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Abstract. We consider equation systems of the form X1 = f1(X1, . . . , Xn), . . . , Xn =
fn(X1, . . . , Xn) where f1, . . . , fn are polynomials with positive real coefficients. In vector form
we denote such an equation system by X = f(X) and call f a system of positive polynomials,
short SPP. Equation systems of this kind appear naturally in the analysis of stochastic models like
stochastic context-free grammars (with numerous applications to natural language processing and
computational biology), probabilistic programs with procedures, web-surfing models with back but-
tons, and branching processes. The least nonnegative solution µf of an SPP equation X = f(X)
is of central interest for these models. Etessami and Yannakakis [14] have suggested a particular
version of Newton’s method to approximate µf.

We extend a result of Etessami and Yannakakis and show that Newton’s method starting at 0

always converges to µf. We obtain lower bounds on the convergence speed of Newton’s method and
prove that for so-called strongly connected SPPs there exists a threshold kf such that for every i ≥ 0
the (kf + i)-th iteration of Newton’s method has at least i valid bits of µf. We also provide concrete
bounds on kf . Further we show that Newton’s method for arbitrary SPP equations also converges
linearly, albeit the convergence rate, i.e., the number of bits obtained per iteration, is poorer. We
prove bounds on the convergence rate, which we show to be essentially tight. Finally, we also provide
a geometric interpretation of Newton’s method for SPPs.
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1. Introduction. We consider equation systems of the form

X1 = f1(X1, . . . ,Xn)
...

Xn = fn(X1, . . . ,Xn)

where f1, . . . , fn are polynomials with positive real coefficients. In vector form we
denote such an equation system by X = f(X). The vector f of polynomials is called
a system of positive polynomials, or SPP for short.

Equation systems of this kind appear naturally in the analysis of context-free
grammars (with numerous applications to natural language processing [25, 17] and
computational biology [30, 7, 6, 22]), probabilistic programs with procedures [9, 4, 14,
11, 10, 12, 13], and web-surfing models with back buttons [15, 16]. More generally,
they play an important rôle in the theory of branching processes [19, 2], stochastic
processes describing the evolution of a population whose individuals can die and
reproduce. The probability of extinction of the population is the least solution of
such a system, a result whose history goes back to [31].

Since SPPs have positive coefficients, x ≤ x′ implies f(x) ≤ f(x′) for x,x′ ∈
R

n
≥0, i.e., the functions f1, . . . , fn are monotonic. This allows us to apply Kleene’s

theorem (see for instance [23]), and conclude that a feasible system X = f(X), i.e.,
one having at least one solution, has a smallest solution µf . It follows easily from
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standard Galois theory that µf can be irrational and non-expressible by radicals. The
problem of deciding, given an SPP and a vector v encoded in binary, whether µf ≤ v

holds, is known to be in PSPACE and to be at least as hard as SQUARE-ROOT-
SUM, a well-known problem of computational geometry, whose membership in NP
is a long standing open question, and at least as hard as PosSLP, the problem of
deciding, giving a division-free straight-line program, whether it produces a positive
integer (see [14] for more details). PosSLP has been recently shown to play a central
rôle in understanding the Blum-Shub-Smale model of computation, where each single
arithmetic operation over the reals can be carried out exactly and in constant time [1].

While these results provide important information on the complexity of solving
SPP equations, for the practical applications mentioned above the problem of deter-
mining if µf exceeds a given bound is less relevant than the complexity of, given a
number i ≥ 0, computing i valid bits of µf , i.e., computing a vector ν such that∣∣µf j − νj

∣∣ /
∣∣µf j

∣∣ ≤ 2−i for every 1 ≤ j ≤ n. In this paper we study this problem in
the Blum-Shub-Smale model.

Since the least fixed point of a feasible SPP f is a solution of F (X) = 0 for
F (X) = f(X) − X, we can try to apply (the multivariate version of) Newton’s
method [27]: starting at some x(0) ∈ R

n (we use uppercase to denote variables and
lowercase to denote values), compute the sequence

x(k+1) := x(k) − (F ′(x(k)))−1F (x(k))

where F ′(X) is the Jacobian matrix of partial derivatives. A first difficulty is that
the method might not even be well-defined, because F ′(x(k)) could be singular for
some k. However, Etessami and Yannakakis have recently studied SPPs derived from
probabilistic pushdown automata (actually, from an equivalent model called recur-
sive Markov chains) [14], and shown that a particular version of Newton’s method
always converges, namely a version which decomposes the SPP into strongly con-
nected components (SCCs)1 and applies Newton’s method to them in a bottom-up
fashion. Our first result generalizes Etessami and Yannakakis’: the ordinary Newton
method converges for arbitrary SPPs, provided that they are clean (which can be
easily achieved).

