in some cycle of GF στ we have aX = >.

Let X0
m0−−→ X1

m1−−→ . . . Xl
ml−−→ Xl+1 be a simple cycle in GF στ (X0 = Xl+1). In particular

all monomial mi are non-constant and Xi+1 appears in mi.

Let g denote the following function on SX :

gXi := DXi+1
mi|v ·Xi+1 for i ∈ {0, . . . , l}

gX := ⊥ for X 6∈ {X0, . . . , Xl}.

Obviously, we have g(w) v F στ (w) for all w ∈ SX with v v w, and so, as v v a:

g(a) v F στ (a) = F σ(a) v F (a) = a.

This means that
aX0

w DX1
m0|v · aX1

aX1
w DX2

m1|v · aX2

...
aXl w DX0

ml|v · aX0
.

In particular, we have

aX0
w aX0

·
l∏
i=0

DXi+1
mi|v.

Recall that by condition (2)

⊥ @ vX0
and 1 @

l∏
i=0

DXi+1
mi|v

along any cycle of GF σ . By condition (1) we also have v v a, so that ⊥ @ aX0
follows. As

we require that multiplication preserves strict inequations except when multiplying with
⊥ or >, it follows that aX0 = > has to hold. Hence, aX = > has to hold for any variable
X which is located in some cycle of GF στ .
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Let G now denote the following min-max-system:

GX :=

{
> if X is located in some cycle of GF στ
(F στ )X else.

We have F στ v G on SX . Further, the dependency graph of G is acyclic by construction.
Hence, G has a unique fixed point which basically can be calculated by constant propaga-
tion, i.e., Gn(w) is this unique fixed point for anyw ∈ SX . In particular, Gn(a) = Gn(>).
See Lemma 5.3.7.

Note that both F kστ (>) = Gk(>) and F kστ (a) = Gk(a) hold. For this to see we only have
to consider variables X which are located in some cycle, as G and F στ coincide on the
remaining variables. For every such X we find a successor (w.r.t. GF στ ) also located on
some cycle. By induction it then follows that this successor has value >, so as both G
and F στ are pure max-systems, also X has value >.

By monotonicity, we therefore have F nσ(>) v F nστ (>) on the one hand, and on the other

hand we have F nστ (a) v a as F στ (a) v a by choice of τ . With Gn(>) = Gn(a) we

conclude that F nσ(>) v a for any fixed point a of F .

Motivated by the preceding result on reasonable strategies we define the set
of improvements of a given max-strategy σ as follows:

Definition 5.3.13.
Let F : SX → SX be a min-max-system, and σ some max-strategy. Set
v := F |X |σ (>).

Then the set Sσ(X) of strict improvements, resp. the set Iσ(X) of improve-
ments of σ at X ∈ Xt w.r.t. F are defined by

Sσ(X) := {m | m is a monomial of FX with vX @ m(v)}
Iσ(X) := Sσ(X) ∪ {m ∈ σ(X) | vX = m(v)}.

We call any max-strategy σ′ with σ′(X) ⊆ Iσ(X) (for all X ∈ Xt) a successor
strategy of σ. �
Remark 5.3.14.
Iσ is itself a successor strategy of σ. �

We close this subsection by showing that for any nondeterministic reasonable
strategy σ there is a deterministic reasonable strategy ρ with νF σ = νF ρ.
We will use this result in the next subsection to get a better bound on the
number of strategy iterations needed to reach µF .

Definition 5.3.15.
Let F be a min-max-system F , and σ a reasonable non-deterministic max-
strategy. We call any deterministic max-strategy ρ satisfying

F ρ(νF σ) = νF σ
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a determinization of F . �
Lemma 5.3.16.
The determinization ρ of σ is also reasonable with νF ρ = νF σ. �

Proof. Note that F ρ v F σ. By construction νF σ is a fixed point of F ρ, and thus also
its greatest fixed point, i.e., νF σ = νF ρ. We claim that νF σ is a witness of ρ being
reasonable:

As σ is reasonable, we have νF σ v a for any fixed point of F (Lemma 5.3.12). So, νF σ

satisfies condition (1). Condition (3) holds because νF σ is a fixed point of F ρ. Finally,

condition (2) is satisfied as GF ρ is a subgraph of GF σ and v v νF σ with v the witness of

σ being reasonable.

5.3.3 Nondeterministic t-Strategy Iteration

We now can give a formal definition of strategy iteration using nondetermin-
istic t-strategies.

Definition 5.3.17.
Let F : SX → SX be a min-max-system with n := |X |.

A strategy iteration sequence is any maximal sequence (σi)i∈I (with either
I = {0, 1, . . . , L} for some L ∈ N or I = N) of max-strategies satisfying for
all i ∈ I:

(1) σ0(X) := {FX(⊥)} for every max-variable X (5).

(2) For vi+1 := F n
σi

(>) the t-strategy σi+1 satisfies:

(a) vi+1 @ F σi+1
(vi+1) v F (vi+1)

(b) σi+1 is a successor strategy of σi. �

The goal of the remainder of this subsection is to show the following result:

Theorem 5.3.19.
Let F be a min-cycle-free min-max-system F and (σi)i∈I a strategy iteration
sequence. Then (σi)i∈I is finite and νF σL is the least fixed point of F (with
L = max I). Further, let NF

t be the number of distinct deterministic max-
strategies w.r.t. F , then L ≤ NF

t . �

In order to prove this we show that every strategy of a strategy iteration
sequence is reasonable, if the given min-max-system is min-cycle-free:

5I.e., σ0 maps every max-variable to the constant term of FX .
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Lemma 5.3.18.
Let F be a min-cycle-free min-max-system with variables X (n := |X |).
Further, assume that (σi)i∈I is a strategy iteration sequence (with either
I = {0, 1, . . . , L} for some L ∈ N or I = N).

Set v0 := ⊥, resp. vi+1 := F n
σi

(>) for i ≥ 0. Then σi is reasonable with
witness vi. Further vi @ vi+1. �

Proof. We proceed by induction on i.

(i = 0) By definition σ0 maps every max-variable X to the constant term of FX . Every
max-variable X ∈ Xt therefore has no outgoing edge in GF σ0 . By our assumption that
there are no cycles which only consist of min-variable, the dependency graph of F σ0 is
acyclic. So condition (2) of Definition 5.3.11 is trivially satisfied. Obviously, v0 also
satisfies conditions (1) and (3) as v0 = ⊥ by definition. So, σ0 is reasonable with witness
v0. As F σ0

is acyclic, it has a unique fixed point given both by v1 = F nσ0
(>) and F nσ0

(⊥).
If ⊥ = F nσ0

(>), then ⊥ is also the least fixed point of F , and I = {0}. Otherwise, we have

v0 = ⊥ @ F nσ0
(⊥) = v1.

(i→ i+1) Assume that σi is reasonable with witness vi and that σi+1 exists, i.e., i+1 ∈ I.
We show that σi+1 is reasonable with witness vi+1 = F nσi(>).

As σi is reasonable, we know that vi+1 := F nσi(>) is the greatest fixed point of F σi , i.e.
vi+1 = νF σi and vi+1 v a for any fixed point a of F . Hence vi+1 satisfies condition (1)
of Definition 5.3.11. Further, vi+1 = F σi(vi+1) v F (vi+1). By Definition 5.3.17 (2a) σi+1

is chosen such that

vi+1 @ F σi+1
(vi+1) v F (vi+1).

From this and the monotonicity of F σ, we immediately obtain

vi+1 @ F kσi+1
(vi+1) v F kσi+1

(>) for all k ∈ N,

i.e., vi+1 also satisfies condition (3) of Definition 5.3.11. Further we obtain vi+1 @
F nσi+1

(>) = vi+2.

If GF σi+1
is acyclic, we are done. Hence, let X0

m0−−→ . . . Xl
ml−−→ Xl+1 be a cycle in GF σi+1

.

If this cycle already exists w.r.t. the preceding strategy σi, then we know by induction
that

⊥ @ (vi)X0 and 1 @
l∏
i=0

DXi+1mi|vi .

As vi v vi+1, we have by monotonicity that

⊥ @ (vi+1)X0
and 1 @

l∏
i=0

DXi+1
mi|vi+1

.

also hold, i.e., the cycle satisfies condition (2) of Definition 5.3.11.
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We turn to the case that the cycle only exists w.r.t. σi+1, i.e., there is some max-variable
along the cycle, w.l.o.g. X0, such that the monomial m0 ∈ σi+1(X0) \ σi(X0) was newly
added to σi+1. By Definition 5.3.17 (2b) we therefore know that (vi+1)X0 @ m0(vi+1).
Consider any other variable Xj along the cycle. If Xj ∈ Xu, we have F σi+1

(v)Xj v mj(v)
for any v ∈ SX , as mi is a monomial of (F σi+1

)Xj . And so

(vi+1)Xj v mj(vi+1)

as vi+1 v F (vi+1) and F σi+1 and F coincide on min-variables.

If Xj ∈ Xt, then we have by Definition 5.3.17 (2b) that all monomials of σi+1 do not
decrease in vi+1, i.e.,

(vi+1)Xj v mj(vi+1)

holds too.

So, we obtain:

(vi+1)X0 @ m0(vi+1) = DX1m0|vi+1 · (vi+1)X1

(vi+1)X1 v m1(vi+1) = DX2m1|vi+1 · (vi+1)X2

...
(vi+1)Xl v ml(vi+1) = DX0

ml|vi+1
· (vi+1)X0

.

From this we conclude:

(vi+1)X0
@ (vi+1)X0

l∏
j=0

DXj+1
mj |vi+1

.

By Proposition 5.3.3(6) it follows that

⊥ @ (vi+1)X0
and 1 @

l∏
j=0

DXj+1
mj |vi+1

.

From this also ⊥ @ (vi+1)Xj for all j = 0, . . . , l follows. Thus, any newly generated cycle

also satisfies condition (2) of Definition 5.3.11 w.r.t. vi+1.

We are now ready to prove our main result.

Theorem 5.3.19.
Let F be a min-cycle-free min-max-system F and (σi)i∈I a strategy iteration
sequence. Then (σi)i∈I is finite and νF σL is the least fixed point of F (with
L = max I). Further, let NF

t be the number of distinct deterministic max-
strategies w.r.t. F , then L ≤ NF

t . �

Proof. By the preceding Lemma 5.3.18 we have

νF σi @ νF σi+1 v µF

for all i, i + 1 ∈ I. As for every strategy σi there is a determinization having the same
greatest fixed point, the number of disctinct values νF σi is bounded by the number of
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reasonable deterministic max-strategies (w.r.t. F ). So, NFt is an upper bound on the
length of any strategy iteration sequence, i.e., for every strategy iteration sequence (σi)i∈I
we have I = {0, 1, . . . , L} with L ≤ NFt . As strategy iteration sequences are required to
be maximal, we have νF σL = F (νF σL) as otherwise we could find a successor strategy ρ
of σL satisfying

νF σL @ F ρ(νF σL).

So, νF σL is a fixed point of F , in particular, the least.

Remark 5.3.20.
For a min-max-system F set ktF :=

∑
X∈Xt kF (X), i.e., ktF is the total num-

ber of monomials appearing in all FX with X ∈ Xt. As any t-strategy
defines some subset of these monomials we have NtF ≤ 2k

t
F . �

Example 5.3.21. In Example 5.2.9 we have seen that u-strategy iteration does not work
in general. There we considered the following min-max-system:

F = (FX ,F Y ) =
(
min{Y, 1},max{X +X,−1}

)
.

By Defintion 5.3.17 we begin with the strategy σ0 : {Y } → {−1}. So, the induced min-
max-system is:

F σ0
=
(
min{Y, 1},−1

)
.

The greatest fixed point of which can easily be calculated to be (−1,−1) which also is
already the least fixed point of F . �

5.3.4 Locally Optimal Successor Strategies

In the previous subsection we introduced t-strategy iteration and showed
that it always converges to the least fixed point of a min-max-system. Up
to now, we have not commented on the choice of the σi in every step of
the strategy iteration. Obviously, the successor strategy σi+1 is not uniquely
determined in general. Still, there is a unique maximal, or most permissive
choice given by Iσi . The interesting point is that as for any possible choice
of σi+1 we have σi+1(X) ⊆ Iσi(X), and, thus,

F σi+1
v F Iσi

, and νF σi+1
v νF Iσi

.

This means that locally, i.e., when only considering σi, there is an optimal
choice for σi+1, namely σi+1 := Iσi .

Definition 5.3.22.
For a given min-max-system F : SX → SX the locally optimal strategy iter-
ation sequence is the unique strategy iteration sequence with σi+1 := Iσi . �

Although choosing σi+1 to be Iσi in every step does not necessarily lead to a
minimal number of iterations until µF is reached, we will show that it leads
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to a better bound on the number of iterations at least in the important case
of linear min-max-systems. This is done in the following section. Before it
we show that we can always assume that the least fixed point of a min-max-
system is greater than ⊥ in any component, and we discuss how to obtain
from any min-max-system a min-cycle-free system.

5.3.5 Clean and Min-Cycle-Free Min-Max-Systems

We discuss two consequences of Theorem 5.3.19. We first show that we may
assume w.l.o.g. that any min-max-system is min-cycle-free.

Lemma 5.3.23.
Let F be some min-max-system with variables X . By C we denote the
variables X of F which are located in some min-cycle of GF , i.e., a cycle
consisting only of min-variables.

Then (µF )X = ⊥ for all X ∈ C. �

Proof. Assume that C 6= ∅ and denote by Ĉ the set {X̂ | X ∈ C}. We assume that
Ĉ ∩ X = ∅. Let G be the min-max-system we obtain from F as follows: if X ∈ X , then
GX is obtained from FX by replacing any variable X ∈ C by X̂ ∈ Ĉ; otherwise we set
GX̂ = X t ⊥. Then G is min-cycle-free and µG exists. For any fixed point a of G we
have aX = aX̂ and, thus, every fixed point of G induces a fixed point of F . Similarly, we
can lift any fixed point b of F to a fixed point of G via the extension bX̂ := bX . Further,
for any two fixed points a and a′ with a v a′ of the one system this inequations also
holds for the induced fixed points of the other system, i.e., the partial order on the fixed
points is the same. One therefore verifies that µG induces µF by means of this one-on-one
correspondence.

It therefore suffices to show that for any strategy iteration sequence (σi)i=0,...,L we have

σi(X̂) = {⊥} for all X̂ ∈ Ĉ. As µG = νGσL the result then follows. We proceed by
induction on i:

(i = 0) By definition of strategy iteration, σ0(X̂) = ⊥ for all X̂ ∈ Ĉ.

(i→ i+ 1) Recall that for any monomial m ∈ σi+1(X) \ σi(X) we have by definition

(νGσi)X @ m(νGσi).

Consider now any variable X̂ ∈ Ĉ. By definition of C, there is some min-variable Y such
that X → Y in GF . By induction, we have σi(Ŷ ) = {⊥} and thus (νGσi)Ŷ = ⊥. As Ŷ
appears in GX and X ∈ Xu, we also have

(νGσi)X = GX(νGσi) = ⊥.

Hence, we may not include X into σi+1(X̂), i.e., we also have σi+1(X̂) = {⊥} and thus

(νGσi+1)X̂ for any X̂ ∈ Ĉ.



5.3 Strategy Iteration and Semirings 103

Remark 5.3.24.
We therefore may obtain from any min-max-system a min-cycle-free system,
by substituting ⊥ for every variable located in some min-cycle. �

Similar to polynomial systems, we say that a min-max-system is clean if µF
is greater than ⊥ in any component. We next show that we can identify
those variables X with (µF )X = ⊥ by means of n steps of strategy iteration.

Lemma 5.3.25.
Let F : SX → SX be min-cycle-free min-max-system with n = |X | and
(σi)i=0,...,L a t-strategy iteration sequence. Set vi+1 := νF σi .

For every X ∈ X we have
(
µF
)
X

= ⊥ if
(
vn
)
X

= ⊥. �

Proof. We proceed by induction on n = |X |.

(n = 1) We have a single variable X. As F is min-cycle-free, X is a max-variable. By
definition, σ0 then chooses the constant term of F and the claim is obviously true, as
v1 = νF σ0

.

(n → n + 1) Consider any X ∈ Xt with
(
µF
)
X

A ⊥. As vL+1 = µF , there exists

some index l such that
(
vl
)
X

= ⊥ @
(
vl+1

)
X

. By monotonicity of the approximations

vi, we have
(
vi
)
X

= ⊥ for all i ∈ {0, 1, . . . , l}. By Definition 5.3.17(2b) it follows that

σi(X) = {⊥} for i ∈ {0, . . . , l− 1} (6). So there is a monomial m ∈ σl(X)∩Sσl−1
(X) with

⊥ =
(
vl
)
X

@ m(vl). Let V denote the set of variables appearing in m. As ⊥ @ m(vl)

we have ⊥ @
(
vl
)
Y

for all Y ∈ V . In particular, X 6∈ V . Now, as σi(X) = {⊥} for
all i ∈ {0, 1, . . . , l − 1} we are basically considering a system in at most n = |X \ {X}|
variables for the first l iterations. Thus, by induction ⊥ @

(
vn
)
Y

for all Y ∈ V , and,
hence, l ≤ n.

We turn to the case of min-variables. As F is assumed to be min-cycle-free, every min-
variable X ultimately depends only on max-variables, i.e., every path in GF starting in X
eventually hits a max-variable. Let RX be the set of max-variables reachable from X in
GF when deleting all out-going edges of max-variables.

We define a ranking function r : X → N with r(X) = 0 if X is a max-variable; and
r(X) = 1 + max{r(Z) | Z appears in FX}, otherwise. This function is well-defined, as F
is min-cycle-free.

As F and F σi−1
coincide on min-variables, and vi is a fixed point of F σi−1

, one now easily

checks by induction on the rank of a min-variable (7) that for all i = 1, . . . , L+ 1 we have

6By definition σ0 chooses the constant term. Hence, if (v1)X = ⊥ for some X ∈ Xt,
then the constant of FX has to be ⊥. Further, we only include a new monomial m in
σi+1(X) if (vi+1)X @ m(vi+1). From this ⊥ @ F kσi+1

(vi+1)X follows for all k > 0, which
in turn implies that ⊥ @ (νF σi+1

)X = (vi+2)X .
7We assume that there are no “pathological” equations in FX , i.e., if FX(v) = ⊥ for

all v ∈ SX , then X ∈ Xt and FX = ⊥.
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that (vi)X = ⊥ iff (vi)Y = ⊥ for some Y ∈ RX . Because we already know that (vn)Y = ⊥
iff (µF )Y = ⊥ for any max-variable Y , we may extend this result to all variables.

By the preceding results we can always assume that a min-max-system is
min-cycle-free and clean. By virtue of these results we introduce a normal
form for min-max-systems.

Definition 5.3.26.
We say that a min-max-system F is in normal form if it is min-cylce-free,
clean and for any max-variable X we have ⊥ @ FX(⊥), i.e., the constant
term of FX is not equal to ⊥. �
Lemma 5.3.27.
Let F : SX → SX be a min-cycle-free min-max-system, and (σi)i∈{0,...,L} a
strategy iteration sequence w.r.t. F . Denote by B the set of variables X
with ⊥ =

(
vn
)
X

. Let F [⊥/B] denote the system we obtain from F by
substituting every variable in B by ⊥. Set X ′ := X \B.

Define the system G : SX
′ → SX

′
by

GX := F [⊥/B]X for X ∈ X ′u
GX := F [⊥/B]X t

(
vn
)
X

for X ∈ X ′t.

Then G is in normal form with (µF )X = (µG)X for X ∈ X ′. �

Proof. Obviously, G is also min-cycle-free as GG is a subgraph of GF .

Let a be the restriction of µF to X ′. We then have for all X ∈ X ′t:

GX(a) = FX [⊥/B](a) t
(
vn
)
X

= FX(µF ) t
(
vn
)
X

= (µF )X t
(
vn
)
X

= (µF )X = aX .

Similarly, GX(a) = aX for X ∈ X ′u can be shown. So, a is a fixed point of G, and µG v a
follows.

Let w be the restriction of vn to X ′. We claim that w v µG. For this let σ be the max-
strategy which chooses the constant term of G, i.e., σ is the initial strategy considered in
any strategy iteration sequence w.r.t. G. Then νGσ v µG.

Let r : X ′ → N be the ranking function defined by r(X) = 0 if X ∈ X ′t; and r(X) =
1 + max{r(Z) | Z appears in GX} otherwise.

We show by induction on the rank of a variable that w v νGσ:

If r(X) = 0, then X ∈ Xt and the claim is obviously true. Otherwise X is a min-variable,
and we know by induction for all variables Z appearing in GX that wZ v (µG)Z . So:

(νGσ)X = Gσ(νGσ)X = GX(νGσ) w GX(w) = FX [⊥/B](w) = FX(vn) w (vn)X .

It now also follows that for X ∈ Xt we have

FX [⊥/B](µG) w FX [⊥/B](w) = FX(vn) w (vn)X ,
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and thus also

(µG)X = GX(µG) = FX [⊥/B](µG) t (vn)X = FX [⊥/B](µG). (∗)

Let b be the extension b of µG to X by setting bX := ⊥ for X ∈ B. By virtue of (∗)
one now easily checks that b is also a fixed point of F , i.e., µF v b. So we obtain that

(µG)X v (µF )X v (µG)X for all X ∈ X ′.

5.4 Linear Min-Max-Systems and Games

The subject of this section are linear min-max-systems F , i.e., min-max-
systems where every monomial has at most degree one. We formalize a
connection between linear min-max-systems and games played on the asso-
ciated dependency graph (Subsection 5.4.1). We then introduce reasonable
strategies w.r.t. to the interpretation of linear min-max systems as games,
and obtain an improved bound on the number of steps done by the locally-
optimal strategy iteration (Subsection 5.4.2).

For this section we assume that all systems are clean and min-cycle-free.

5.4.1 Interpretation as Games

We first adapt the definition of the dependency graph to the case that all
monomials have degree at most one: for every edge X

m−→ Y in GF it holds
that m = DYm · Y with DYm A ⊥. It therefore suffices to label the edges
only by DYm:

Definition 5.4.1.
For F a linear min-max-system in normal form let GF denote the directed,
edge labeled graph with nodes X ∪ { } (with 6∈ X ) and edges defined by:

• If X
m−→ Y in GF , then X

DYm−−−→ Y in GF .

• For all X ∈ Xt there is the edge X
FX(⊥)−−−−→ .

The weight of a finite path

X0
c0−→ X1

c1−→ . . .
cl−→ Xl+1

in GF is then defined to be the product of the edge labels, i.e.,
∏l

j=0 cj. �
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On GF we can consider the following game played by two players which we
simply call player t (or player max) and player u (or player min) in the
following. This definition is motivated by the finite cycle-domination games
considered in [VJ00]:

Definition 5.4.2.
Let F : SX → SX be a linear min-max-system in normal form. A play of the
two players t, and u on the graph GF is a path

X0
c0−→ X1

c1−→ . . . Xi
ci−→ Xi+1 . . .

cl−1−−→ Xl

such that either all nodes Xi are pairwise different with Xl = , i.e.,
|{X0, . . . , Xl}| = l+1, or Xl is the first node visited twice along the path, i.e.,
|{X0, . . . , Xl}| = l and there is some j ∈ {0, . . . , l − 1} such that Xj = Xl.

The value of such a play depends on whether it hits , or it ends up in a
cycle:

• If Xl = , then the value of the play is the value of the path.

• If it ends up in a simple cycle of weight greater than 1, then its value
is >.

• Otherwise (that is, if the play winds up in a simple cycle of weight at
most 1) its value is ⊥.

The goal of player t is now to maximize the value of the play, while player
u tries to minimize the value. �

Note that every t-strategy σ induces the subgraph GF σ , i.e., it can be in-
terpreted as player t disabling some edges. Similarly, a u-strategy τ corre-
sponds to disabling edges leaving u-nodes. In particular, if a player chooses a
deterministic strategy, every play in the resulting game is determined purely
by his opponent.

Example 5.4.3. Consider the following min-max-system F on the semiring 〈Z ∪
{±∞},max,+,−∞, 0〉 with t = max and u = min:

FU = 2 + V u 2 +W
F V = −1 +X t 0
FW = 4 + U t 4 + Y t 0
FX = 2 +W t 0
F Y = −3 +X u −3 + Z
FZ = −1 +X t 0.

The set of variables is X = {U, . . . , Z} with Xt = {V,W,X,Z}. The system is clean. We
obtain from it the game graph GF depicted in Figure 5.3. �
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U W Y
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X

Z

2

2

−1
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4
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−1

0
0

0

0

Figure 5.3: The game graph associated with the min-max-system of Example 5.4.3.

Lemma 5.4.4.
Let F : SX → SX be a linear min-max-system in normal form, and ρ a deter-
minization of some terminal t-strategy σ obtained by t-strategy iteration.
By restricting his moves to GF ρ any play starting in X ∈ X has at least the

value
(
µF
)
X

.

Similarly, choose τ to be any deterministic u-strategy with F τ (µF ) = µF .
Then player u can bound from above the value of any play starting in X ∈ X
to
(
µF
)
X

by sticking to τ . �

Proof. Consider GF σ . We already know that µF = νF σ = F nσ(>) and that all cycles

X0
m0−−→ . . .

ml−−→ Xl+1 (with X0 = Xl+1) in GF σ satisfy

1 @
l∏

j=0

DmjXj+1

by Lemma 5.3.18. Here, we have used that F is linear, and so the derivatives DmjXj+1

are constant. This means that all cycles in GF σ also have weight greater than 1. Hence,
every play in GF σ∗ that does not end up in has value >. As ρ is a determinization of σ,

these properties carry over to ρ (8). We therefore only have to show that the value of any
play starting from some X ∈ X to is bound from below by F nρ (>)X . Fix some X0 ∈ X
and consider any play X0

c0−→ X1
c1−→ . . .

cl−→ from X0 to (with l < n) in GF ρ . We show

by induction on l that the value of such a play is at least F l+1
ρ (>)X0 :

8In particular νF σ = νF ρ v F nρ (>) v F nσ(>) = νF σ.
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• Assume l = 0. Then we have X1 = and, so, X0 ∈ Xt. As ρ is deterministic,
this is the only, and, thus, minimal play starting from X0 in GF ρ . The play has

c0 = FX0
(⊥) as value by definition. As ρ is deterministic, we also have (F ρ)X0

=
FX0

(⊥).

• Assume now l > 0. Then X1 ∈ X and X1
c1−→ . . .

cl−→ is a play from X1 to of
length l − 1. By induction on l we have

∏l
j=1 cj w F

l
ρ(>)X1 . So we obtain:

l∏
j=0

cj w c0 · F lρ(>)X1
w F l+1

ρ (>)

as (F ρ)X0
is the minimum of its monomials, one of them c0 ·X1.

As F nρ (>) = νF ρ = µF , the claim follows.

Consider now any deterministic u-strategy with F τ (µF ) = µF . Obviously, there are only
finitely many plays in a given game, as the set of plays starting in X0 is a subset of paths
of length at most n = |X | in GF τ . So, there is a play of maximal value in GF τ for any

given X0 ∈ X . Let X0
c0−→ X1

c1−→ . . .
cl−→ Xl+1 be such a play of maximal value. Assume

that its value is greater than
(
µF
)
X0

.

Consider first the case that the play ends up in a cycle, so the value of the play is either
> or ⊥. As F is clean, we have

(
µF
)
X0

A ⊥, and so by our assumption the value of the

play has to be >, i.e., the weight of the cycle is greater than 1. Define g : SX → SX by

gXj := cj ·Xj+1 if Xj ∈ Xt
gXj := cj ·Xj+1 if Xj ∈ Xu
gX := ⊥ if X ∈ X \ {X0, X1, . . . , Xl}.

As F τ is a pure max-system, we have g v F τ , and so g(µF ) v F τ (µF ) = µF . So, as the
cycle of the play has weight greater than 1, it immediately follows that > =

(
µF
)
Xj

for

all variables of the play. Hence, the value of the play is not greater than
(
µF
)
X0

.

We turn to the case that Xl+1 = . We again define a system g : SX → SX using the
play:

gXj := cj ·Xj+1 for j ∈ {0, . . . , l − 1}
gXl := cl
gX := ⊥ if X ∈ X \ {X0, X1, . . . , Xl}.

Again, we have g v F τ , and so g(µF ) v F τ (µF ) = µF . As g is acylic, it has a unique

fixed point given, e.g., by gn(µF ). In particular, gn(µF )X0
is the value of the play

considered. By monotonicity we have gn(µF ) v µF , and so the value of the play cannot

be greater than
(
µF
)
X0

.

Corollary 5.4.5.
With the notations and assumptions of Lemma 5.4.4 it follows that µF cor-
responds to the optimal play values. Both players can use their deterministic
strategies ρ, resp. τ in order to achieve these values. �
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Example 5.4.6. We solve the system of Example 5.4.3 using locally optimal t-strategy
iteration. By definition the strategy σ0 chooses the constant monomials, i.e., we have

(
F σ0

)
U

= 2 + V u 2 +W(
F σ0

)
V

= 0(
F σ0

)
W

= 0(
F σ0

)
X

= 0(
F σ0

)
Y

= −3 +X u −3 + Z(
F σ0

)
Z

= 0.

U W Y

V
X

Z

2

2 −3 −3

0
0

0

0

On the right, the graph GF σ0 is shown. Obviously, this system is acyclic. Its unique fixed
point is

νF σ0
= (2, 0, 0, 0,−3, 0) v (2, 0, 6, 2,−3, 0) = F (νF σ0

).

The reader can easily check that the values of νF σ0
correspond to the weight of paths,

i.e., plays, from the respective variable (node) to . By comparing νF σ1
to F (νF σ0

) we
see that we can improve the strategy at the variables W,X. By definition of the locally
optimal t-strategy iteration we obtain:

(
F σ1

)
U

= 2 + V u 2 +W(
F σ1

)
V

= 0(
F σ1

)
W

= 4 + U t 4 + Y t 0(
F σ1

)
X

= 2 +W t 0(
F σ1

)
Y

= −3 +X u −3 + Z(
F σ1

)
Z

= 0.

U W Y

V
X

Z

2

2

4
4

2 −3 −3

0
0

0

0

As shown, νF σ1
is given by F 6

σ1
(∞). This yields:

νF σ1
= (2, 0, 6, 8,−3, 0) v (2, 7, 6, 8,−3, 7) = F (νF σ1

).

Note that every cycle in GF σ1 has weight > 0. From this it immediately follows that the

best that player u can do in any game starting from Y is to play directly to Z resulting in
the play value −3 – as otherwise player t could play into the cycle {W,Y,X}. Similarly,
player t is always forced to play from U to V if he wants to optimize, that is minimize
the value of any play visiting U .

By comparing again νF σ1 to F (F σ1), we notice that this time we have to adapt the
strategy at all t-variables:
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(
F σ2

)
U

= 2 + V u 2 +W(
F σ2

)
V

= −1 +X(
F σ2

)
W

= 4 + U(
F σ2

)
X

= 2 +W(
F σ2

)
Y

= −3 +X u −3 + Z(
F σ2

)
Z

= −1 +X.

U W Y

V
X

Z

2

2

−1

4

2 −3 −3

−1

W.r.t. to this last strategy now, every play ends up either in the cycle U → V → X →
W → V or X → U → X. In both cases, the weight of these cycles is positive, hence, the
weight of any play is ∞. One easily checks that νF σ2

is indeed ∞ in every component by
calculating the sequence F kσ2

(∞).

We conclude that µF = νF σ2
, and µF indeed gives us the optimal play values both

players can achieve in the game played on GF . �

In Section 5.5 we apply these results to parity games. For now note that
from the interpretation of a clean linear min-max-system F as a game on
GF it is reasonable for player t to only consider strategies σ such that every
cycle in GF σ has weight greater than 1 as this forces player u to try to play
to in order to minimize the value of the play. Note that for a clean min-
cycle-free linear min-max-system any such strategy is also reasonable w.r.t.
Definition 5.3.11 as we may simply take µF as witness:

Proposition 5.4.7.
Let F be a linear min-max-system in normal form and σ a max-strategy.

Then σ is reasonable if every cycle of GF σ has weight greater than 1. �

In the following subsection we use the notion of reasonable strategies in
order to obtain an improved bound on the length of locally optimal strategy
iteration sequence when applied to linear min-max-systems.

5.4.2 An Improved Bound on the Number of Iterations

In the rest of this subsection we use the fact that player t only needs to con-
sider reasonable strategies in order to obtain a better bound on the number
of iterations needed to calculate µF in the case of a linear min-max-system
in normal form where we additionally assume that every t-equation of F
consists of at most two monomials.

For such an F the numberNt is then trivially bounded from above by 2|Xt|, as
any deterministic t-strategy chooses exactly one of the at most 2 monomials



5.4 Linear Min-Max-Systems and Games 111

for any X ∈ Xt. In the following we improve this trivial upper bound. When
using the heuristic described in the previous paragraph, i.e., σi+1 = Iσi (cf.
Definition 5.3.22), we can improve the upper bound to O(1.724|Xt|).

Fix now the locally optimal strategy iteration sequence (σi)i∈{0,1,...,L}. We
have already seen that for every σi there is a determinization ρi such that
νF σi = νF ρi , and ρi(X) ⊆ σi(X) for all X ∈ Xt. In particular, as σi is
reasonable, so is ρi (cf. Proposition 5.3.16).

For a t-strategy σ, let src(Sσ) be the set of t-variables for which there exists
at least one monomial which strictly increases at νF σ, i.e.,

src(Sσ) := {X ∈ Xt | Sσ(X) 6= ∅}.

We then set s(σ) := |src(Sσ)| and si := s(σi) = s(ρi).

We obtain 2si − 1 many new deterministic strategies δ by changing ρi at
exactly one of the variables src(Sσi) = src(Sρi). As we assume that FX

consists of at most two monomials for every X ∈ Xt there is exactly one way
to change ρi at every X ∈ src(Sσi). Note that ρi+1 does not need to be to
one of these strategies δ. For every such δ we then have

νF ρi = νF σi @ νF δ v νF σi+1

as δ(X) ⊆ σi+1(X) for all X ∈ Xt.

As the approximations νF σi strictly increase until the sequence terminates,
we know that none of these strategies appears along the sequence (σi)i=0,...,L.
Therefore, at least 2si − 1 new deterministic strategies can be ruled out as
candidates for optimal winning strategies.

Hence, if Sk is the number of deterministic strategies which have at most
k nodes at which there exists at least one strict improvement, we get as an
upper bound for the number of improvement steps

Sk +
2|Xt|

2k+1 − 1
≤ Sk + 2|Xt|−k.

We next bound the number of strategies σi having the same value si.

Lemma 5.4.8.
Let F be a linear min-max-system in normal form, and σ a reasonable t-
strategy with FX(⊥) v

(
νF σ

)
X

for all X ∈ Xt. Let G be the system we
obtain from F by removing from FX all monomials of Sσ(X) for X ∈ Xt
(with Sσ taken w.r.t. F ).
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Then, G is also in normal form, and σ a reasonable strategy for G with
νGσ = µG. Further, for any reasonable t-strategy ρ w.r.t. F with ρ(X) ∩
Sσ(X) = ∅ for all X ∈ Xt, ρ is a also reasonable w.r.t. G with νGρ v νGσ.
�

Proof. We first show that G is also clean. As we require that FX(⊥) v (νF σ)X for all
X ∈ Xt, we have FX(⊥) /∈ Sσ(X). So, FX(⊥) = GX(⊥) follows. By definition of normal
form, we also have ⊥ @ FX(⊥) for X ∈ Xt. Finally, as F is min-cycle-free, so is G, and
one easily shows that G is clean.

We next show that σ is reasonable. For this note that σ(X) ∩ Sσ(X) = ∅ for all X ∈ Xt.
So, σ can still be applied to G with Gσ = F σ. In particular, every cycle of Gσ has weight
greater than 1. As G is clean, σ is therefore reasonable w.r.t. G. Analogously, one shows
that ρ is reasonable w.r.t. G.

Therefore by Lemma 5.3.12, we have νGσ v µG, and νGρ v µG. In particular, νGσ is

a fixed point of G, as we have removed exactly those monomials which increase at νGσ.

Hence, νGρ v µG = νGσ.

The preceding lemma tells us that if σi ∩ Sσj = ∅ holds for two strategies of
a t-strategy iteration, then νF σi v νF σj , i.e., i ≤ j.

We use this to show that whenever src(Sσj) ⊆ src(Sσi), then we have νF σi v
νF σj , too. This in turn tells us that if i 6= j and si = sj, then src(Sσj) 6=
src(Sσi), which means that the number of strategies with the same value si
is bounded by the number of distinct subsets of Xt of size si, i.e.,

(|Xt|
si

)
. We

formalize this in the following lemma which is a generalization of a result
which can be found in [MS99] for Markov decision processes.

Lemma 5.4.9.
Let F be a linear min-max-system in normal form, and σi and σj two reason-
able t-strategies w.r.t. F of the locally optimal strategy iteration sequence.

If src(Sσj) ⊂ src(Sσi), then νF σi v νF σj . �

Proof. Set C = Sσj ∩ σi. For every X ∈ src(C) we find a monomial mC,X such that
(X,mX,C) ∈ C, a monomial mX,j with (X,mX,j) ∈ σj (as σj is a strategy), and a
monomial mX,i with (X,mX,i) ∈ Sσi (as src(Sσj ) ⊆ src(Sσi)).

Now, because of Sσ ∩ σ = ∅ for any strategy σ, we may conclude that both mX,C 6= mX,i

and mX,C 6= mX,j . Thus, as we assume that |sE| ≤ 2, we have mX,i = mX,j =: mX . We
define therefore C ′ = {(X,mX) | X ∈ src(C)}, and

σ′ := C ′ ∪
(
σi \ C

)
.