While these results show that Newton’s method can be an adequate algorithm for
solving SPP equations, they provide no information on the number of iterations needed
to compute i valid bits. To the best of our knowledge (and perhaps surprisingly), the
rest of the literature does not contain relevant information either: it has not considered
SPPs explicitly, and the existing results have very limited interest for SPPs, since they
do not apply even for very simple and relevant SPP cases (see Related work below).

We obtain upper bounds on the number of iterations that Newton’s method needs
to produce i valid bits, first for strongly connected and then for arbitrary SPP equa-
tions. Since one iteration requires O(n3) arithmetic operations in a system of n
equations, we immediately obtain an upper bound on the time complexity of New-
ton’s method in the Blum-Shub-Smale model. We prove that for strongly connected
SPP equations X = f(X) there exists a threshold kf such that for every i ≥ 0 the
(kf + i)-th iteration of Newton’s method has at least i valid bits of µf . So, loosely
speaking, after kf iterations Newton’s method is guaranteed to compute at least 1
new bit of the solution per iteration; we say that Newton’s method converges at least

1Loosely speaking, a subset of variables and their associated equations form an SCC, if the value
of any variable in the subset influences the value of all variables in the subset, see § 2 for details.
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linearly with rate 1. Moreover, we show that the threshold kf can be chosen as

kf = ⌈4mn + 3nmax{0,− log µmin}⌉

where n is the number of polynomials of the SPP, m is such that all coefficients of
the SPP can be given as ratios of m-bit integers, and µmin is the minimal component
of the least fixed point µf .

Notice that kf depends on µf , which is what Newton’s method should compute.
For this reason we also obtain bounds on kf depending only on m and n. We show that
for arbitrary strongly connected SPP equations kf = 4mn2n is also a valid threshold.
For SPP equations coming from stochastic models, such as the ones listed above, we
do far better. First, we show that if every procedure has a non-zero probability of
terminating (a condition that always holds for back-button processes [15, 16]), then a
valid threshold is kf = 2m(n+1). As a corollary, our result shows that for back-button
processes, i valid bits can be computed in time O(mn4+in3) in the Blum-Shub-Smale
model. Second, we observe that, since x(k) ≤ x(k+1) ≤ µf holds for every k ≥ 0, as
Newton’s method proceeds it provides better and better lower bounds for µmin and
thus for kf . We exhibit an SPP for which, using this fact and our theorem, we can
prove that no component of the solution reaches the value 1. This cannot be proved
by just computing more iterations, no matter how many.

For general SPP equations, not necessarily strongly connected, we show that
Newton’s method still converges linearly, albeit the convergence rate is poorer. We
exhibit a family of SPPs showing that this bound is essentially tight.

Finally, the last result of the paper concerns the geometric interpretation of New-
ton’s method for SPP equations. We show that, loosely speaking, the Newton ap-
proximants stay within the hypervolume limited by the hypersurfaces corresponding
to each individual equation. This means that a simple geometric intuition of how
Newton’s method works, extracted from the case of 2-dimensional SPPs, is also cor-
rect for arbitrary dimensions. Our result also leads to a new variant of Newton’s
method.

Related work.. There is a large body of literature on the convergence speed of
Newton’s method for arbitrary systems of differentiable functions. A comprehensive
reference is Ortega and Rheinboldt’s book [27] (see also Chapter 8 of Ortega’s course
[26] or Chapter 5 of [20] for a brief summary). Several theorems (for instance Theorem
8.1.10 of [26]) prove that the number of valid bits grows linearly, superlinearly, or even
exponentially in the number of iterations, but only under the hypothesis that F ′(x)
is non-singular everywhere, in a neighborhood of µf , or at least at the point µf itself.
However, the matrix F ′(µf) can be singular for an SPP, even for the 1-dimensional
SPP f(X) = 1/2X2 + 1/2.

The general case in which f ′(µf) may be singular for the solution µf the method
converges to has been thoroughly studied. In a seminal paper [29], Reddien shows that
under certain conditions, the main ones being that the kernel of f ′(µf) has dimension
1 and that the initial point is close enough to the solution, Newton’s method gains 1 bit
per iteration. Decker and Kelly obtain results for kernels of arbitrary dimension, but
they require a certain linear map B(X) to be non-singular for all x 6= 0 [5]. Griewank
observes in [18] that the non-singularity of B(X) is in fact a strong condition which,
in particular, can only be satisfied by kernels of even dimension. He presents a weaker
sufficient condition for linear convergence requiring B(X) to be non-singular only
at the initial point x(0), i.e., it only requires to make “the right guess” for x(0).
Unfortunately, none of these results can be directly applied to arbitrary SPPs. The
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possible dimensions of the kernel of f ′(µf) for an SPP f(X) are to the best of our
knowledge unknown, and deciding this question seems as hard as those related to the
convergence rate2. Griewank’s result does not apply to the decomposed Newton’s
method either because the mapping B(x(0)) is always singular for x(0) = 0.

Kantorovich’s famous theorem (see e.g. Theorem 8.2.6 of [27] and [28] for an im-
provement) guarantees global convergence and only requires F ′ to be non-singular
at x(0). However, it also requires to find a Lipschitz constant for f ′ on a suitable re-
gion and some other bounds on f ′. These latter conditions are far too restrictive for
the applications mentioned above. For instance, the stochastic context-free grammars
whose associated SPPs satisfy Kantorovich’s conditions cannot exhibit two produc-
tions X → aY Z and W → ε such that Prob(X → aY Z) · Prob(W → ε) ≥ 1/4. This
class of grammars is too contrived to be of use.

Summarizing, while the convergence of Newton’s method for systems of differen-
tiable functions has been intensely studied, the case of SPPs does not seem to have
been considered yet. The results obtained for other classes have very limited appli-
cability to SPPs: either they do not apply at all, or only apply to contrived SPP
subclasses. Moreover, these results only provide information about the growth rate of
the number of accurate bits, but not about the number itself. Our thresholds lead to
explicit upper bounds for the number of accurate bits depending only on syntactical
parameters: the number of equations and the size of the coefficients.

Structure of the paper. § 2 defines SPPs and briefly describes their applications
to stochastic systems. § 3 presents a short summary of our main theorems. § 4 proves
some fundamental properties of Newton’s method for SPP equations. § 5 and § 6
contain our results on the convergence speed for strongly connected and general SPP
equations, respectively. § 7 shows that the bounds are essentially tight. § 8 presents
our results about the geometrical interpretation of Newton’s method, and § 9 contains
conclusions.

2. Preliminaries. In this section we introduce our notation used in the following
and formalize the concepts mentioned in the introduction.

2.1. Notation. As usual, R and N denote the set of real, respectively natural
numbers. We assume 0 ∈ N. R

n denotes the set of n-dimensional real valued col-
umn vectors and R

n
≥0 the subset of vectors with nonnegative components. We use

bold letters for vectors, e.g. x ∈ R
n, where we assume that x has the components

x1, . . . , xn. Similarly, the i-th component of a function f : R
n → R

n is denoted by fi.
We define 0 := (0, . . . , 0)⊤ and 1 := (1, . . . , 1)⊤ where the superscript ⊤ indicates the
transpose of a vector or a matrix. Let ‖·‖ denote some norm on R

n. Sometimes we
use explicitly the maximum norm ‖·‖∞ with ‖x‖∞ := max1≤i≤n |xi|.

The partial order ≤ on R
n is defined as usual by setting x ≤ y if xi ≤ yi for all

1 ≤ i ≤ n. Similarly, x < y if x ≤ y and x 6= y. Finally, we write x ≺ y if xi < yi

for all 1 ≤ i ≤ n, i.e., if every component of x is smaller than the corresponding
component of y.

We use X1, . . . ,Xn as variable identifiers and arrange them into the vector X.
In the following n always denotes the number of variables, i.e., the dimension of X.
While x,y, . . . denote arbitrary elements in R

n, resp. R
n
≥0, we write X if we want to

emphasize that a function is given w.r.t. these variables. Hence, f(X) represents the
function itself, whereas f(x) denotes its value for some x ∈ R

n.