As C ′ ⊆ Sσi , we have ∅ 6= σ′(X) ⊆ Iσi(X) for all X ∈ Xt. Hence, σ′ is a possible successor
strategy of σi, and so νF σi v νF σ′ .
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In particular, σ′ is reasonable with FX(⊥) v
(
νF σi

)
X
v
(
νF σ′

)
X

. As σ′ ∩ Sσj = ∅, we

may apply Lemma 5.4.8 yielding νF σ′ v νF σj .

Corollary 5.4.10.
The number of strategies σi along the locally optimal t-strategy iteration
having the number s = s(σi) is bounded by

(|Xt|
s

)
. �

We now are ready to give an improved upper bound on the number of steps
done by the locally optimal t-strategy iteration:

Theorem 5.4.11.
For a given linear min-max-system F : SX → SX in normal form the locally
optimal strategy iteration terminates after at most

3 · e0.545·|Xt| ≤ 3 · 1.724|Xt|

iterations. �

Proof. Recall that by Sk we denote the number of deterministic strategies which have
at most k variables for which there is a strict improvement. We have already argued that
then Sk + 2|Xt|−k is an upper bound on the number of iterations.

As long as 1 ≤ k ≤ |Xt|3 , it follows from Corollary 5.4.10 that

Sk ≤
k∑

k′=0

(
|Xt|
k′

)
≤ 2

(
|Xt|
k

)
≤ 2

(
|Xt|
k
· e
)k

.

What remains is to find a 1 ≤ k ≤ |Xt|3 such that

2

(
|Xt|
k
· e
)k

+ 2|Xt|−k

is minimal. For this set b = |Xt|
k with b ≥ 3, yielding

2 · e|Xt|·
1+ln b
b + eln 2·|Xt|· b−1

b .

As 1+ln b
b is strictly decreasing and b−1

b is strictly increasing, we need to look for the largest
b ≥ 3 such that

1 + ln b

b
≥ ln 2 · b− 1

b
.

Using e.g. Newton’s method one can easily check that b ∈ (4.6, 4.7) with b ≈ 4.66438.

In [BSV02] Björklung, Sandberg and Vorobyov analyze randomized selection
of the successor strategy: they choose uniformly at random a deterministic
successor strategy σ′ ⊆ Iσ, and show that the expected number of itera-
tions needed to reach the optimum is always less than 1.71|Xt|. Similar to
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our case, they use that the random selection of the successor strategy leads
to skipping an exponential number of strategies. It remains to analyze if
their proof allows to lower the upper bound in our setting of locally optimal
strategy iteration and linear, or even nonlinear min-max-systems. Note that
our bound relies heavily on Lemma 5.4.8. A starting point for improving
the trivial upper bound on the number of iterations in the case of nonlinear
min-max-systems therefore would be the extension of this lemma.

5.5 Application to Parity Games

In the previous section we have seen that every clean linear min-max-system
F can be illustrated by means of a two-person game played on an extension
of the dependency graph of F . The least fixed point of F then becomes the
optimal play values the two players can hope to achieve when both of them
are playing optimal (cf. Lemma 5.4.2). We have further seen that for such
games the optimal play values can be obtained in at most O(1.724|Xt|) steps
by locally optimal t-strategy iteration, see Theorem 5.4.11. The aim of this
section is to apply these results to parity games. By virtue of the results of
the preceding Section 5.4, we construct from a parity game a clean linear
min-max-system FA on a si-semiring over Zk. This semiring captures the
same information as the play values used in [VJ00]. By construction, the
dependency graph of the min-max-system FA and the original parity game
coincide, allowing us to directly apply the results of Section 5.4. We obtain
from this the algorithm of [Lut08]. In particular, this algorithm does not
rely on the reduction of parity games to mean payoff games. The algorithm
therefore retains more information on the original parity game. This makes
it possible to compare it to the well-known algorithm by Jurdzinski and
Vöge [VJ00]. We refer the reader to [Lut08] for this comparison.

In [GS08] Gawlitza and Seidel study another reduction of parity games to
linear min-max-systems. Their approach is based on the well-known reduc-
tion of parity games to mean payoff games, see e.g. [Jur98], yielding a min-
max-system on the si-semiring 〈Z ∪ {±∞},max,+,−∞, 0〉. In contrast to
the reduction proposed in this section, the connection between the resulting
min-max-system and the parity game is lost when moving from parity games
to mean payoff games as an intermediate step.

Parity Games: A parity game is played by two persons, in the following
referred to as player 0 and player 1, on a so called (parity game) arena
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U W Y

V X Z

Figure 5.4: A parity game arena. The shape of the nodes indicates the owner, circular
nodes belong to player 0, while boxed shaped nodes belong to player 1. Colors are written
inside of the nodes. Above, resp. below the nodes their nodes are written.

A = ({V0, V1}, E, χ) which is a directed graph, with nodes V := V0 ∪ V1 and
edge relation E, whose nodes are split between the two players, that is every
node belongs either to player 0 or to player 1, where we use Vi to denote the
nodes owned by player i; further, every node v ∈ V of the graph is assigned a
color χ(v) in {1, 2, . . . , d} where d is some fixed natural number. We assume
that every node of the arena has at least one outgoing edge, i.e., vE 6= ∅ for
all v ∈ V . A play π : N → V of the two players starts from some initial
node π(0), and is a maximal, thus infinite, path through the arena where the
owner of node π(k) chooses π(k + 1) from π(k)E for all k ∈ N. The parity
of the highest color seen infinitely often along π determines then the winner,
i.e., player i wins π if lim supk→∞ χ(π(k)) ≡ i (mod 2).

Example 5.5.1. Consider the parity game arena depicted in Figure 5.4. A possible play
starting in U is the infinite word U(WYX)ω, i.e., the play ends up in the cycle consisting
of {W,Y,X}. The colors appearing infinitely often along this play are {1, 2, 3}. Hence,
this play is won by player 1. �

We say that player i wins a node v ∈ V if he can react on every possible
move of his opponent in such a way that he wins the resulting play. It is a
well-known result shown in 1991 independently by Mostowski, respectively
Emerson and Jutla that in order to win the maximal set of nodes, it is
sufficient for both players to simply choose for every node v owned by them
a single successor σ(v) such that they move in every play hitting v to σ(v):

Theorem 5.5.2 ([Mos91, EJ91]).
For any a parity game arena A there is a unique partition {W0,W1} of V ,
and functions σ∗, τ ∗ with σ∗ : V0 → V , and τ : V1 → V such that player 0,
resp. player 1 wins every play π with π(0) ∈ Wi by only moving along the
edges {(v, σ∗(v)) | v ∈ Vi}, resp. {(v, τ ∗(v)) | v ∈ V1}. �

The functions σ∗ and τ ∗ are called deterministic memoryless strategies where
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“deterministic” refers to fact that they fix for every v ∈ Vi a unique deter-
mined successor, and “memoryless” emphasizes the fact that the move from
v ∈ V0 to σ∗(v) (similarly for τ) does not depend on the history of the play.
The important problem is then to determine the partition {W0,W1}, and the
strategies σ∗, and τ ∗ for a given parity game. We only mention that deciding
whether a node belongs to W0 or W1 is equivalent to the problem of deciding
whether a given Kripke structure satisfies a given µ-calculus formula and
refer the reader to [GTW02] for further details.

The next lemma basically states that we can always assume that A restricted
to the nodes V1 (short: A|V1) is acyclic. In the following paragraph, this
will allow us to associate with every parity game arena a clean linear min-
max-system, and reduce the problem of finding {W0,W1} to the problem of
calculating the least fixed point of the associated min-max-system.

Lemma 5.5.3.
Let A = ({V0, V1}, E, χ) be a parity game arena with V := V0∪V1. Then one
can obtain from A in time polynomial in |V | an arena A′ and sets U0, U1 ⊆ V
such that (1) the nodes Wi won by player i in A are equal to Ui ∪W ′

i where
W ′
i is the set of nodes one by player i in A′, and (2) A′ restricted to the

nodes owned by player 1 is acyclic. �

Proof. First, recall the concept of attractor: given a set X ⊆ V of nodes the set Attri(X)
consists of all nodes from which player i can force a play to a node in X. This set can be
calculated in polynomial time by means of a simple fixed point iteration:

• Define the operator Ai : 2V → 2V for some Y ⊆ V by

Ai(Y ) := Y
∪ {v ∈ Vi | vE ∩ Y }
∪ {v ∈ V1−i | vE ⊆ Y }.

• Then Attri(X) := µXAi =
⋃
k∈NA

k
i (X).

Note that Ai is a monotone, ω-continuous operator on the powerset algebra. So, the fixed
point µXAi always exists and can be calculated in time polynomial in the size of the graph.

Consider now A|V1 , i.e., the restriction of A to the nodes V1, and set U0 := ∅ =: U1.

Fix some order on the nodes of A|V1 having odd color. For every such node v check if

there is a (simple) cycle containing v in A|V1
such that every node of this cycle is not

greater than v w.r.t. the color. This can be done also in time O(|E|) by means of a depth

first search obviously. If so, player 1 wins all nodes located in Attr1({v}). Hence, set

U1 := U1 ∪ Attr1({v}), and remove Attr1({v}) from A, and call the resulting arena A
again. We repeat these steps until there is no cycle in A|V1 anymore whose highest color

is odd. Then, player 1 has to force any play into V0 as otherwise he will lose. So, calculate
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Attr1(V0), and set U0 := V \ Attr1(V0) as from these nodes player 1 is forced to stay in

V1, and, thus, ending up in a cycle whose highest color is even. Finally, remove also U0

from A, and all edges leading from Ak1(V0) to some Al1(V0) with l ≥ k, resulting in the

arena A′. Obviously, A′|V1
is acyclic now. So it suffices to consider A′, as all nodes in Ui

are trivially won by player i.

Min-Max-System: Let A = ({V0, V1}, E, χ) be a parity game arena. We
assume in the following that every node owned by player 1 has at least two
successors – obviously, assigning nodes with exactly one successor to player 0
does not give him any advantage. We further make use of Lemma 5.5.3, and
assume that A|V1 is acyclic. With such a parity game arena A we associate
a linear min-max-system F on the following si-semiring:

Definition 5.5.4.
Let d ∈ N be the maximal color of a parity game arena A. The structure
Pd := 〈Zd ∪ {±∞},v,+,−∞,∞,0〉 is then defined as follows:

• For a, b ∈ Zd let δ(a, b) := max{i ∈ {1, . . . , d} | ai 6= bi} denote the
greatest color in which a and b differ (9). Then

a v b :⇔ a = b
∨ δ(a, b) odd ∧ aδ(a,b) > bδ(a,b)
∨ δ(a, b) even ∧ aδ(a,b) < bδ(a,b).

We then extend v to Zd ∪ {±∞} such that −∞ is the least element,
and ∞ the greatest element.

• By + we denote the canonical componentwise addition on Zd and ex-
tend this to Zd ∪ {±∞} by requiring that conditions (2a) and (2b) of
Definition 5.3.1 are satisfied, i.e.,

a + −∞ = −∞ + a = −∞ for all a ∈ Zd ∪ {±∞}
a + ∞ = ∞ + a = ∞ for all a ∈ Zd ∪ {∞}.

With 0 we denote the d-dimensional vector which is equal to 0 in every
component.

We embed a color k ∈ {1, . . . , d} into Zd by identifying it with the vector

(0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
d−k

). �

9We assume that max ∅ = 0.
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Remark 5.5.5.
Note that v is total and that for any a, b, c ∈ Zd we have

a @ b⇔ a+ c @ b+ c.

Pd is thus a si-semiring. �

We now associate with any parity game arena A a min-max-system on Pd:
Definition 5.5.6.
Let A = ({V0, V1}, E, χ) be a parity game arena such that A|V1 is acyclic,
and every node in V1 has at least two successors. Then from A we obtain
the min-max-system FA : PXd → PXd with X := V0 ∪ V1, and

FAv :=
⊔
{χ(v) + w | w ∈ vE} t {0} if v ∈ V0

FAv :=
d
{χ(v) + w | w ∈ vE} if v ∈ V1.

�

We then have Xt = V0, and Xu = V1.

Example 5.5.7. We continue with Example 5.5.1. The arena A shown in Figure 5.4 does
not contain any cycles consisting only of nodes owned by player 1. We therefore obtain
from it the min-max-system FA on P3 with

FAU = (0, 1, 0) + V u (0, 1, 0) +W
FAV = (1, 0, 0) +X t (0, 0, 0)
FAW = (1, 0, 0) + U t (1, 0, 0) + Y t (0, 0, 0)
FAX = (0, 1, 0) +W t (0, 0, 0)
FAY = (0, 0, 1) +X u (0, 0, 1) + Z
FAZ = (1, 0, 0) +X t (0, 0, 0).

Recall that color 1 corresponds to the vector (1, 0, 0), color 2 to (0, 1, 0), and 3 to (0, 0, 1).
Further, the neutral element w.r.t. the multiplication (+) of the semiring is the null vector
0 = (0, 0, 0). �

Obviously, the dependency graph GFA and A are in one-to-one correspon-
dence: there is an edge v

c−→ w in GFA if and only if there is in an edge from
v to w in A, and its weight c is exactly the color of v in A, i.e., c = χ(v).
Thus, the strategy σ∗0, resp. σ∗1 w.r.t. A corresponds to a t-strategy, resp.
u-strategy w.r.t. FA. Further, F is in normal form as every cycle in A con-
tains at least one node owned by player 0, i.e., a t-variable. From this it
also follows that FA is clean: simply choose the t-strategy σ mapping every
v ∈ V0 to 1 w.r.t. FA; then, FAσ v FA, and the dependency graph of FAσ is
acyclic, hence −∞ @ FAnσ(−∞)v = (µFAσ)v v (µFA)v for every variable v.

We next show that for every node v ∈ V we have that v is won by player 0
(v ∈ W0) if and only if (µFA)v =∞ holds. For this, consider first the optimal



5.5 Application to Parity Games 119

strategy σ∗ player 0 can use in A to win every node of W0. Obviously, we
can apply this strategy also to FA, resp. GFA. As player 0 wins every play
π starting in W0 by means of σ∗, and σ∗ is deterministic, that is every play
is determined completely by player 1, every cycle visited has an even color
as highest color. From the play π in A we obtain a play on GFA by simply
stopping the play π as soon as the first simple cycle is completed. As the
highest color of this cycle is even, one easily checks by the definitions that the
total weight of this cycle is greater than 0 (10) and, hence, by Definition 5.4.2
the value of this play in GFA is ∞. By Lemma 5.4.4 it also follows that
(µFA)v = ∞ for all v ∈ W0, as (µFA)v is the value of the the play in GFA
starting from v when both players play optimal. Consider thus any node
v ∈ W1. Here, player 1 can use his strategy τ ∗ to force any play in A starting
from v into cycle whose highest color is odd. In GFA now player 0, i.e., player
t can choose between ending up in a cycle or escaping to . In both cases the
value of the resulting play is less than∞. Again by Lemma 5.4.4 it therefore
follows that (µFA)v @ ∞ for all v ∈ W1. Hence, we obtain the following
result by virtue of Theorem 5.4.11:

Theorem 5.5.8.
Player 0 wins the node v in the parity game arena A if and only if (µFA)v =
∞ holds. One can calculate µFA and, thus, the winning sets W0 and W1

using O(1.724|V0|) steps of locally optimal strategy iteration. �
Example 5.5.9. When using locally optimal t-strategy iteration for solving the min-max-
system of Example 5.5.7, the initial strategy σ0 maps every t-variable, i.e., node belonging
to player 0, to the constant monomial (0, 0, 0). From this we obtain the first approximation
νFAσ0

with
(
νFAσ0

)
U

= (0, 1, 0),
(
νFAσ0

)
Y

= (0, 0, 1), and
(
νFAσ0

)
S

= (0, 0, 0) for all
S ∈ V0. Evaluating FA at νFAσ0 yields:

νFAσ0
=


(0, 1, 0)
(0, 0, 0)
(0, 0, 0)
(0, 0, 0)
(0, 0, 1)
(0, 0, 0)

 v


(0, 1, 0)
(0, 0, 0)
(1, 1, 0)
(0, 1, 0)
(0, 0, 1)
(0, 0, 0)

 = FA(νFAσ0
).

This means that we change σ0 at the variables W and X. For X, there is only one
monomial so the change is unique. In the case of W , the monomial (1, 0, 0) + Y does not
lead to an improvement, so we obtain the strategy σ1 yielding the system FAσ1

with the
arena A restricted by the strategy σ1 shown on the right:

10The weight of a simple cycle in GFA is the vector x ∈ Nd whose ith component is the
number of times how often color i appears along the cycle. By definition of v in the case
of Pd, no cycle in GFA therefore has weight 0, and the weight of a cycle is greater than 0
if and only if the highest color appearing along the cycle is even.
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(
FAσ1

)
U

= (0, 1, 0) + V u (0, 1, 0) +W(
FAσ1

)
V

= (0, 0, 0)(
FAσ1

)
W

= (1, 0, 0) + U t (0, 0, 0)(
FAσ1

)
X

= (0, 1, 0) +W t (0, 0, 0)(
FAσ1

)
Y

= (0, 0, 1) +X u (0, 0, 1) + Z(
FAσ1

)
Z

= (0, 0, 0).

2

1

1

2

3

1

U W Y

V X Z

We obtain νFAσ1
by calculating FA6

σ1
(∞) leading to

νFAσ1 =


(0, 1, 0)
(0, 0, 0)
(1, 1, 0)
(1, 2, 0)
(0, 0, 1)
(0, 0, 0)

 v


(0, 1, 0)
(2, 2, 0)
(1, 1, 0)
(1, 2, 0)
(0, 0, 1)
(2, 2, 0)

 = FA(νFAσ1).

Evaluating FA at the new approximation, one checks that we now have to adapt the
strategy for V and Z. In both cases there is only a single choice resulting in the strategy
σ2 with

(
FAσ2

)
U

= (0, 1, 0) + V u (0, 1, 0) +W(
FAσ2

)
V

= (1, 0, 0) +W t (0, 0, 0)(
FAσ2

)
W

= (1, 0, 0) + U t (0, 0, 0)(
FAσ2

)
X

= (0, 1, 0) +W t (0, 0, 0)(
FAσ2

)
Y

= (0, 0, 1) +X u (0, 0, 1) + Z(
FAσ2

)
Z

= (1, 0, 0) +X t (0, 0, 0).

2

1

1

2

3

1

U W Y

V X Z

Finally, we obtain
(
νFAσ3

)
S

= ∞ for all variables S. Thus, player 0 wins all nodes by
means of strategy σ2, i.e., by disabling the edge from W to Y . �

Note that every step of the locally optimal strategy iteration consists of
calculating FAnσi(∞) with σi some strategy along the strategy iteration, and
n = |V |. Obviously, this takes at most O(|E| · |V |) many operations, i.e.,
time polynomial in the size of the arena A.

5.6 Discussion and Related Work

The results of this chapter are based on several works by other authors: We
started from the basic idea of t-strategy iteration as proposed by Gawlitza
and Seidl in [GS08] for min-max-systems over the integers, and lifted their
approach to the setting of si-semiring hoping to obtain a better understand-
ing of when strategy iteration can be applied. We further extended their
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approach to nondeterministic strategies. We gave a characterization of the
strategies of a strategy iteration sequence and used this characterization to
show that the least fixed point of any min-max-system on a si-semiring exists.

The more general class of nondeterministic strategies allowed us to introduce
locally optimal t-strategy iteration. This idea was motivated by the work
done by Schewe. In [Sch07] he describes how one can calculate an optimal
update (11) of an estimation of the optimal play values. W.r.t. Section 5.4,
an estimation basically corresponds to an underapproximation νF σi , while
the optimal update corresponds to taking Iσi as successor strategy.

The algorithm of [Sch07] is based on the idea by Björklund, Sandberg and
Vorobyov [BSV03, BSV04] to give one player of a mean payoff (12), resp.
parity game the possibility of escaping an infinite cycle. W.r.t. Section 5.4
this option of escape corresponds to the node in the game played on GFA.
Recall that the node was used to encode the constants appearing in a clean
min-max-system. The introduction of an escape in a parity game therefore
causes the underlying min-max-system FA to become clean.

To summarize, the t-strategy iteration described in this chapter unifies
and generalizes the strategy iteration approaches underlying the algorithms
of [GS08] and [BSV04], and allows to directly apply the main idea of [Sch07].
In [Lut08] it is shown that the instantiation of our results to parity games
(Section 5.5) also allows for a direct comparison with the algorithm by Jur-
dzinski and Vöge [VJ00].

11Schewe shows how to calculate the optimal update via Dijkstra’s algorithm. It is left
for future work to check if his approach can be applied to the locally optimal t-strategy
iteration.

12Informally, a mean payoff game is a linear min-max-system on the integers. We refer
the reader to [BSV04] for more details.
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Chapter 6

Geometrical Properties of
Newton’s Method

6.1 Introduction

In this chapter, we discuss two questions that arise naturally when consider-
ing polynomial systems on the nonnegative reals.

The first question has already been motivated in Example 1.1.8. There, we
considered the system

X1 = f 1(X1, X2) := 1
2
X2

1 + 1
4
X2

2 + 1
4

X2 = f 2(X1, X2) := 1
4
X1 + 1

4
X1X2 + 1

4
X2

2 + 1
4
.

on the nonnegative reals. We visualized f by drawing the surfaces implicitly
defined by q1(X1, X2) := f 1 − X1 = 0, resp. q2(X1, X2) := f 2 − X2 = 0
into the same coordinate system so that µf became the least nonnegative
point of R2 common to both surfaces (see Figure 6.1). The shape of the
two surfaces then suggested the following approach for approximating µf :
Given some point x located in the region enclosed by the coordinate axes
and the two surfaces, we can obtain a better approximation of µf by moving
from x to the surfaces parallel to the axes (points p1 and p2), and taking
the tangents at these in the respective points as an approximation of actual
surfaces. The intersection y of these tangents then should yield an improved
approximation of µf .

We called this approach the tangent method, and claimed that it converges at
least as fast as Newton’s method to the least nonnegative solution of a poly-
nomial system on the nonnegative reals. We prove this claim in Section 6.3.



124 Geometrical Properties of Newton’s Method

Figure 6.1: The tangent method. Given x ∈ Rf we move to the points p1, and p2 located
on the surfaces defined by [q1 = 0], resp. [q2 = 0]. Then the intersection of the tangent
planes in these points is taken as new approximation.

The second question can also be motivated by Figure 6.1. Again, when
looking at the shape of the two surfaces, more precisely at their curvature,
one gets the impression that there should be a second nonnegative inter-
section. This question is important in the context of Galton-Watson pro-
cesses [WG75]. We give a description of Galton-Watson processes motivated
by parallel programs:
Assume we have a finite set X = {X1, . . . , Xn} of task types. Every task takes
exactly one time unit to execute, independent of its type. At termination
the task then randomly generates a finite number of new tasks all running in
parallel. More precisely, we associate with every type Xi a random variable
(or random vector) Zi where Zi ranges over Nn

0 , and Pr[Zi = (k1, . . . , kn)] is
the probability that a task of type Xi generates at termination kl children of
type Xl for l ∈ [n]. Initially, we have exactly one task of type X1. Natural
questions arising are whether such a parallel program eventually terminates,
and what the expected time till termination is. Both questions are connected
to the probability generating functions associated with the process:

f i(X1, . . . , Xn) :=
∑

(k1,...,kn)∈Nn0

Xk1
1 ·Xk2

2 · . . . ·Xkn
n · Pr[Zi = (k1, . . . , kn)],
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where we use X also as the set of variables. This yields a system f of power
series on the nonnegative reals. In particular, for a parallel program it is a
sensible assumption that all random variables Zi have a finite range, so that
f becomes a polynomial system. We will assume in the following that f is
a polynomial system.

In the setting of traditional Galton-Watson processes, one only considers
a single type. Then f becomes a univariate polynomial f(X) which is the
probability generating function of the random variable describing the number
child tasks generated. It is well-known that f ′(1) is then the expected number
of tasks spawned by a single task at termination. The analysis of the Galton-
Watson process is then split up into the critical case (f ′(1) = 1) where the
program terminates almost surely, although the expected time is unbounded;
the subcritical case (f ′(1) < 1) where the program terminates almost surely
with finite expected running time; and the supercritical case (f ′(1) > 1)
where the program does not terminate almost surely, nor is its expected
running time finite.

Of particular importance in the analysis of the subcritical (and also the
supercritical) case (see [Lin76, Ner77]) is the existence of a second fixed point
a of f(X) greater than one (1). In Section 6.4, we study the more general
question of the existence of a second fixed point of a polynomial equation
systems on the nonnegative reals if the surfaces intersect in µf .

6.2 Preliminaries

In the following, let f be a polynomial system on the nonnegative reals.
Every polynomial of fX is then a positive polynomial, i.e., all its coefficients
are positive. In accordance with [EKL09a], we call such systems systems
of positive polynomials, or short SPP. We assume that the variables X =
{X1, . . . , Xn} are used, i.e., n := |X |, and write X for the column vector
(X1, . . . , Xn)>. We also identify RX≥0 with Rn

≥0. Instead of fXi we then
simply write f i, and refer to it as the i-th component of f . That is, f is
interpreted as a (column) vector of polynomials in the canonical way. Then
f is a map from Rn

≥0 to Rn
≥0. We may extend this to f : Rn → Rn. We call

an SPP f feasible if µf exists in Rn
≥0. It is well-known that any SPP f can be

decomposed into strongly connected subsystems, i.e., the calculation of µf
for a general SPP f can be reduced to the case that f is strongly-connected

1As f ′(1) < 1 holds, the function f(X)−X becomes negative on some interval (1, 1+ε).
By continuity, and limt→∞ f(t) =∞, there has to be an a > 1 with f(a) = a.
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(cf. [EY06]). We abbreviate f(X)−X by q, and denote by [qi = 0] the set
{x ∈ Rn | qi(x) = 0}, i.e., [qi = 0] is the surface associated with f i.

We introduce some additional notation:
We write 0 for the vector of Rn which is equal to zero in every component.
For x,y ∈ Rn we write x ≤ y if x is less than or equal to y in every
component, i.e., ∀i ∈ [n] : xi ≤ yi (with [n] := {1, 2, . . . , n}). Then x < y
holds, if x 6= y and x ≤ y. If x is less than y in every component, i.e.,
∀i ∈ [n] : xi < yi, we write x ≺ y. For x,y ∈ Rn with x ≤ y we let
[x,y] denote the set {z ∈ Rn | x ≤ z ≤ y}. By x−i we denote the vector
we obtain from x ∈ Rn by removing the i-th component, i.e., x−i ∈ Rn−1.
Given some y ∈ R we then write (x−i; y) for the vector we obtain from x by
setting its i-th component to the value y.

We further use standard notation for derivatives in this chapter, as we are on
the reals. We write ∂ig for the partial derivative w.r.t. the variable Xi of a
function g : Rn → R given in the variables X . The evaluation of the partial
derivative at some point x ∈ Rn is then denoted by ∂Xg|x. The gradient of
g is then the row vector ∇g:

∇g := (∂1g, ∂2g, . . . , ∂ng).

Similarly, for g : Rn → Rn, we then denote the Jacobian of g by Jg:

Jg :=

∂1g1 ∂2g1 . . . ∂ng1
...

∂1gn ∂2gn . . . ∂ngn

 ,

i.e., the i-th row of the matrix Jg is the gradient of gi. Again, we write
∇g|x, resp. Jg|x for the evaluation of the resp. objective at some point x ∈
Rn. W.r.t. Definition 3.1.7, we then have Df |x(X) = Jf |x ·X using the
identification of RX with Rn described above.

6.3 The Tangent Method

As already stated, we assume that we are given some point located within
the region delimited by the coordinate axes and the surfaces [qi(X) = 0] for
i ∈ [n]. We call this region Rf in the following. It was shown in [EKL09a]
that this region can be characterized as follows:

Definition 6.3.1.
For a feasible SPP f we set Rf := {x ∈ Rn

≥0 | x ≤ f(x) ∧ x ≤ µf}. �
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We will see that all approximants obtained by Newton’s method, or the
tangent method, are indeed located inRf . As a side note, although Figure 6.1
might convey the impression that Rf is always convex, this is in general not
the case.

Example 6.3.2. Consider the SSP f with

f i(X) :=
1

16
X2
j +

1

4
XjXk +

1

16
X2
k +

5

8

for {i, j, k} = [3]. This SPP is clean, feasible and strongly-connected with µf = (1, 1, 1)>.

Each of the equations f i(X) = Xi then defines a hyperbolic paraboloid. Using standard
techniques from differential geometry, one easily checks that Rf is not convex. �

We first show that for any x ∈ Rf we can always move to the surfaces as
already sketched.

Lemma 6.3.3.
Let f be a feasible SPP and x ∈ Rf . Set

δx(t) := f(x+ t · ei)− x.

Then µ
(
δxi
)

exists for every i ∈ [n]. By a slight abuse of notation, we write
µδx for the vector with components µ

(
δxi
)
. We then have µδx ≤ µf − x,

and the ray x + R≥0 · ei intersects [qi = 0] in the point x + µδxi · ei for the
first time. In particular,

qi(x+ t · ei) > 0 and ∂iqi|x+t·ei < 0

holds for all t ∈ [0, µδxi ). �

Proof. Fix some i ∈ [n] and set d(t) := δxi (t). We have for all t ∈ R≥0

d(t) = f i(x+ t · ei)− xi ≤ f i(µf + t · ei)− xi

as x ≤ µf . By definition of R, we further have x ≤ f(x), and so

0 ≤ d(0) ≤ f i(µf)− xi = µf i − xi

follows. From this we obtain via induction for all k ∈ N and i ∈ [n]:

dk+1(0) = d(dk(0))
≤ f i(x+ dk(0) · ei)− xi
≤ f i(x+ (µf i − xi) · ei)− xi
≤ f i(µf)− xi
≤ µf i − xi.

By monotonicity of d, µd exists with µd ≤ µf i − xi. Then the ray x + R≥0 · ei indeed
intersects the surface defined by f i(X) = Xi in x+ µd · ei.
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If 0 < µd, we have t < d(t) for all t ∈ [0, µd) as µd is the least nonnegative fixed point of
d(t). So,

0 < d(t)− t = f i(x+ t · ei)− (xi + t) = qi(x+ t · ei)
follows for all t ∈ [0, µd). Finally, we have

qi(x+ t · ei) = qi(x) +∇qi|x · (t · ei) + r(t)

where r is the positive polynomial consisting of all monomials of qi(x+t·ei) which depend
at least quadratically on t. Again, if 0 < µd, we have qi(x) > 0, further for all t ∈ R≥0 it
holds that r(t) ≥ 0. So, as qi(x+ µd · ei) = 0, it follows that

0 > ∇qi|xei = ∂iqi|x.

As x was chosen arbitrarily from Rf except for the assumption that qi(x) > 0, we conclude
that for all t ∈ [0, µd):

∂iqi|x+t·ei < 0.

Definition 6.3.4.
For f feasible and x ∈ Rf , let µδx be as defined in the preceding
Lemma 6.3.3. We define the height of the i-th surface by hfi (x) := xi +µδxi .
Similarly, pi(x) := x + ei · µδxi is the point on the i-th surface satisfying
pi−i(x) = x−i. �
Example 6.3.5. Consider the system f depicted in Figure 6.1:

q1(X) := 1
2X

2
1 + 1

4X
2
2 + 1

4 −X1

q2(X) := 1
4X1 + 1

4X1X2 + 1
4X

2
2 + 1

4 −X2.

Here, we may solve qi(X) = 0 directly for Xi. This yields

hf1 (X) = 1−
√

1
2 −

1
2 ·X

2
2

hf2 (X) = 2− 1
2X −

1
2

√
X2 − 12X + 12.

�

As the components of hf (x) might be irrational, calculating hf (x) is not
possible in general, and, thus, we have to consider the slightly more general
case where we do not use the actual tangents, but rather approximate them.

Recall that for x ∈ [qi = 0] the tangent in x is given by the equation

∇qi|x · (X − x) = 0.

If x is located beneath the surface (xi ≤ qi(x)), then – as we will see – we
can approximate the tangent in pi(x) by

qi(x) +∇qi|x · (X − x) = 0.

Intuitively, the addend qi(x) moves the tangent in x at the surface
[qi = qi(x)] towards the actual surface [qi = 0], as ∇qi|x points into the
interior of Rf . This motivates the following definition:
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Figure 6.2: This figure shows the (approximated) tangent planes used for approximating
the surfaces [qi = 0] for αi = pi(x) (drawn by dashes), resp. for αi = x (drawn by dots).

The closer αi gets to hfi (x), the better qi(α
i) +∇qi|αi · (y − αi) = 0 approximates the

actual tangent.

Definition 6.3.6.
For f a feasible SPP, x ∈ Rf , and α ∈ [x,hf (x)], let fx;α denote the
following linear system (with αi := (x−i;αi)):

fx;α
i (X) := qi(α

i) +∇qi|αi · (α−αi) +∇f i|αi ·X �

Note that fx;α
i − Xi = 0 is exactly the (approximated) tangent in αi with

the origin of the coordinate system moved into α. A fixed point of fx;α is
thus an intersection of all (approximated) tangents. See Figure 6.2 for an
example.

Lemma 6.3.7.
Under the requirements of Definition 6.3.6 fx;α is a feasible SPP with
α+ µfx;α ≤ µf . �

Proof. As the i-th component of α − αi is zero, fx;α
i is indeed a positive polynomial.

We show that µf −α is a prefixed point. For this, recall that we have (Taylor expansion)

qi(X) = qi((X −αi) +αi) = qi(α
i) +∇qi|αi · (X −αi) + r(X −αi)
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with r(Y ) a positive polynomial, as q = f −X only has negative terms of order one.
With this at hand, and as α ≤ µf , we obtain:

fx;α
i (µf −α) = qi(α

i) +∇qi|αi · (α−αi) +∇f i|αi · (µf −α)
= qi(α

i) +∇qi|αi · (µf −αi) + (µf i −αi)
≤ qi(µf) + µf i −αi
= µf i −αi.

So, the Kleene sequence of fx;α is bounded from above by µf −α, i.e., µfx;α ≤ µf −α.

Definition 6.3.8.
Under the requirements of Definition 6.3.6 we define the tangent operator
by T (x;α) := α + µfx;α. Further, set N (x) := T (x;x). We denote by
(τ (k))k∈N any sequence obtained by using T (·; ·) in every step starting from
τ (0) := 0. �

Our goal is to show that any sequence (τ (k))k∈N converges at least as fast as
Newton’s method. For this, we first analyze the properties of T (·; ·) in more
detail.

Note that for α = x we have fx;x
i (X) = qi(x) +∇f i|x ·X. We can write

this succinctly as fx;x(X) = q(x) + Jf |x ·X. As Jq = Jf − Id, we obtain

X = fx;x(X)⇔ q(x) + Jq|x ·X = 0.

In particular, for µfx;x it follows:

µfx;x =
∞∑
k=0

Jf |kx · q(x) =: Jf |∗x · q(x).

We thus have ν(k+1) = N (ν(k)) with (ν(k))k∈N as defined in Definition 3.1.9.
Note that by Lemma 6.3.7 we only know that this sum exists in Rn

≥0; but we
do not know whether all entries of Jf |∗x stay finite, i.e., whether Jf |∗x exists
in Rn×n

≥0 .

Lemma 6.3.9.
Let f be a clean, feasible, strongly-connected SPP. For x ≤ α ≺ hf (x) set

M :=

∇f 1|α1

...
∇fn|αn

 .

Then M∗ exists in Rn×n
≥0 with M∗ = (Id−M)−1. In particular, µfx;α is the

unique solution of the linear equation system fx;α(X) = X. �
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Proof. Recall that αi := (x−i;αi), and, hence, x ≤ αi ≤ α ≺ µf for all i ∈ [n]. By
virtue of the results obtained by Etessami and Yannakakis in [EY06], we know that Jq|α
is regular with

Jq|−1
α = −

∑
k∈N

Jf |kα.

This means the inverse of −Jq|α is given by the Kleene star of Jf |α. Note that this
matches our definition of the Newton sequence on the semiring of nonnegative reals. The
point here is that on the semiring the matrix might have infinite entries, while this result
says that in the case of a feasible, clean, strongly-connected SPP this matrix even exists
in Rn≥0.

As αi ≤ α, it follows that ∇f i|αi ≤ ∇f i|α for all i ∈ [n], i.e., M ≤ Jf |α. We therefore

obtain that M∗ exists in Rn≥0 as M∗ ≤ Jf |∗α.

Note that the requirement that α ≺ µf is not severe, as in the case that
αi = µf i for some i ∈ [n], we can simply substitute µf i for Xi in f , and
consider the reduced system, and its strongly-connected components.

We now show that T (x;α) indeed improves with α → hf (x) as suggested
by Figure 6.2.

Lemma 6.3.10.
For f feasible, x ∈ Rf , and α,β with x ≤ α ≤ β ≤ hf (x) we have
T (x;α) ≤ T (x;β). �

Proof. Set d := α − x ≥ 0. We split the proof into two parts. In the first part we
introduce an SPP gx;α and show that µgx;α = µfx;α + d. We then show in the second
part that µgx;α ≤ µgx;β. As T (x;α) = α+ µfx;α by definition, the claim then follows.

(a) Define gx;α as follows for i ∈ [n]:

gx;α
i (X) :=

{
qi(α

i)
−∂iqi|αi

+ (αi − xi) +
∑
k 6=i

∂kf i|αi
−∂iqi|αi

·Xk if ∂iqi|αi < 0

αi − xi if ∂iqi|αi = 0.

The reader can easily check that gx;α is also an SPP. For ∂iqi|αi < 0, we have the following
relation between gx;α

i and fx;α
i :

fx;α
i (X)−Xi

= qi(α
i) +∇qi|αi · (α−αi) +∇f i|αi ·X −Xi

= qi(α
i) +∇qi|αi · (α−αi) +∇qi|αi ·X

= qi(α
i) +∇qi|αi · (X +α−αi)

= qi(α
i) +∇qi|αi · (X + d+ x−αi)

= qi(α
i) +∇qi|αi · (x−αi) +∇qi|αi · (X + d)

= qi(α
i)− ∂iqi|αi · (αi − xi) +

∑
k 6=i ∂kf i|αi · (Xk − dk) + ∂iqi|αi · (Xi − di)

= −∂iqi|αi ·
(
gx;α
i (X + d)− (Xi + di)

)
.