2More precisely, SPPs with kernels of arbitrary dimension exist, but the cases we know of can
be trivially reduced to SPPs with kernels of dimension 1.
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If S ⊆ {1, . . . , n} is a set of components and x a vector, then by xS we mean the
vector obtained by restricting x to the components in S.

Let S ⊆ {1, . . . , n} and S = {1, . . . , n} \ S. Given a function f(X) and a vector
xS , then f [S/xS ] is obtained by replacing, for each s ∈ S, each occurrence of Xs

by xs and removing the s-component. In other words, if f(X) = f(XS ,XS) then
f [S/xS ](yS) = fS(xS ,yS). For instance, if f(X1,X2) = (X1X2 + 1

2 ,X2
2 + 1

5 )⊤, then
f [{2}/ 1

2 ] : R → R,X1 7→ 1
2X1 + 1

2 .
R

m×n denotes the set of matrices having m rows and n columns. The transpose
of a vector or matrix is indicated by the superscript ⊤. The identity matrix of R

n×n

is denoted by Id.
The formal Neumann series of A ∈ R

n×n is defined by A∗ =
∑

k∈N
Ak. It is

well-known that A∗ exists if and only if the spectral radius of A is less than 1, i.e.
max{|λ| | C ∋ λ is an eigenvalue of A} < 1. If A∗ exists then A∗ = (Id − A)−1.

The partial derivative of a function f(X) : R
n → R w.r.t. the variable Xi is

denoted by ∂Xi
f . The gradient ∇f of f(X) is then defined to be the (row) vector

∇f := (∂X1
f, . . . , ∂Xn

f) .

The Jacobian of a function f(X) with f : R
n → R

m is the matrix f ′(X) defined by

f ′(X) =




∂X1
f1 . . . ∂Xn

f1

...
...

∂X1
fm . . . ∂Xn

fm


 ,

i.e., the i-th row of f ′ is the gradient of fi.

2.2. Systems of Positive Polynomials.
Definition 2.1. A function f(X) with f : R

n
≥0 → R

n
≥0 is a system of posi-

tive polynomials (SPP), if every component fi(X) is a polynomial in the variables
X1, . . . ,Xn with coefficients in R≥0. We call an SPP f(X) feasible if y = f(y)
for some y ∈ R

n
≥0. An SPP is called linear (resp. quadratic) if all polynomials have

degree at most 1 (resp. 2).
Fact 2.2. Every SPP f is monotone on R

n
≥0, i.e. for 0 ≤ x ≤ y we have

f(x) ≤ f(y).
We will need the following lemma, a version of Taylor’s theorem.
Lemma 2.3 (Taylor). Let f be an SPP and x,u ≥ 0. Then

f(x) + f ′(x)u ≤ f(x + u) ≤ f(x) + f ′(x + u)u .

Proof. It suffices to show this for a multivariate polynomial f(X) with nonnega-
tive coefficients. Consider g(t) = f(x + tu). We then have

f(x + u) = g(1) = g(0) +

∫ 1

0

g′(s) ds = f(x) +

∫ 1

0

f ′(x + su)u ds.

The result follows as f ′(x) ≤ f ′(x + su) ≤ f ′(x + u) for s ∈ [0, 1].
Since every SPP is continuous, Kleene’s fixed-point theorem (see e.g. [23]) applies.
Theorem 2.4 (Kleene’s fixed-point theorem). Every feasible SPP f has a least

fixed point µf in R
n
≥0 i.e., µf = f(µf) and, in addition, y = f(y) implies µf ≤ y.
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Moreover, the sequence (κ
(k)
f )k∈N with κ

(k)
f = fk(0) is monotonically increasing with

respect to ≤ (i.e. κ
(k)
f ≤ κ

(k+1)
f ) and converges to µf .

In the following we call (κ
(k)
f )k∈N the Kleene sequence of f(X), and drop the

subscript whenever f is clear from the context. Similarly, we sometimes write µ

instead of µf .

An SPP f(X) is clean if for all variables Xi there is a k ∈ N such that κ
(k)
i > 0.

It is easy to see that we have κ
(k)
i = 0 for all k ∈ N if κ

(n)
i = 0. So we can “clean”

an SPP f(X) in time linear in the size of f by determining the components i with

κ
(n)
i = 0 and removing them.

Notation 2.5. In the following, we always assume that an SPP f is clean and
feasible. I.e., whenever we write “SPP”, we mean “clean and feasible SPP”, unless
explicitly stated otherwise.

We will also need the notion of dependence between variables.
Definition 2.6. Let f(X) be a polynomial. We say, f(X) contains a variable Xi

if ∂Xi
f(X) is not the zero-polynomial.

Definition 2.7. Let f(X) be an SPP. A component i depends directly on a
component k if fi(X) contains Xk. A component i depends on k if either i depends
directly on k or there is a component j such that i depends on j and j depends on k.
The components {1, . . . , n} can be partitioned into strongly components (SCCs) where
an SCC S is a maximal set of components such that each component in S depends
on each other component in S. An SCC is called trivial if it consists of a single
component that does not depend on itself. An SPP is strongly connected (short: an
scSPP) if {1, . . . , n} is a non-trivial SCC.

2.3. Convergence Speed. We will analyze the convergence speed of Newton’s
method. To this end we need the notion of valid bits.

Definition 2.8. Let f be an SPP. A vector x has i valid bits of the least fixed
point µf if

∣∣µf j − xj

∣∣
∣∣µf j

∣∣ ≤ 2−i

for every 1 ≤ j ≤ n. Let (x(k))k∈N be a sequence with 0 ≤ x(k) ≤ µf . Then the
convergence order β : N → N of the sequence (x(k))k∈N is defined as follows: β(k) is
the greatest natural number i such that x(k) has i valid bits (or ∞ if such a greatest
number does not exist). We will always mean the convergence order of the Newton
sequence (ν(k))k∈N, unless explicitly stated otherwise.

We say that a sequence has linear, exponential, logarithmic, etc. convergence order
if the function β(k) grows linearly, exponentially, or logarithmically in k, respectively.

2.4. Stochastic Models. As mentioned in the introduction, several problems
concerning stochastic models can be reduced to problems about the least fixed
point µf of an SPP f . In these cases, µf is a vector of probabilities, and so µf ≤ 1.

2.4.1. Probabilistic Pushdown Automata. Our study of SPPs was initially
motivated by the verification of probabilistic pushdown automata. A probabilistic
pushdown automaton (pPDA) is a tuple P = (Q,Γ, δ,Prob) where Q is a finite set of
control states, Γ is a finite stack alphabet, δ ⊆ Q × Γ × Q × Γ∗ is a finite transition
relation (we write pX −֒→ qα instead of (p,X, q, α) ∈ δ), and Prob is a function which
to each transition pX −֒→ qα assigns its probability Prob(pX −֒→ qα) ∈ (0, 1] so that
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for all p ∈ Q and X ∈ Γ we have
∑

pX −֒→qα Prob(pX −֒→ qα) = 1. We write pX
x
−֒→ qα

instead of Prob(pX −֒→ qα) = x. A configuration of P is a pair qw, where q is a
control state and w ∈ Γ∗ is a stack content. A probabilistic pushdown automaton P
naturally induces a possibly infinite Markov chain with the configurations as states

and transitions given by: pXβ
x
−֒→ qαβ for every β ∈ Γ∗ iff pX

x
−֒→ qα. We assume

w.l.o.g. that if pX
x
−֒→ qα is a transition then |α| ≤ 2.

pPDAs and the equivalent model of recursive Markov chains have been very thor-
oughly studied [9, 4, 14, 11, 10, 12, 13]. This work has shown that the key to the
analysis of pPDAs are the termination probabilities [pXq], where p and q are states,
and X is a stack letter, defined as follows (see e.g. [9] for a more formal definition):
[pXq] is the probability that, starting at the configuration pX, the pPDA eventually
reaches the configuration qε (empty stack). It is not difficult to show that the vector
of these probabilities is the least solution of the SPP equation system containing the
equation

〈pXq〉 =
∑

pX
x

−֒→rY Z

x ·
∑

t∈Q

〈rY t〉 · 〈tZq〉 +
∑

pX
x

−֒→rY

x · 〈rY q〉 +
∑

pX
x

−֒→qε

x

for each triple (p,X, q). Call this quadratic SPP the termination SPP of the pPDA
(we assume that termination SPPs are clean, and it is easy to see that they are always
feasible).