(∗)

We want to show that µfx;α + d = µgx;α. By equation (∗) we have for all i ∈ [n] with
∂iqi|αi < 0 that gx;α

i (µfx;α + d) = (µfx;α)i + di.
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Assume therefore that there is an i ∈ [n] with ∂iqi|αi = 0. By definition, gx;α
i (X) is the

constant polynomial di = αi−xi, and, thus, (µgx;α)i = di. We will show in a moment that
also (µfx;α)i = 0 holds for ∂iqi|αi = 0. So we also have gx;α

i (µfx;α +d) = (µfx;α)i +di
for all i ∈ [n] with ∂iqi|αi = 0.

We conclude that µfx;α + d is a fixed point of gx;α. In particular, µgx;α exists, and it
follows that µgx;α = µfx;α + d indeed holds.

We turn to the proof of (µfx;α)i = 0 for ∂iqi|αi = 0 or, equivalently, ∂if i|αi = 1. By

Lemma 6.3.3 we know that ∂iqi|αi < 0 if αi < hfi (x). So, αi = hf (x) has to hold, from
which qi(α

i) = 0 follows. We therefore obtain:

fx;α
i (X)−Xi

= qi(α
i) +∇qi|αi · (α−αi) +∇f i|αi ·X −Xi

=
∑
k 6=i ∂kf i|αi · (αk − xk +Xk)

=
∑
k 6=i ∂kf i|αi · (Xk + dk).

(∗∗)

Let f̃x;α be the system we obtain by setting fx;α
i := 0. Obviously, f̃x;α is an SPP

with f̃x;α(x) ≤ fx;α(x) for all x ∈ Rn≥0 and, hence, µf̃x;α ≤ µfx;α. Further, as fx;α

and f̃x;α agree for all k ∈ [n] \ {i}, we have
(
µf̃x;α

)
k

= fx;α
k (µf̃x;α). Assume that

0 =
(
µf̃x;α)i < f

x;α
i (µf̃x;α). From (∗∗) it follows that

0 <
∑
k 6=i

∂kf i|αi ·
(
(µf̃x;α)k + dk

)
.

We therefore find a j ∈ [n] \ {i} with

0 < ∂jf i|αi ·
(
(µf̃x;α)j + dj

)
.

On the other hand, by (∗∗) it also follows that

0 =
∑
k 6=i

∂kf i|αi ·
(
(µfx;α)k + dk

)
, i.e., 0 = ∂jf i|αi ·

(
(µfx;α)j + dj

)
.

Hence, we have ∂jf i|αi > 0 and dj = 0, which yields
(
µfx;α

)
j

= 0 <
(
µf̃x;α

)
j
. This

contradicts the fact that µf̃x;α ≤ µfx;α. Therefore µf̃x;α has to be a fixed point of fx;α,
in particular the least. So we obtain the result that (µfx;α)i = 0.

(b) It remains to show that T (x;α) ≤ T (x;β). For this we show that µgx;α in-
creases monotonically with α. Again, we argue componentwise, and fix some i ∈ [n].

If xi = hfi (x), there is nothing to show. So, assume xi < hfi (x). By Lemma 6.3.3 we
know that ∂iqi|x < 0 holds. We show that the coefficients of (with αi = xi + t)

qi(x+ t · ei)
−∂iqi|x+t·ei

+ t+
∑
k 6=i

∂kf i|x+t·ei

−∂iqi|x+t·ei
·Xk

increase with t while t ∈ [0,hfi (x)− xi). We set t0 := hf (x)− xi.

Recall that ∂iqi|x+tei is negative for t ∈ [0, t0), and increases with t. Thus, it remains to
show that

qi(x+ t · ei)
−∂iqi|x+t·ei

+ t
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also increases with t.

As q(X) = f(X)−X, we find a positive polynomial r(t) such that

qi(x+ t · ei) = qi(x) + t · ∂iqi|x + r(t).

From this we obtain

∂iqi|x+t·ei = limh→0
qi(x+(t+h)·ei)−qi(x+t·ei)

h
= ∂iqi|x + r′(t).

With this at hand, we may write for all t ∈ [0, t0):

d
dt

(
qi(x+t·ei)
−∂iqi|x+t·ei

+ t
)

= ∂iqi|x+r′(t)
−∂iqi|x+t·ei

+ qi(x+t·ei)
(−∂iqi|x+t·ei )2

· r′′(t) + 1

= qi(x+t·ei)
(−∂iqi|x+t·ei )2

· r′′(t)
≥ 0.

So, all coefficients increase monotonically with t.

It remains to consider the limit case if ∂iqi|x+t·ei vanishes for t = t0. By Lemma 6.3.7 we
have fx;α(µf −α) ≤ µf −α. Set D := µf − x ≥ 0 so that µf −α = D − d. From (∗)
we therefore obtain:

gx;α
i (D)−Di =

fx;α
i (µfx;α −α)−

(
(µfx;α)i −αi)

−∂iqi|αi
≤ 0.

So, as long as αi = x + t · ei < hfi (x), it holds that D is a prefixed point of gx;α and,

thus, µgx;α ≤D. Consider again the inequation gx;α
i (D) ≤Di for αi = xi + t < hfi (x),

i.e.,

gx;α
i (D) =

qi(x+ t · ei)
−∂iqi|x+t·ei

+ t+
∑
k 6=i

∂kf i|x+t·ei

−∂iqi|x+t·ei
·Dk ≤Di.

As D is constant, this implies in turn that for t ∈ [0, t0)∑
k 6=i

∂kf i|x+t·ei

−∂iqi|x+t·ei
·Dk = 0.

Otherwise this term would go to ∞ for t↗ t0, i.e., αi ↗ hfi (x). This means that either
∂kf i|x+t·ei
−∂iqi|x+t·ei

= 0 if Dk > 0, or
∂kf i|x+t·ei
−∂iqi|x+t·ei

> 0 if Dk = 0. But in the latter case we also

have (µgx;α)k = 0 as µgx;α ≤D. So we obtain:

(µgx;α)i = gx;α
i (µgx;α) =

qi(x+ t · ei)
−∂iqi|x+t·ei

+t+
∑
k 6=i

∂kf i|x+t·ei

−∂iqi|x+t·ei
·(µgx;α)k =

qi(x+ t · ei)
−∂iqi|x+t·ei

+t.

It therefore suffices to consider the constant term

qi(x+ t · ei)
−∂iqi|x+t·ei

+ t.
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Set g(t) := qi(x + t · ei). Then g′(t) = ∂iqi|x+t·ei . In particular, t0 is a root of both
polynomials. Hence, t0 has to be root of g(t) of multiplicity at least 2. From this we

obtain that limt↗t0
g(t)
g′(t) = 0. So for t↗ t0

qi(x+ t · ei)
−∂iqi|x+t·ei

+ t↗ t0.

Note that for t = t0 we have by definition that gx;α
i = t0.

We come to our last result needed for showing that for any sequence (τ (k))k∈N
we have that ν(k) ≤ τ (k) holds for all k ∈ N.

Lemma 6.3.11.
For f feasible and x,y ∈ Rf with x ≤ y it holds that N (x) ≤ N (y). �

Proof. Set d := y−x ≥ 0. We show that d+µfy;y is a prefixed point of fx;x. For this,
fix some i ∈ [n]:

fx;x
i (d+ µfy;y) = qi(x) +∇f i|x · (d+ µfy;y)

≤ qi(x) +∇f i|y · (d+ µfy;y)
= qi(x) +∇f i|y · d− qi(y) + fy;y

i (µfy;y)
= qi(x) +∇qi|y · d− qi(y) + di + µfy;y

i

So it suffices to show
qi(x) +∇qi|x+d · d− qi(x+ d) ≥ 0.

Again, we find a positive polynomial r(t) such that

qi(x+ t · d) = qi(x) + t · ∇qi|xd+ r(t) and ∇qi|x+t·d = ∇qi|xd+ r′(t).

In particular, we can write r(t) as t2 · p(t) with p(t) a positive polynomial, too. It follows
for all t ∈ R≥0:

qi(x) +∇qi|x+t·d · (t · d)− qi(x+ t · d)
= t · r′(t)− r(t)
= r(t) + t3 · p′(t)
≥ 0.

So, fx;x(d+ µfy;y) ≤ d+ µfy;y and µfx;x ≤ d+ µfy;y follow. As N (x) := x+ µfx;x,

the lemma is shown.

Theorem 6.3.12.
Let f be feasible SPP. Then for any sequence (τ (k))k∈N we have

ν(k) ≤ τ (k) ≤ µf for all k ∈ N

with (ν(k))k∈N the Newton sequence as defined in Definition 3.1.9. �

Proof. We proceed by induction on k. By definition we have ν(0) = τ (0) = 0. For k ≥ 0,
and α ∈ [τ (k),hf (τ (k))] such that τ (k+1) = T (τ (k);α):

ν(k+1) = N (ν(k)) ≤ N (τ (k)) ≤ T (τ (k);α) = τ (k+1).
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We close this section by noting that the described tangent method should
naturally extend itself to the setting of min-SPPs [EGKS08]: Similarly to
the extension of polynomial systems to min-max-systems on totally ordered
semirings, we may consider systems F where every component F i (with
i ∈ [n]) is the minimum of a finite number of polynomials. Such a min-SPP
F is again a monotone operator, and it is feasible if µF exists in Rn

≥0.

In order to approximate µF , for every polynomial p(X) appearing in F i, we
may obtain an approximation of the surface defined by p(X) = Xi. We then
define F x;α

i to be the minimum of all these approximated tangent planes. In
particular, this yields a linear min-SPP, to which the results of [EGKS08]
should be applicable. A formal proof is left for future work. The following
example sketches the principle idea of this extension:

Example 6.3.13. Consider the min-SPP F given by

X1 = F 1(X) := min( 1
2X

2 + 1
4Y

2 + 1
4 , 2Y

2 + 1
4 ),

X2 = F 2(X) := min( 1
4X + 1

4Y
2 + 1

4XY, 4X
2 + 2XY + 1

8 ).

From this min-SPP we obtain the quadrics defined by

q1 = 1
2X

2 + 1
4Y

2 + 1
4 −X,

q2 = 1
4X + 1

4Y
2 + 1

4XY − Y,
q3 = 2Y 2 + 1

4 −X,
q4 = 4X2 + 2XY + 1

8 − Y.

and depicted in Fig 6.3(a).

Given some point x ∈ RF := {x ∈ Rn≥0 | x ≤ F (x) ∧ x ≤ µF }, for every polynomial
p appearing in F i we try to move to the surface [p − Xi = 0] by moving along the ray
x+ R≥0 · ei. As we are now not guaranteed that µF is located on [p−Xi = 0], it might
happen that ∂i(p−Xi)|x > 0. In this case, Lemma 6.3.3 implies that we may remove the
polynomial p from F i for the further approximation of µF . On the other hand, if ∂ip|x < 1,
then we find an intersection of the ray with the surface, resp. we can approximate this
intersection, yielding an approximated tangent of the surface [p−Xi = 0].

Using these approximated tangents, we obtain a linear min-SPP along the lines of the
definition of fx;α. This linear min-SPP basically inscribes into RF a polyhedron approx-
imating [x,∞) ∩ RF . This is shown in Figure 6.3(b) using the actual tangents, resp. in
Figure 6.3(c) where the approximated tangents of Newton’s method are used.

Figures 6.3(b) and (c) suggest that we should try to find in the respective polyhedron
the point maximizing the 1-norm. It was shown in [EGKS08] that the least nonnegative
fixed-point of a clean linear min-SPP F lin is indeed characterized by

µF lin = argmax{
n∑
i=1

xi | x ∈ Rn≥0 ∧ x ≤ F lin(x)}.

One may thus obtain µF lin by solving a linear program.
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(a) (b)

(c)

Figure 6.3: The quadrics q1, q2, q3, q4 from Ex. 6.3.13 and the region RF enclosed by them.

Note that RF is the intersection of all Rf with f a feasible SPP obtained from F by
selecting for every i ∈ [n] a polynomial of F i. Hence, the results on T (·; ·) carry over to
the setting of min-SPPs. �

6.4 Existence of a Second Fixed Point

For the following, let f be a clean, feasible SPP. As previously stated, we
denote by q the system f −X. In this section, we study the existence of a
second fixed point in Rn

≥0 if the surfaces [qi = 0] not only touch, but intersect
in µf , i.e., we assume that Jq|µf is regular.
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In order to simplify notation, we assume that every polynomial of f is of
degree at most two. This is no restriction of generality, as we can always
break down a monomial of degree at least three into a system of monomials
of degree at most two by introducing auxiliary variables, for instance Y = X3

becomes Y = XZ ∧ Z = X2.

As f is quadratic, we find a n × n matrix A(i), a n dimensional row-vector
b(i) and some constant ci such that

f i(X) = X>A(i)X + b(i)X + ci.

Note that every entry of Ai, resp. bi, resp. ci itself is nonnegative. Without

restriction we may assume that A(i) is symmetric, i.e., A(i) =
(
A(i)
)>

.

By means of the matrices A(i) we define the bilinear form

B(X,Y ) :=

X
>A(1)Y

...
X>A(n)Y

 .

Note that B(X,Y ) = B(Y ,X), as we assume that A(i) is symmetric.

Similarly, we can summarize the row-vectors b(i), resp. the constants ci by
means of a matrix, resp. vector

L :=

b
(1)

...

b(n)

 , resp. c :=

c1
...
cn

 .

We then have
f(X) = B(X,X) + LX + c.

The Jacobian Jf |x of f in some point x can then be written as

Jf |x := 2B(x, ·) + L with Jf |xy = 2B(x,y) + Ly.

The following examples show that if f is not strongly-connected, then there
exists no second nonnegative fixed point in general.

Example 6.4.1. For n = 2 with X = (X,Y )> consider the following system:

f(X) =

(
1
3X

2 + 2
3

1
4X

2 + 1
2XY + 1

4

)
.

The Jacobian of f is

Jf =

(
2
3X 0

1
2X + 1

2Y
1
2X

)
.
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Obviously, we have (Jkf )1,2 = 0 for all k ∈ N, and so f is not strongly-connected.

It is easily checked that for a fixed point of f we either have to have X = 1 or X = 2.
Solving f2(X) = Y for Y yields

Y (X) =
X2 + 1

4− 2X
.

Hence, µf = (1, 1)> is the only nonnegative fixed point of f in R2, as Y (X) → ∞ for
X → 2. Note that

Jf |µf − Id =

(
− 1

3 0
1 − 1

2

)
has rank 2, i.e., (Jf |µf − Id)−1 exists.

As a second example consider

g(X) =

(
1
2X + 1

2
1
4X

2 + 1
2XY + 1

4

)
.

Again, g is not strongly-connected. The only fixed point of this system is (1, 1), and
Jg|(1,1) − Id is invertible. �

We therefore assume in the following that f is strongly-connected. Recall
that we require that the Jacobian of f(X)−X evaluated at µf , i.e., Jf |µf−Id
with Id the identity matrix, is invertible.

Lemma 6.4.2.
There exists a vector ε � 0 such that for all x ∈ [0, µf + ε) we have that
(Id− Jf |x)−1 exists, the spectral radius ρ(Jf |x) is less than 1, and

(Id− Jf |x)−1 =
∞∑
k=0

Jkf |x =: Jf |∗x. �

Proof. It was shown by Etessami and Yanakakis in [EY06] that for a strongly-connected
system f with µf > 0 this holds for all x < µf . In particular, it was shown that the
spectral radius of Jf |x is less than 1 for all x < µf . Let ρ(x) denote the spectral radius
of Jf |x.

As f is assumed to be strongly-connected and µf � 0, we have Jkf |µf � 0 for some k > 0.
So, by the Perron-Frobenius theorem, the spectral radius ρ of Jf |µf is an Eigenvalue of
Jf |µf having algebraic and geometric multiplicity one. As the Eigenvalues are continuous
w.r.t. to the coefficients of Jf |X , and, thus, continuous in X, there exists an open ball B
centered in µf such that ρ(·) is continuous when restricted to B.

Let v 6= 0 be a (right) Eigenvector of Jf |µf to the Eigenvalue ρ(µf). Then, as (Id −
Jf |µf )−1 is assumed to exist, and

(Id− Jf |µf )v = (1− ρ(µf))v
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we have ρ(µf) 6= 1. As ρ(·) is continuous on B, by reducing the radius of B we may
assume that ρ(·) 6= 1 on B. Note that B intersects [0, µf). But on [0, µf) we know that
ρ(·) < 1. So, ρ(·) < 1 on B follows, and, hence the Neumann series exists on B with

(Id− Jf |µf )−1 = Jf |∗µf .

Consider now the quadrics

[qi = 0] := {x ∈ Rn|qi(x) = 0}

whose least nonnegative intersection is µf . For q we obtain

Jq|x = Jf |x − Id = 2B(x, ·) + L− Id.

As already mentioned, the i-th row of Jq|µf is basically the normal to the
tangent plane at [qi = 0] in µf . Our assumption of the existence of the
inverse of Jq|µf thus means that the normals at the n quadrics in µf are
linearly independent.

Assume for the moment that ν is a fixed point of f with ν > µf . Let
r := ν − µf > 0 be the direction in which we must head from µf to reach
ν. Consider q along the ray µf + t · r for t ∈ [0, 1]. Then we have

q(µf + tr) = q(µf) + t · Jq|µfr + t2 ·B(r, r)
= t ·

(
Jq|µfr + t ·B(r, r)

)
.

As B(r, r) ≥ 0, and q(µf + r = 0), we have

d := Jq|µfr < 0.

The strict inequality has to hold as r > 0, and Jq|µf is invertible. From this
it follows that B(r, r) > 0.

As −Jq|−1
µf = Jf |∗µf ≥ 0, we can rewrite the last equation as

Jq|µfr = d (< 0)
⇔ (−Jq|µf )−1Jq|µfr = Jf |∗µfd (< 0)
⇔ r = Jf |∗f (−d) (> 0).

From this it follows that when looking for a second nonnegative fixed point
we only need to consider directions r := Jf |∗fd with d > 0.

We therefore move the origin of the coordinate system into µf , and change
the basis to the one given by the normals of the quadrics in µf , i.e.,

q̃(X) := q(µf + Jf |∗µfX).
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One can easily check that

q(x+ y) = q(x) + Jq|xy +B(y,y),

so that we obtain

q̃(X) = −X +B(Jf |∗µfX, Jf |∗µfX)

where we have used that Jf |∗µf = −Jq|−1
µf . Finally, we set

f̃(X) := B(Jf |∗µfX, Jf |∗µfX).

Note that f̃ does not need to be strongly-connected anymore as shown in
the following example.

Example 6.4.3. For X = (X,Y )> consider the system

f(X) =

(
1
4X

2 + 1
2Y + 1

4
1
2X + 1

2

)
.

The least nonnegative fixed point of f is µf = (1, 1)>. Further, we have that Jf |µf − Id
is invertible with

−(Jf |−1
µf − Id) = Jf |∗µf =

(
4 2
2 2

)
,

i.e., f is strongly-connected. After applying the transformation µf + Jf |∗µfX we obtain
the new system

f̃(X) =

(
(2X + Y )2

0

)
.

Clearly, this system is not strongly-connected anymore. Further, we can simplify it to the
univariate system

X = 4X2

having the two solutions X = 0, and X = 1
4 . This yields the two fixed points (0, 0)>, and

( 1
4 , 0)> of f̃ . Moving back to the original coordinate system yields the second nonnegative

fixed point ν of f :

ν = µf + Jf |∗µf
(

1
4
0

)
=

(
2
3
2

)
.

�

Recall that Bi(X,X) = X>A(i)X with A(i) ≥ 0 and A(i) = (A(i))>. From

this we obtain for f̃ i:

f̃ i(X) = X>
(
Jf |∗µf

)>
A(i)Jf |∗µfX.

Set
Ã(i) :=

(
Jf |∗µf

)>
A(i)Jf |∗µf .
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We claim that either Ã(i) = 0, or Ã(i) � 0. If A(i) = 0, then of course
we also have Ã(i) = 0. Assume that A(i) > 0. By our assumptions that
µf � 0 and that f is strongly-connected, we have Jf |∗µf � 0. One easily

checks that Ã(i) � 0 (2) follows. We therefore always may simplify f̃ by

setting all variables Xi with f̃ i = 0 to zero. The resulting system is then
strongly-connected w.r.t. to the remaining variables. Unless otherwise noted
we assume in the following that Ã(i) � 0 for all i ∈ [n].

We now have to find a fixed point of f̃ which is greater than 0, and we know
that we only have to look for such a fixed point along rays R≥0d = {t · d |
t ∈ R≥0} with d > 0. The intersection of such ray with the quadric [q̃i = 0]
can be determined from

q̃(t · d) = t2 · f̃(d)− t · d,

that is for t > 0 the ray can only have some point common with [q̃i = 0]

if either f̃(d)i = 0 ∧ di = 0, i.e., the ray R≥0d is contained in [q̃i = 0], or

f̃(d,d)i > 0 ∧ di > 0 and the ray intersects [q̃i = 0] for

t = λi(d) :=
di

f̃(d)i
.

Note that from our assumptions (i.e., Ã(i) � 0 and d > 0) it follows that

f̃ i(d) > 0. Thus, if there is a second nonnegative fixed point ν of f (with
ν ≥ µf), then there has to be a direction d∗ > 0 such that

∀i ∈ [n] : λi(d
∗) = λj(d

∗).

Definition 6.4.4.
The standard simplex of dimension k is defined by

∆k :=
{
d ∈ [0, 1]n |

∑
i∈[k+1]

di = 1
}

Given k + 1 points v(1), . . . ,v(k+1) in Rk+1 in general position, they define
the k-dimensional simplex

∆(v(1), . . . ,v(k+1)) :=
{ ∑
i∈[k+1]

di · v(i) | d ∈ ∆k

}
.

A simplicial subdivision of a k-dimensional simplex S is a partition of S into
smaller k-dimensional simplices, called cells, such that any two cells are either
disjoint or their intersection itself is a simplex of dimension ≤ k. �

2For this to see, assume that A(i) has exactly one positive entry, w.l.o.g. A
(i)
1,1 > 0.

Then (A(i)Jf |∗µf )1,j > 0 for all j ∈ [n], and finally Ã
(i)
j,k > 0 for all j, k ∈ [n].
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Obviously, it suffices to consider d ∈ ∆n−1 as directions in which a second
nonnegative fixed point might be found. It is therefore sufficient to show
that there is a point d∗ ∈ Sn−1 such that

∀i, j ∈ [n] : λi(d
∗) = λj(d

∗).

For this, we will use Sperner’s lemma.

Lemma 6.4.5 (Sperner’s lemma).
Let v(1), . . . ,v(k+1) ∈ Rk+1 be some points in general position, and V the ver-
tices of some subdivision S of ∆(v(1), . . . ,v(k+1)). Further assume that every
vertex v ∈ V is painted in some color from [k + 1] with the restriction that
(i) the corners {v(1), . . . ,v(k+1)} are all colored differently, and (ii) vertices
v located in the subsimplex ∆(v(i1), . . . ,v(il)) (for {i1, . . . , il} ⊆ [k + 1]) are
painted only in the colors from {i1, . . . , il}. Then there is a cell of S whose
vertices have all different colors. �

We use Sperner’s lemma as follows: as all functions λi are continuous on
∆n−1, and ∆n−1 is compact in Rn, we find for any given ε > 0 a δε > 0 such
that for every two d,d′ ∈ ∆n−1 with ‖d−d′‖2 < δε we have |λi(d)−λi(d′)| <
ε. Further, we can find for every such δε a subdivision of ∆n−1 such that every
cell fits into an open ball of diameter δε, e.g. by repeatedly splitting edges
into half. Every vertex d of such a subdivision we assign a color c(d) ∈ [n]
such that λc(d)(d) ≥ λi(d) for all i ∈ [n]. That is the ray in the direction
d hits the quadric [q̃c = 0] the latest. One easily checks that this coloring
satisfies the requirement of Sperner’s lemma. Sperner’s lemma now tells us
that there is a cell of such a subdivision whose vertices all have different
color, i.e., for every vertex of such a cell another quadric is hit the latest.
As all functions λi only vary by ε on such a cell, we then can show that
by letting ε go to 0, the vertices of such a cell converge to a point d∗ with
λi(d

∗) = λj(d
∗) for all i, j ∈ [n].

We now give a formal proof.

Theorem 6.4.6.
Let φ1, . . . , φn : Rn → R be n continuous functions with φ(d) > 0 for all
d ∈ ∆n−1. Set µi(d) := di

φi(d)
. Then there is some d∗ ∈ ∆n−1 such that

µi(d
∗) = µj(d

∗) for all i, j ∈ [n]. In particular, we have d∗ � 0. �

Proof. If n = 1, we have d∗ = 1. Thus assume that n > 1. As µi is the composition
of continuous functions, and φi(d) > 0 for all d ∈ ∆n−1, µi is continuous on ∆n−1. In
particular, ∆n−1 is compact, so µi is uniformly continuous on ∆n−1. We therefore find

for every ε > 0 a δ
(i)
ε such that for all d,d′ ∈ ∆n−1 with ‖d − d′‖2 < δ

(i)
ε we have∣∣µi(d)− µi(d′)

∣∣ < ε. Set δε := min{δ(1)
ε , . . . , δ

(n)
ε }.
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Choose now some subdivision of ∆n−1 such that every cell fits into an open ball of diameter
δε, and let V ⊆ ∆n−1 denote the set of vertices of the chosen subdivision. We assign every
d ∈ V the color c(d) defined by

c(d) := min{k ∈ [n] | ∀i ∈ [n] : µk(d) ≥ µi(d)}.

Let d(i) denote the corner of ∆n−1 with d
(i)
i = 1. In particular ∆n−1 = ∆(d(1), . . . ,d(n)).

We then have µi(d
(i)) > 0, and for all j 6= i we have µj(d

(i)) = 0. Thus, all cor-
ners of the subdivision are colored differently. Similarly, we have µj(d) = 0 for all

d ∈ ∆(d(i1), . . . ,d(il)), if j 6∈ {i1, . . . , il} (with {i1, . . . , il} ⊆ [n]). By Sperner’s lemma
we therefore find a cell of the subdivision whose vertices are all colored differently. Let
{v(1), . . . ,v(n)} be the vertices of such a cell. We may assume that c(v(i)) = i.

As we have chosen the subdivision in such a way that the cell ∆(v(1), . . . ,v(n)) fits into an
open ball of diameter δε, we have for all v,v′ ∈ ∆(v(1), . . . ,v(n)) that |µi(v)−µi(v′)| < ε,
in particular

|µi(v(i))− µi(v(j))| < ε for all i, j ∈ [n].

From this it follows that

µj(v
(i)) ≥ µj(v(j))− ε for all i, j ∈ [n].

Consider now two vertices v(i) and v(j) (with i 6= j). We then have

µi(v
(i)) ≥ µj(v(i)), resp. µj(v

(j)) ≥ µi(v(j))

by Sperner’s lemma. Combining this with the previous inequality, we obtain

µi(v
(i)) ≥ µj(v(i)) ≥ µj(v(j))− ε.

As the same holds true for i and j interchanged, we get

µi(v
(i)) ≥ µj(v(i)) ≥ µi(v(i))− 2ε.

By continuity of the µi, we therefore get that in the limit, i.e., ε→ 0, we find a d∗ ∈ ∆n−1

with µi(d
∗) = µj(d

∗) for all i, j ∈ [n].

As d∗ 6= 0, we have µi(d
∗) > 0 for at least one i ∈ [n] and, thus, for all i ∈ [n] implying

that d∗ � 0.

For the existence of a second nonnegative fixed point in the case that f is
strongly-connected (but not necessarily f̃), we proceed as already sketched
in Example 2.

Theorem 6.4.7.
Every clean, feasible, strongly-connected system f(X) with Jf |µf−Id invert-
ible, and f quadratic in at least one component, has a second nonnegative
fixed point ν with ν � µf . �
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Proof. We first move from f to f̃ . Let {Xi1 , . . . , Xik} be the set of variables with

f̃ il 6= 0. Set the remaining variables to 0. As we assume that f is quadratic in at least
one component, we have k ≥ 1.

Apply now Theorem 6.4.6 to the functions φl := f̃ il for l ∈ [k]. This yields a direction
d∗ ∈ ∆k−1. We lift d∗ to Rn by means of the vector r with ril := d∗l for l ∈ [k], and
rj := 0 for j 6∈ {i1, . . . , ik}. Then

f̃(λi1(d∗) · r) = λi1(d∗)rj for all j ∈ [n].

Finally, set
ν := µf + Jf |∗µf · (λi(d

∗)r).

By construction we have f(ν) = ν. As r > 0, and Jf |∗µf � 0, it follows ν � µf .



Chapter 7

Conclusions

We discuss the main results obtained in the preceding chapters and possible
future work.

7.1 Contribution

Our main results in Chapter 3 were the generalization of Newton’s method
to ω-continuous semirings and the characterization of the Newton approxi-
mants by means of derivation trees: we introduced the notion of dimension
of a tree and obtained the result that the k-th Newton approximants exactly
corresponds to the yields of all trees of dimension at most k. We showed
that the generalized Newton’s method allows for a better approximation of
the least fixed point of a system of power-series than the classical Kleene
fixed point iteration. In particular, we showed that Newton’s method al-
ways converges to the least fixed point after a number of steps linear in the
number of variables if addition is idempotent and multiplication is commu-
tative. Note that even in this more restrictive case the Kleene sequence is
not guaranteed to reach the least fixed point. We further lifted this result to
the more general setting of commutative Kleene algebras, thereby identifying
the method described by Hopkins and Kozen in [HK99] as Newton’s method
and improving their exponential upper bound on the number of iterations.

We also studied the connection between Newton’s method and languages of
finite-index, the latter a long-standing concept of formal language theory dat-
ing back to 1967 [Ynt67]. Here we obtained the result that for context-free
languages the i-th Newton approximant corresponds to the index-i + 1 ap-
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proximation implying that Newton’s method converges on idempotent semi-
rings if the considered system of power series represents a context-free gram-
mar of finite index. As on general (commutative) ω-continuous semirings
Newton’s method is not guaranteed to reach the least fixed point in a finite
number of steps, e.g. consider the real semiring, we therefore obtained a first
classification of when Newton’s method can be used to calculate the least
fixed point.

In Chapter 4 we studied in more detail the proof concept underlying our re-
sult on the convergence of Newton’s method on commutative and idempotent
semirings. Using the connection between approximants and derivation trees,
we identified three classes of semirings which allow for an even faster calcu-
lation of the least fixed point, namely star-distributive, lossy and 1-bounded
semirings. In the case of star-distributive semirings we showed that we can
obtain from any polynomial system a linear system having the same least
fixed point, thus reducing the problem of solving a nonlinear system to the
problem of solving a linear one. Note that our result on Newton’s method
on commutative and idempotent semirings basically says that one can obtain
the least fixed point of nonlinear system by solving a linear number of linear
systems. In this sense, star-distributive semirings allow for an even faster cal-
culation of the least fixed point. We applied our result on star-distributive
semirings to the problem of the throughput of a procedural program and
obtained a speed up of the algorithm presented in [CCFR07].
In the case of lossy semirings we showed that for every strongly connected
system the same construction as in the case of star-distributive semirings
yields a linear system preserving the least fixed point. We also showed how
this then allows to calculate the least fixed point of arbitrary nonlinear sys-
tems. We therefore obtained a more general restatement of the result by
Courcelle [Cou91] that the downward-closure of a context-free language is
regular.
Finally, we considered 1-bounded semirings in Chapter 4 and showed that
on these already the Kleene sequence reaches the least fixed point after a
number of iterations given by the number of variables considered.
In Chapter 5 we studied totally ordered semirings motivated by our results
on star-distributive semirings. Assuming that addition is idempotent, addi-
tion becomes the maximum w.r.t. the natural order on such semirings, and it
is natural to study min-max-systems, i.e., polynomial systems not only using
maximum as addition, but also minimum as a second kind of addition. From
our result on star-distributive semirings, we immediately obtained the result
that on totally ordered star-distributive semirings the least fixed point of a
min-max-system exists and can be represented by regular expressions.
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In the second part of Chapter 5 we considered strategy iteration, a well-
known approach for solving min-max-systems. Motivated by existing ap-
plications of strategy iteration to infinite two-person games (parity games,
mean-payoff games) [VJ00, BSV04] and interval analysis [GS08] we intro-
duced si-semirings, a class of semirings general enough to encompass all these
special cases, and showed that the algorithm by Gawlitza and Seidl [GS08]
can be generalized to this class. We further extended their approach to
nondeterministic strategies and showed that required approximations can be
calculated by means of a linear number of Kleene fixed point iterations. We
then explicitly studied linear min-max-systems and showed that the use of
nondeterministic strategies allows for an improved bound on the number of
strategies considered. We then instantiated our algorithm explicitly to parity
games in order to exemplify the results obtain in this chapter.

In Chapter 6 we studied polynomial systems on the nonnegative reals in more
detail. In the first part, we showed that the visually motivated method of
approximation by means of tangents indeed also converges to the least fixed
point and that it does so at least as fast as Newton’s method. In the second
part of Chapter 6 we turned to the questions of the existence of a second
fixed point, a question arising from the study of multi-type Galton-Watson
processes.

7.2 Open Problems

We discuss several open problems we deem worthwhile to study in more detail
in future work.

We have seen that Newton’s method converges in a finite number of steps
on commutative and idempotent ω-continuous semirings. Idempotence in
particular can be described by adding the axiom 1 + 1 = 1. A natural
extension is to consider semirings where the equation k = k + 1 holds for
some k ∈ N (cf. [Ési08]) assuming the canonical embedding of N into the
semiring. It should not be too hard to show that Newton’s method also
converges on commutative ω-continuous semirings with this generalized form
of idempotence, but it remains future work to check the proofs in detail.

As already stated in Section 3.4.3 the question arises if there is a purely
equational proof of the fact that Newton’s method converges in a linear
number of steps to the least fixed point on commutative and idempotent
semirings. It was shown by Aceto, Ésik and Ingólfsdóttir in [AEI01] that the
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convergence can be shown in this way, but the question on the number of
iterations remains open.

We also consider the setting where only subdistributivity holds, but not
distributivity. This setting was motivated by static analyses which are not
distributive. We showed that both the Kleene and the Newton sequence
converge to a safe overapproximation of the MOP, i.e., the sum of all values
of all terminating runs where the limit of the Kleene sequence is always less
than or equal to the limit of the Newton sequence. It remains to analyze
when Kleene and Newton coincide in the subdistributive setting.

Another open question is the generalization of the results given regarding
semirings if one replaces multiplication by a family of operations of varying
arity. For example in [Knu77] the following problem is considered:

Example 7.2.1. Let F = {g1, . . . , gr} be a family of functions from (R≥0 ∪ {∞})ki →
R≥0 ∪{∞} with ki ∈ N for i ∈ {1, . . . , r}. Every function g ∈ F (of arity k) is assumed to
satisfy:

g(x1, . . . , xk) ≥ max{x1, . . . , xn} for all x1, . . . , xk ∈ R≥0 ∪ {∞}.

Assume now we are given a context-free grammar G with variables X and constants
F ∪ {(, )} such that every production rule is of the form

X → g(X1, . . . , Xk)

with g ∈ F , k the arity of g, and X1, . . . , Xk ∈ X .

Given an axiom X0, every word of the represented language LX0
(G) naturally defines a

value in R≥0 ∪ {∞} by means of evaluation. Knuth is then interested in the infimum of
all the values represented by L(G).

The same argument as in the case of 1-bounded semirings immediately shows that it
suffices to consider only these words which possess a derivation tree of height at most n:
For every tree of height at least n+ 1 we can again find a pump tree representing a unary
function f(x) satisfying f(x) ≥ x. See also the proof of Lemma 5.3.12 where we have used
a similar argument for trees whose nodes where labeled not only by monomials, but by
polynomials w.r.t. t as semiring addition. �

In particular, in the setting of strategy iteration this generalization might be
worthwhile to study as this would allow to encompass results of [EGKS08].
There strategy iteration was applied to min-max-systems where multiplica-
tion was replaced by the familiy of polynomials with positive coefficients.
Regarding our results on strategy iteration it also remains to study the role
of commutativity, and if locally optimal strategy iteration also allows to
prove a better upper bound on the number iterations in the case of nonlinear
min-max-systems.



Appendix A

Missing Proofs of Chapter 3

A.1 Proofs of Section 3.2

To avoid typographical clutter in the following proofs, we use the following
notation. Given some class of objects (e.g. derivation trees t) and a predicate
P (t), we write ∑

t

Y(t) : P (t)

instead of ∑
t such that P (t) holds

Y(t) .

Proposition 3.2.5.(
κ(i)
)
X

= Y(Hi
X), i.e., the X-component of the i-th Kleene approximant κ(i)

is equal to the yield of Hi
X . �

Proof. By induction on i. The base case i = 0 is easy. Induction step (i ≥ 0):(
κ(i+1)

)
X

= fX(κ(i))

=
∑
j∈J

mX,j(κ
(i))

=
∑
j∈J

y :

{
mX,j = a1X1 · · ·Xkak+1

y = a1κ
(i)
X1
· · ·κ(i)

Xk
ak+1
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by induction:

=
∑
j∈J

y :

{
mX,j = a1X1 · · ·Xkak+1

y = a1 Y(HiX1
) · · ·Y(HiXk)ak+1

=
∑
j∈J

t1,...,tk

y :

 mX,j = a1X1 · · ·Xkak+1

t1, . . . , tk trees with h(tr) ≤ i, λv(tr) = Xr (1 ≤ r ≤ k)
y = a1 Y(t1) · · ·Y(tk)ak+1

=
∑
j∈J,t

Y(t) : t is a tree with h(t) ≤ i+ 1, λ(t) = (X, j)

= Y(HiX)

The following definition of fine dimension is analogous to Definition 3.2.9,
but adds a second component, which measures the length of the path from
the root to the lowest node with the same dimension as the root:

Definition A.1.1 (fine dimension).
The fine dimension dl(t) = (d(t), l(t)) of a tree t is inductively defined as
follows:

(1) If t has no children, then dl(t) = (0, 0).

(2) If t has exactly one child t1, then dl(t) = (d(t1), l(t1) + 1).

(3) If t has at least two children, let t1, t2 be two distinct children of t
such that d(t1) ≥ d(t2) and d(t2) ≥ d(t′) for every child t′ 6= t1. Let
d1 = d(t1) and d2 = d(t2). Then

dl(t) =

{
(d1 + 1, 0) if d1 = d2

(d1, l(t1) + 1) if d1 > d2.
�

Remark A.1.2.
Notice that, by Definition 3.2.12, a tree t is proper if and only if l(t) = 0. So
we have:

Y(P i
X) =

∑
t

Y(t) : t tree with λv(t) = X, dl(t) = (i, 0). �

Now we can prove the remaining lemmata from Section 3.2.

Lemma 3.2.14.
For every variable X ∈ X and every i ≥ 0: τ

(i)
X = Y(DiX). �
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Proof. By induction on i. Induction base (i = 0):

τ
(0)
X = fX(0) =

∑
t

Y(t) : λv(t) = X,h(t) = 0

=
∑
t

Y(t) : λv(t) = X, d(t) = 0

= Y(D0
X)

Induction step (i+ 1 > 0):

We need to show that Df |∗
τ (i)(δ

(i)) equals exactly the yield of all trees of dimension i+ 1,
i.e., that for all X ∈ X(

Df |∗τ (i)(δ
(i))
)
X

=
∑
t

Y(t) : λv(t) = X, d(t) = i+ 1 .

We prove the following stronger claim by induction on p:(
Df |p

τ (i)(δ
(i))
)
X

=
∑
t

Y(t) : λv(t) = X, dl(t) = (i+ 1, p)

The claim holds for p = 0 by Remark A.1.2. For the induction step, let p ≥ 0. Then we
have for all X ∈ X :(

Df |p+1
τ (i) (δ(i))

)
X

=
(
Df |τ (i) ◦ Df |p

τ (i)(δ
(i))
)
X

= DfX |τ (i) ◦ Df |p
τ (i)(δ

(i))

Define the vector Ỹ by Ỹ X0
=
∑
t Y(t) : λv(t) = X0, dl(t) = (i+1, p). Then, by induction

hypothesis (on p), above expression is equal to

= DfX |τ (i)(Ỹ )

=
∑
j∈J

DmX,j |τ (i)(Ỹ ) : mX,j = a1X1 · · · akXkak+1

=
∑
j∈J,r

y :


mX,j = a1X1 · · · akXkak+1

1 ≤ r ≤ k
y = a1τ

(i)
X1
· · · arỸ Xrar+1τ

(i)
Xr+1

· · · akτ (i)
Xk
ak+1

(by induction on i) =
∑
j∈J,r,
t1,...,tk

y :



mX,j = a1X1 · · · akXkak+1

1 ≤ r ≤ k
t1, . . . , tk trees with λv(ts) = Xs (1 ≤ s ≤ k)

dl(tr) = (i+ 1, p),
d(ts) ≤ i (1 ≤ s ≤ k, s 6= r)

y = a1 Y(t1) · · · ar Y(tr) · · · ak Y(tk)ak+1

=
∑
j∈J,t

Y(t) : t tree with λ(t) = (X, j), dl(t) = (i+ 1, p+ 1)

=
∑
t

Y(t) : t tree with λv(t) = X, dl(t) = (i+ 1, p+ 1)
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Lemma 3.2.15.
The sequence (τ (i))i∈N is a Newton sequence as defined in Definition 3.1.9,
i.e., the δ(i) of Definition 3.2.12 satisfy f(τ (i)) = τ (i) + δ(i). �

Proof.

fX(τ (i)) =
∑
j∈J

mX,j(τ
(i))

=
∑
j∈J

y :

{
mX,j = a1X1 · · · akXkak+1

y = a1τ
(i)
X1
· · · akτ (i)

Xk
ak+1

(by Lemma 3.2.14)

=
∑
j∈J

t1,...,tk

y :

 mX,j = a1X1 · · · akXkak+1

t1, . . . , tk trees with λv(tr) = Xr, d(tr) ≤ i, (1 ≤ r ≤ k)
y = a1 Y(t1) · · · ak Y(tk)ak+1

=
∑
j∈J

t1,...,tk

y :


mX,j = a1X1 · · · akXkak+1

t1, . . . , tk trees with λv(tr) = Xr, d(tr) ≤ i, (1 ≤ r ≤ k)
such that at most one of the tr with d(tr) = i

y = a1 Y(t1) · · · ak Y(tk)ak+1

+
∑
j∈J

t1,...,tk

y :


mX,j = a1X1 · · · akXkak+1

t1, . . . , tk trees with λv(tr) = Xr, d(tr) ≤ i, (1 ≤ r ≤ k)
such that at least two of the tr with d(tr) = i

y = a1 Y(t1) · · · ak Y(tk)ak+1

=
∑
t

Y(t) : t tree with λv(t) = X, d(t) ≤ i

+
∑
t

Y(t) : t tree with λv(t) = X, dl(t) = (i+ 1, 0)

(by Lemma 3.2.14 resp. Remark A.1.2)

= τ
(i)
X + Y(P i+1

X )

= τ
(i)
X + δ

(i)
X

A.2 Proofs of Section 3.3.1

Theorem 3.3.4.
Let G = (X ,Σ, P,X0) be a context-free grammar in CNF and let (ν(i))i∈N be
the Newton sequence associated with G. Then

(
ν(i))X0 = Li+1(G) for every

i ≥ 0. �
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The proof of Theorem 3.3.4 follows from Theorem 3.2.11 and the following
two lemmata.

Lemma A.2.1.
Let G = (X ,Σ, P,X0) be a context-free grammar in CNF. Let w ∈ Σ∗ be
derivable from X by an index-i derivation. Then there is an X-tree t having
yield Y (t) = w and dimension d(t) < i. �

Proof. Let D be a derivation of w. One can associate a derivation tree t to D in the
obvious way. We show by induction on i and on the height of t that d(t) ≥ i implies
ind(D) > i, where ind(D) denotes the index of D. The base case i = 0 is trivial, because
any derivation has index at least 1. The other base case i = 1 implies that t has two
children, hence ind(D) ≥ 2. Let i > 1 and d(t) ≥ i. Then t has two children t1, t2. By
definition of dimension, either d(t1) ≥ i− 1 and d(t2) ≥ i− 1 or d(t1) ≥ i.

• In the first case, the very first step of D already produces two variables λv(t1) and
λv(t2). Since d(t1) ≥ 1 and d(t2) ≥ 1, neither of those two variables can be derived
to a terminal word immediately. So the most “economical” way to continue the
derivation is to finish the derivation of λv(t1) or λv(t2) before touching the other
variable. But, by induction on i, any subderivations of D that “flatten” t1 and t2
have indices at least i. Hence ind(D) > i.

• In the second case, any subderivation of D that “flattens” t1 has, by induction on
the height, index greater than i. So, D itself cannot have a smaller index.

Lemma A.2.2.
Let G = (X ,Σ, P,X0) be a context-free grammar. Let m be the largest
number of nonterminals in the right-hand sides of P . Let t be an X-tree
having yield Y(t) = w and dimension d(t) = i. Then there is a derivation
of w from X with index at most i · (m− 1) + 1. �

Proof. The sought derivation D can be constructed by “flattening” the derivation tree

t according to a certain strategy. The first step of D is λv(t) ⇒ λm(t). After that, the

strategy is to completely flatten each subtree of t in the order of increasing dimension. We

prove by induction on i and on the height of t that this yields ind(D) ≤ i · (m − 1) + 1.

The base case i = 0 is clear. Let i > 0 and t1, . . . , tk (k ≤ m) be the subtrees of t ordered

by increasing dimension. During the flattening of tj , at most m− 1 nonterminals, namely

λv(tj+1), . . . , λv(tk), stick around. The trees t1, . . . , tk−1 have dimension at most i−1. By

induction on i, they can be flattened to derivations with index at most (i−1) · (m−1)+1.

So, during the flattening of t1, . . . , tk−1 the index of D grows to at most (i− 1) · (m− 1) +

1 + (m− 1) = i · (m− 1) + 1. The tree tk has dimension at most i. By induction on the

height, tk can be flattened to a derivation with index at most i · (m− 1) + 1. During the

flattening of tk, no other nonterminals stick around. So, the index of D does not grow

over i · (m− 1) + 1.
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A.3 Redko’s Theorem and Commutative

Kleene Algebras

There is a number of inequivalent definitions of Kleene algebras. This in-
cludes C-algebras and Kleene algebras in the sense of Kozen the latter of
which we simply refer to as Kleene algebras.

Both definitions require an algebraic structure (K,+, ·, ∗, 0, 1) that is an
idempotent semiring under +, ·, 0, 1. In addition, different sets of axioms are
required.

A C-algebra [Con71] must satisfy the following axioms:

C11 (a+ b)∗ = (a∗b)∗a∗

C12 (ab)∗ = 1 + a(ba)∗b
C13 (a∗)∗ = a∗

C14.n a∗ = an∗a<n (n > 0).

A Kleene algebra [Koz91] on the other hand must satisfy the following ax-
ioms:

K1 1 + aa∗ ≤ a∗

K2 1 + a∗a ≤ a∗

K3 a+ bc ≤ c → b∗a ≤ c
K4 a+ cb ≤ c → ab∗ ≤ c,

where ≤ refers to the natural partial order on K.

It was shown in [Koz91] that the axioms of Kleene algebra are complete for
the algebra of regular languages. That means, if an equation α = β between
regular expressions holds under the canonical interpretation over the regular
languages, then it holds in any Kleene algebra. It is easy to see that equations
C11 – C14 hold under the canonical interpretation. Therefore any Kleene
algebra is a C-algebra.

The axioms of C-algebra are not complete, i.e., they are too weak to derive
some equation valid under the canonical interpretation [Con71]. However,
if two more axioms (C+1 and C+2, see below) describing commutativity
are added, the resulting system of axioms (defining commutative C-algebras)
becomes complete for the algebra of commutative regular languages. In other
words, if the Parikh images of languages L(α) and L(β) are equal, then
α = β can be proved using only the axioms of commutative C-algebras. The
additional axioms are:

C+1 ab = ba
C+2 a∗b∗ = (ab)∗(a∗ + b∗).
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The completeness of commutative C-algebras is called Redko’s theorem. Con-
way’s monograph [Con71] contains a proof of this theorem.

We want to show that the system of axioms of Kleene algebra plus the com-
mutativity axiom ab = ba (defining commutative Kleene algebras) is complete
for commutative regular languages as well. Appealing to Redko’s theorem,
we only have to show that equation C+2 is a theorem of commutative Kleene
algebra.

We use the identity a∗b∗ = (a+b)∗ which is a theorem of commutative Kleene
algebra [HK99]. Since (a+ b)∗ ≥ (ab)∗(a∗ + b∗) holds in any Kleene algebra,
we only need to show (a+ b)∗ ≤ (ab)∗(a∗ + b∗). With K3 it suffices to show

1 + (a+ b)(ab)∗(a∗ + b∗) ≤ (ab)∗(a∗ + b∗).

We show this inequality for each term of the sum at the left hand side.
For 1 it obviously holds. We also have a(ab)∗a∗ = (ab)∗aa∗ ≤ (ab)∗a∗ using
commutativity and K1. Similarly, a(ab)∗b∗ = (ab)∗ab∗ = (ab)∗a+(ab)∗abb∗ ≤
(ab)∗a+ (ab)∗b∗ ≤ (ab)∗(a∗+ b∗). Here we used that b∗ = 1 + bb∗ is a theorem
of Kleene algebra. The other inequalities follow symmetrically.
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Appendix B

Missing Proofs of Chapter 4

B.1 Proofs of Section 4.2

Theorem 4.2.3.
Let f be a system of polynomials over an io-semiring. For every variable X
of f we have Y(BX) = (µfB)X , i.e., the yield of the X-bamboos is equal to
the X-component of the least solution of the bamboo system. �

Proof. By definition, we have

fB(X) = f(0) +Df |fn(0)

(
X
)
.

Its Kleene sequence, thus, becomes

fB(0) = f(0)

f2
B(0) = f(0) +Df |fn(0)

(
f(0)

)
f3
B(0) = f(0) +Df |fn(0)

(
f(0)

)
+Df |fn(0)

(
Df |fn(0)

(
f(0)

))︸ ︷︷ ︸
=:Df |2

fn(0)

(
f(0)

)
...

fkB(0) = f(0) +Df |fn(0)

(
f(0)

)
+ . . .+Df |k−1

fn(0)

(
f(0)

)
.

As µfB = supfkB(0), we get

µfB =
∑
k∈N

Df |kfn(0)

(
f(0)

)
,

where Df |kfn(0) denotes the k-fold application of Df |fn(0). In particular, we have

Df |0fn(0)

(
f(0)

)
= f(0).
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Let B(h)
X be the set of X-bamboos (w.r.t. f) of height at most h. Similarly, BX denotes

the set of all bamboos of height at most h.

w-direction: We first prove that

Y(BX) w
(
µfB

)
X
.

It suffices to show (for h ≥ 0) that

Y(B(h+n−1)
X ) w

(
Df |hfn(0)

(
fn(0)

))
X

holds for all X ∈ X as this immediately implies

Y(BX) =
∑
h∈N Y(B(h+n−1)

X )

w
∑
h∈N

(
Df |hfn(0)

(
fn(0)

))
X

w
∑
h∈N

(
Df |hfn(0)

(
f(0)

))
X

=
(
µfB

)
X
.

We proceed by induction on h: For h = 0, we have B(n−1)
X = H(n−1)

X , and Y(H(n−1)
X ) =

fn(0)X (cf. prop. 3.2.5). Thus,

Y(B(n−1)
X ) = Y(H(n−1)

X ) = fn(0)X =
(
Df |0fn(0)

(
fn(0)

))
X

follows immediately.

Consider therefore
(
Df |h+1

fn(0)

(
fn(0)

))
X

for h ≥ 0, and let Y(B(h)) denote the vector

defined by Y(B(h))X := Y(B(h)
X ). We then have by induction on h that(

Df |h+1
fn(0)

(
fn(0)

))
X
v
(
Df |fn(0)

(
Y(B(h+n−1))

))
X

Assume that fX =
∑k
i=1mi where m1, . . . ,mk are monomials. As addition is idempotent,

we may assume these monomials are pairwise different. By definition, we have(
Df |fn(0)

(
Y(B(h+n−1))

))
X

= DfX |fn(0)

(
Y(B(h+n−1))

)
=

∑k
i=1 Dmi|fn(0)

(
Y(B(h+n−1))

)
.

If all monomials m1, . . . ,mk have degree 0, then DfX |v(a) = 0 for all v,a ∈ V . But this

also implies that B(h) = H(0)
X also holds for all h ≥ 1, hence, we may assume that there is

at least one monomial of degree at least one. Let m ∈ {m1, . . . ,mk} be such a monomial
with m = a1X1a2 . . . Xlal+1 (for some l ≥ 1). We then have

Dm|fn(0)

(
Y(B(h+n−1))

)
=
∑
Y ∈X

DYm|fn(0)

(
Y(B(h+n−1))

)
by definition. Consider a Y ∈ {X1, . . . , Xl}, i.e. a variable appearing in m (for the
remaining variables, the differential is again 0), and let posY (m) = {i | Xi = Y } be the
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set of “positions of Y in m”. We then may write

DYm|fn(0)

(
Y(B(h+n−1))

)
=

∑
p∈posY (m)

p−1∏
q=1

aq · fn(0)Xq

 · ap · Y(B(h+n−1))Xp ·

 l∏
q=p+1

aq · fn(0)Xq

 · al+1

=
∑

p∈posY (m)

p−1∏
q=1

aq · fn(0)Xq

 · ap · Y(B(h+n−1)
Xp

) ·

 l∏
q=p+1

aq · fn(0)Xq

 · al+1

=
∑

p∈posY (m)

p−1∏
q=1

aq · Y(H(n−1))Xq

 · ap · Y(B(h+n−1)
Xp

) ·

 l∏
q=p+1

aq · Y(H(n−1))Xq

 · al+1

=
∑

p∈posY (m)

p−1∏
q=1

aq · Y(H(n−1)
Xq

)

 · ap · Y(B(h+n−1)
Xp

) ·

 l∏
q=p+1

aq · Y(H(n−1)
Xq

)

 · al+1

=
∑

p∈posY (m)

p−1∏
q=1

aq ·
∑

t∈H(n−1)
Xq

Y(t)

 · ap ·
 ∑
t∈B(h+n−1)

Xp

Y(t)

 ·
 l∏
q=p+1

aq ·
∑

t∈H(n−1)
Xq

Y(t)

 · al+1

But this last sum is simply the yield of all X-bamboos t ∈ B(h+n)
X with λ2(t) = m having

height at least 1, and at most h + n. As for t ∈ B(h)
X we have λ2(t) ∈ {m1, . . . ,mk}, we

get by idempotent addition(
Df |fn(0)

(
Y(B(h+n−1))

))
X
v Y(B(h+n)

X ).

v-direction: We now turn to the proof of

Y(BX) v
(
µfB

)
X
.

As addition is idempotent, it suffices to show that

Y(t) v
(
µfB

)
X
.

We proceed by induction on the number of nodes in t. If t has just one node then
Y(t) v (f(0))X v

(
µfB

)
X

. For the induction step, t has children. So assume w.l.o.g.
that λ2(t) = a1X1 · · ·Xsas+1 for some s ≥ 1. Denote the children of t by t1, . . . , ts.
Furthermore we assume w.l.o.g. that the backbone of t goes through t1. Hence, t1 is itself
a bamboo having less nodes than t. By induction we have Y(t1) v

(
µfB

)
X1

. As t is a

bamboo, the other children t2, . . . , ts have a height of at most n− 1. It is easy to see (cf.
[EKL07a]) that this implies

Y(tr) v (fn(0))Xr for all 2 ≤ r ≤ s . (B.1)

Now we have:

Y(t) = a1 Y(t1) · · ·Y(ts)as+1 (def. of yield Y)

v a1

(
µfB

)
X1
a2 Y(t2) · · ·Y(ts)as+1 (by induction)

v a1

(
µfB

)
X1
a2(fn(0))X2

· · · (fn(0))Xsas+1 (Equation (B.1))

v DX1(a1X1 · · ·Xsas+1)|fn(0)

(
µfB

)
(def. of differentials)

v DX1fX |fn(0)

(
µfB

)
(t ∈ BX)

v DfX |fn(0)

(
µfB

)
(def. of differentials)

=
(
Df |fn(0)

(
µfB

))
X

(def. of differentials)

v
(
µfB

)
X
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B.2 Proofs of Section 4.3

Proposition 4.3.3.
In any star-distributive semiring, the following equations hold:

(1) a∗b∗ = a∗ + b∗.

(2) (ab∗)∗ = a∗ + ab∗. �

Proof.

(1) The equation a∗b∗ = (a + b)∗ holds in any commutative idempotent semiring. By
star-distributivity, (a+ b)∗ = a∗ + b∗.

(2) In any commutative io-semiring, we have (ab∗)∗ = 1 + aa∗b∗ (see e.g. [HK99]). By
(1), we have 1 + aa∗b∗ = 1 + aa∗ + ab∗ = a∗ + ab∗.

Theorem 4.3.4.
For any polynomial system f over a star-distributive semiring µf = µfB
holds. �

Proof. We will need the following notation: If t′ is a subtree of a derivation tree t, we
write t = t̂ · t′ where t̂ is the partial derivation tree obtained from t by removing t′. If, in
addition, t′ = t̂′ · t′′, and t′ and t′′ have the same variable-label. we say the decomposition
t = t̂ · t̂′ · t′′ is pumpable, because t̂ · (t̂′)i · t′′ is a valid tree for all i ≥ 0. We define

t̂ · (t̂′)∗ · t′′ = {t̂ · (t̂′)i · t′′ | i ≥ 0}. Notice that, due to commutativity of product, it

holds Y(t̂ · (t̂′)∗ · t′′) = Y(t̂) · Y(t̂′)∗ · Y(t′′). We call this yield the pumping yield of the

decomposition t = t̂ · t̂′ · t′′.

The proof is by derivation tree analysis. So it suffices to discharge the precondition of
Corollary 4.2.4. More precisely we need to show that, for any X-tree t, we have Y(t) v
Y(BX). If t does not have a pumpable decomposition, then t has a height of at most
n − 1, hence t ∈ BX and so Y(t) v Y(BX). It remains to show: if t has a pumpable
decomposition t = t̂ · t̂1 · t′1, then Y(t) v BX . In fact, we show Y(t̂ · (t̂1)∗ · t′1) v Y(BX),
which is stronger because Y(t) v Y(t̂ · (t̂1)∗ · t′1).

Denote by #(t) the number of nodes in a tree t. We assign to a pumpable decomposition
t = t̂ · t̂1 · t′1 a size by setting size(t = t̂ · t̂1 · t′1) = (#(t),#(t̂1 · t′1)). We define a total
order on sizes by setting (i, j) C (i′, j′) if either i < i′ or i = i′ and j < j′. We use this
order to prove by induction that for any size (i, j), if there is a pumpable decomposition
t = t̂ · t̂1 · t′1 of size (i, j), then Y(t̂ · (t̂1)∗ · t′1) v Y(BX).

The induction base is trivial because trees t with #(t) = 1 do not have a decomposition.
For the induction step, let t be an X-tree and let t = t̂ · t̂1 · t′1 be pumpable. Choose a
path p in t from the root to a leaf through t′1. If p is a valid stem of an X-bamboo, then
all trees in t̂ · (t̂1)∗ · t′1 are X-bamboos, so Y(t̂ · (t̂1)∗ · t′1) v BX . Hence, assume that p is
not a valid stem, i.e., there is some subtree of t, disjoint from p, with height at least n. So
this tree has a subtree t2 = t̂2 · t′2 such that t2 and t′2 have the same variable-label. We
distinguish two cases.
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(a) t2 is not a subtree of t̂1. Then t̂1 and t̂2 are disjunct and so there exists a ỹ such
that Y(t) = ỹ · Y(t̂1) · Y(t̂2). Then:

Y(t̂ · (t̂1)∗ · t′1) = ỹ · Y(t̂1)∗ · Y(t̂2)

v ỹ · Y(t̂1)∗ · Y(t̂2)∗ (def. of Kleene ∗)

= ỹ · Y(t̂1)∗ + ỹ · Y(t̂2)∗ (Prop. 4.3.3 (1))

The expression ỹ ·Y(t̂1)∗ equals the pumping yield of a decomposition of an X-tree
which is obtained from t by removing the substructure t̂2. Similarly, the expression
ỹ · Y(t̂2)∗ is equal to the pumping yield of a decomposition of an X-tree which is
obtained from t by removing the substructure t̂1. By induction on the size, both of
those pumping yields are v Y(BX).

(b) t2 is a subtree of t̂1. Then we can write t̂1 = ̂̂t1 · t̂2 · t′2. We have:

Y(t̂ · (t̂1)∗ · t′1) = Y(t̂) · Y( ̂̂t1 · t̂2 · t′2)∗ · Y(t′1)

= Y(t̂) ·
(
Y( ̂̂t1) · Y(t̂2) · Y(t′2)

)∗
· Y(t′1)

v Y(t̂) ·
(
Y( ̂̂t1) · Y(t̂2)∗ · Y(t′2)

)∗
· Y(t′1)

=

 Y(t̂) · Y( ̂̂t1) · Y(t̂2)∗ · Y(t′2) · Y(t′1) +

Y(t̂) ·
(
Y( ̂̂t1) · Y(t′2)

)∗
· Y(t′1)

 (Prop. 4.3.3 (2))

=

{
Y(t̂ · ( ̂̂t1 · t̂2∗ · t′2) · t′1) +

Y(t̂ · ( ̂̂t1 · t′2)∗ · t′1)

}

The first expression in this sum equals Y((t̂ · ̂̂t1 · t′1) · t̂2
∗ · t′2). This is the pumping

yield of the decomposition t = (t̂ · ̂̂t1 · t′1) · t̂2 · t′2. Since t2 = t̂2 · t′2 is a proper
subtree of t̂1 · t′1, it has fewer nodes than t̂1 · t′1. So this decomposition is smaller
(in the second component), i.e., by induction, the first expression in the above sum
is v Y(BX).

The second expression in the above sum equals the pumping yield of the decompo-
sition of an X-tree, which is obtained from t by removing the substructure t̂2. By
induction, this pumping yield is v Y(BX).

B.3 Proofs of Section 4.4

Lemma 4.4.3.
For every clean g ∈ S[X ]X we can construct in linear time a system f ∈
S[X ′]X ′ in quadratic normal form such that X ⊆ X ′ and µgX = µfX for all
X ∈ X . �

Proof. We first transform g into Chomsky normal-form, which gives us a system g′ over
the same semiring. As the transformation into Chomsky normal-form introduces new
variables, g′ is given in a super set X ′ of X with µg′X = µgX for all X ∈ X . Next, as g
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is clean, we can ensure that g′ is clean, too. We therefore may set g′′ := g′ + 1 without
changing the least solution. Hence, every polynomial of g′′X has the form

c(X) +
∑

Y,Z∈X ′
a

(X)
Y,Z · Y · Z with 1 v c and aY,Z ∈ {0, 1}.

Finally, as 1 v µg′′ we have

µg′′X = g′′X(µg′′X)

= c(X) +
∑

Y,Z∈X ′
a

(X)
Y,Z · µg

′′
Y · µg′′Z

= c(X) +
∑

Y,Z∈X ′
a

(X)
Y,Z · (1 + µg′′Y ) · (1 + µg′′Z)

= c(X) + 1 +
∑

Y,Z∈X ′
a

(X)
Y,Z · µg

′′
Y · µg′′Z +

∑
Y ∈X ′

(∑
Z∈X ′

a
(X)
Y,Z + a

(X)
Z,Y

)
· µg′′Y

= g′′X(µg′′X) + 1 +
∑
Y ∈X ′

(∑
Z∈X ′

a
(X)
Y,Z + a

(X)
Z,Y

)
· µg′′Y .

We now define f by setting for all X ∈ X ′

fX := g′′X + 1 +
∑
Y ∈X ′

(∑
Z∈X ′

a
(X)
Y,Z + a

(X)
Z,Y

)
· Y.

We then have g′′ v f , and, thus, µg′′ v µf , but also f(µg′′) = µg′′, i.e. µg′′ = µf .

For the proof of Theorem 4.4.4, we first define partial derivation trees. Intu-
itively, they are the result of removing exactly one subtree from a derivation
tree, leaving a “dangling pointer”.

Definition B.3.1.
Let f ∈ S[X ]X . Let t be some X-tree for X ∈ X . Further, let Y ∈ X be
some variable such that t has at least one leaf s with λv(s) = Y . By erasing
exactly one such leaf s from t, we obtain an XY -tree. We write TX,Y for the
set of all XY -trees.

The set BX,Y is defined similarly. A tree t′ ∈ BX,Y results from a tree t ∈ BX
by removing exactly one such leaf s having the following properties: (i)
λv(s) = Y and (ii) the path from t′ to s has maximal length. �
Example B.3.2. Consider the X-tree depicted on the left. By deleting the leaf labeled
by (Y, d), we obtain the XY -tree depicted in the middle, where we represent the missing
leaf/subtree by . Similarly, we obtain the XX-tree shown on the right by deleting the
leaf labeled by (X, g).
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(X, aY bZc)

(Y, d)
(Z, eXf)

(X, g)

(X, aY bZc)

(Z, eXf)

(X, g)

(X, aY bZc)

(Y, d)
(Z, eXf)

(X, g)

Note that we can replace in the XY -tree by any Y -tree in order to obtain a valid X-tree,
again. In other words, the yield of an XY -tree is a linear monomial in Y .

We now can state our main theorem.

Theorem 4.4.4.
For a finite set of variables X (n := |X |), let S be a lossy semiring, and
f ∈ S[X ]X a clean and strongly-connected system of polynomials in normal-
form. We then have µf = µfB. �

Proof. We again show that we can transform any X-tree t w.r.t. f into a tree t̂ contained
in BX with Y(t) v Y(t̂). We proceed by induction on the number N of nodes of t. If N = 1,
then t has height 0. By definition, we have t ∈ BX , so we are done.

Therefore assume N > 1. As f is in normal form, we either have λm(t) = blY br or
λm(t) = Y Z for some Y,Z ∈ X , and bl, br ∈ S \ {0}. If t is labeled by λm(t) = blY br,

(X, blY br)
t

t1

then t has exactly one child t1, which immediately can be replaced by some tree t̂1 in BY
with Y(t1) = Y(t̂1) because of induction. This gives us the tree t̂

(X, blY br)
t̂

t̂1

and Y(t̂) = bl Y(t̂1)br = bl Y(t1)br = Y(t).

Hence, assume that λm(t) = Y Z, i.e. t has two children t1, t2.
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(X,Y Z)
t

t1 t2

Descending into t1 by always taking the left most child, we end up at the left most leaf s
of t. We denote by t1,1 to t1,k the “right” children of the nodes located on the path from
t1 to s for some k ∈ N. Let r then be the father of s with λv(s) = V , and λm(s) = a ∈ S.
We assume that λm(r) = VW for some W ∈ X

(X,Y Z)
t

t1 t2

r(U, V W )

s(V, a)

t1,1

t1,k

As f is in normal form, and VW is a monomial of fU , there exists also a monomial clWcr
appearing in fU for some cl, cr ∈ S \ {0}. We first remove from t1 the leaf s, and relabel
the node r by setting λm(r) := clWcr. This gives us the tree t′1 with Y(t1) v a · Y(t′1), as
1 v cl, cr:

t′1

r t1,1

t1,k

(U, clWcr)

As Y Z is a monomial of fX we can construct from the trees t′1 and t2 the tree t′′:

(X,Y Z)

(U, clWcr)

t′′

t′1

t1,k

t2

t1,1
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Now, as f is strongly-connected and in normal form, we find an Y -tree tY of height at
most n − 1 which has (V, a) as its single leaf, such that a v Y(tY ); similarly, we find a
ZX-tree tZX of height at most n−1 having as its single leaf; the “yield” of tZX is some
monomial dlXdr for some dl, dr ∈ S \ {0}. Using these, we construct the following tree t′

with λv(t
′) = X, and λm(t′) = Y Z. As left child of t′, we take the Y -tree tY , whereas we

take tZX as the right child, giving us:

t′

tY tZX

(X,Y Z)

(V, a)

We complete this partial derivation tree to a derivation tree by replacing with the tree
t′′:

(X,Y Z)

(V, a)

t′

tY tZX

(X,Y Z)

(U, clWcr)

t′′

t′1

t1,k

t2

t1,1

We now have

Y(t′) = Y(tY ) · Y(tZX) = Y(tY ) · dl · Y(t′′) · dr
w a · dl · Y(t′′) · dr
w a · Y(t′1) · Y(t2)

w Y(t1) · Y(t2)

= Y(t).

By construction of t′, the left child is a Y -tree of height at most n − 1, while every node
from tZX to t′′ has exactly one child. Hence, only the subtree t′′ might not have the
required form. But as t′′ has one node less than t, we find by induction on the number of
nodes a tree t̂′′ ∈ BX with Y(t′′) v Y(t̂′′). Replacing in t′ the subtree t′′ by this tree t̂′′,
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we then obtain the tree t̂ with t̂ ∈ BX and Y(t̂) w Y(t′) w Y(t). This ends the case that
λm(r) = VW .

Assume therefore that λm(r) = clV cr for some cl, cr ∈ S \ {0}, i.e.

t1

r t1,1

s

(U, clV cr)

(V, a)

We proceed similarly to the previous case, but we define t′1 as follows: again, we remove
the leaf s from t1, but as r has s as its only child, we now relabel r by λm(r) := fU (0).
As f is clean, we have fU (0) w 1. This gives us:

t′1

r t1,1
(U,fU (0))

and

t′

tY tZX

t′′

t′1 t2

r t1,1

(X,Y Z)

(V, a) (X,Y Z)

(U,fU (0))

Again, we can find a t̂′′ ∈ BX with Y(t′′) v Y(t̂′′) as t′′ has one node less than t, and the

induction is complete.

B.4 Proofs of Section 4.5

Theorem 4.5.2.
µf = fn(0) holds for polynomial systems over 1-bounded semirings. �
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Proof. We reuse the notation from the proof of Theorem 4.3.4: If t2 is a subtree of a
derivation tree t, we write t = t1 · t2 where t1 is the partial derivation tree obtained from
t by removing t2.

Recall that, by Proposition 3.2.5, (fn(0))X = Y(H(n−1)
X ), where H(n−1)

X contains all X-

trees of height at most n− 1. We proceed by derivation tree analysis, i.e., by discharging

the precondition of Proposition 4.1.2. So it suffices to show that for any X-tree t there

is a tree t′ of height at most n − 1 with Y(t) v Y(t′). We proceed by induction on the

number of nodes in t. For the induction base, t has just one node, so t ∈ H(0)
X . For the

induction step w.l.o.g. let t be an X-tree with a height of at least n. Then there is a

decomposition t = t1 · t2 · t3 with λ1(t2) = λ1(t3). We have Y(t) = y1y2y3y4y5 where

Y(t1) = y1y5, Y(t2) = y2y4 and Y(t3) = y3. Let t′ = t1 · t3. Notice that t′ is a valid

X-tree as λ1(t2) = λ1(t3). We have Y(t′) = y1y3y5 and, since y1y2y3y4y5 = Y(t), we have

Y(t) v Y(t′). As t′ has fewer nodes than t, there is, by induction hypothesis, an X-tree t′′

of height at most n− 1 such that Y(t′) v Y(t′′). So we get Y(t) v Y(t′) v Y(t′′).
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Appendix C

Missing Proofs of Chapter 5

C.1 Proofs of Section 5.2

Proposition 5.2.2.
Let 〈S,t, ·,⊥, 1〉 be a totally ordered cio-semiring. Define a u b as stated
above. Let a, b, c ∈ S and (ai)i∈N an ω-chain. We then have:

(1) t and u distribute:

a u (b t c) = (a u b) t (a u c), and a t (b u c) = (a t b) u (a t c).

(2) · distributes over u: a · (b u c) = (a · b) u (a · c).

(3) u is ω-continuous (w.r.t. v):

c u

(⊔
i∈N

ai

)
=
⊔
i∈N

(c u ai).

(4) u is monotone: b v c⇒ a u b v a u c. �

Proof. (1) Choose any a, b, c ∈ S. We may assume that b v c, as v is total; otherwise
swap b and c. Then either a v b or b v a v c or c v a has to hold.

Assume a v b v c:

a u (b t c) = a u c = a
(a u b) t (a u c) = a t a = a

a t (b u c) = a t b = b
(a t b) u (a t c) = b u c = b
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Assume b v a v c.
a u (b t c) = a u c = a
(a u b) t (a u c) = b t a = a

a t (b u c) = a t b = a
(a t b) u (a t c) = a u c = a

Assume b v c v a:

a u (b t c) = a u c = c
(a u b) t (a u c) = b t c = c

a t (b u c) = a t b = a
(a t b) u (a t c) = a u a = a

(2) We may assume that b v c. Then a(bt c) = ac and a(bu c) = ab. By distributivity
we also have a(bt c) = abtac. So ac = abtac w ab and, thus, abuac = ab follows.

(3) Assume c is an upper bound of (ai)i∈N. We then obviously have

c u
⊔
i∈N

ai =
⊔
i∈N

ai and
⊔
i∈N

(c u ai) =
⊔
i∈N

.

Therefore, assume there is some k ∈ N with c v ak. We then have c v ak v
⊔
i∈N ai,

i.e., cu
⊔
i∈N ai = c. On the other hand, c is always an upper bound on (cu ai)i∈N.

Thus, c has to be the maximum of (c u ai)i∈N.

(4) As u is ω-continuous in both arguments, it is also monotone.

C.2 Proofs of Section 5.3

Proposition 5.3.3.
Every si-semiring 〈S, ·,v, 1,⊥,>〉 has the following properties:

(1) · distributes both over t and u:

a · (b t c) = (a · b) t (a · c) and a · (b u c) = (a · b) u (a · c).

(2) t and u distribute:

a t (b u c) = (a t b) u (a t c) and a u (b t c) = (a u b) t (a u c).

(3) (1 @ a ∧ a · x v x)⇒ x ∈ {⊥,>}

(4) x @ a · x⇒ (x ∈ S \ {⊥,>} ∧ 1 @ a). �
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Proof. (1) W.l.o.g. we may assume that b v c. We then have

a · (b t c) = a · c and a · (b u c) = a · b.

By monotonicity of · we also have

b v c⇒ a · b v a · c,

which implies that

(a · b) t (a · c) = a · c and (a · b) u (a · c) = a · b.

(2) See the proof of Proposition 5.2.2(2).

(3) Assume x ∈ S \ {⊥,>}. As we require that strict inequations are preserved when
multiplied by x we have:

1 @ a⇒ x @ a · x.

This yields the contradiction x @ a · x v x.

(4) If x = ⊥, then we have x = ⊥ = a · x which contradicts our assumption that
a · x A x. Similarly, if x = >, then x = > w a · x. Again, this contradicts our
assumption that x @ a · x. So, x 6∈ {⊥,>}.
Finally, assume that a v 1. Then a·x v x and, hence, the contradiction x @ a·x v x
arises.
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