2.4.2. Strict pPDAs and Back-Button Processes. A pPDA is strict if for

all pX ∈ Q × Γ and all q ∈ Q the transition relation contains a pop-rule pX
x
−֒→ qǫ

for some x > 0. Essentially, strict pPDAs model programs in which every procedure
has at least one terminating execution that does not call any other procedure. The
termination SPP of a strict pPDA satisfies f(0) ≻ 0.

In [15, 16] a class of stochastic processes is introduced to model the behavior
of web-surfers who from the current webpage A can decide either to follow a link
to another page, say B, with probability ℓAB , or to press the “back button” with
nonzero probability bA. These back-button processes correspond to a very special
class of strict pPDAs having one single control state (which in the following we omit),

and rules of the form A
bA
−֒→ ε (press the back button from A) or A

ℓAB
−֒−→ BA (follow

the link from A to B, remembering A as destination of pressing the back button at B).
The termination probabilities are given by an SPP equation system containing the
equation

〈A〉 = bA +
∑

A
ℓAB
−֒−→BA

ℓAB〈B〉〈A〉 = bA + 〈A〉
∑

A
ℓAB
−֒−→BA

ℓAB〈B〉

for every webpage A. In [15, 16] those termination probabilities are called revoca-
tion probabilities. The revocation probability of a page A is the probability that,
when currently visiting webpage A and having H0H1 . . . Hn−1Hn as the browser his-
tory of previously visited pages, then during subsequent surfing from A the random
user eventually returns to webpage Hn with H0H1 . . . Hn−1 as the remaining browser
history.

Example 2.9. Consider the following equation system.



X1

X2

X3


 =




0.4X2X1 + 0.6
0.3X1X2 + 0.4X3X2 + 0.3

0.3X1X3 + 0.7






8 J. ESPARZA, S. KIEFER, AND M. LUTTENBERGER

The least solution of the system gives the revocation probabilities of a back-button
process with three web-pages. For instance, if the surfer is at page 2 it can choose
between following links to pages 1 and 3 with probabilities 0.3 and 0.4, respectively, or
pressing the back button with probability 0.3.

3. Newton’s Method and an Overview of Our Results. In order to ap-
proximate the least fixed point µf of an SPP f we employ Newton’s method:

Definition 3.1. Let f be an SPP. The Newton operator Nf is defined as follows:

Nf (X) := X +
(
Id − f ′(X)

)−1
(f(X) − X)

The sequence (ν
(k)
f )k∈N with ν

(k)
f = N k

f (0) is called Newton sequence. We drop the

subscript of Nf and ν
(k)
f when f is understood.

The main results of this paper concern the application of Newton’s method to
SPPs. We summarize them in this section.

Theorem 4.8 states that the Newton sequence (ν(k))k∈N is well-defined (i.e., the

inverse matrices
(
Id − f ′(ν(k))

)−1
exist for every k ∈ N), monotonically increasing

and bounded from above by µf (i.e. ν(k) ≤ f(ν(k)) ≤ ν(k+1) ≤ µf), and converges
to µf . This theorem generalizes the result of Etessami and Yannakakis in [14] to
arbitrary SPPs and to the ordinary Newton’s method.

For more quantitative results on the convergence speed it is convenient to fo-
cus on quadratic SPPs. Theorem 4.14 shows that any SPP can be syntactically
transformed into a quadratic SPP without changing the least fixed point and without
accelerating Newton’s method. This means, one can perform Newton’s method on
the original (possibly non-quadratic) SPP and convergence will be at least as fast as
for the corresponding quadratic SPP.

For quadratic SPPs, one iteration of Newton’s method involves O(n3) arithmeti-
cal operations and O(n3) operations in the Blum-Shub-Smale model. Hence, any
bound on the number of iterations needed to compute a given number of valid bits
immediately leads to a bound on the number of operations. In § 5 we prove such
bounds for strongly connected quadratic SPPs. We give different thresholds for the
number of iterations, and show that when any of these thresholds is reached, Newton’s
method gains at least one valid bit for each iteration. More precisely, Theorem 5.12
states the following. Let f be a quadratic scSPP, let µmin and µmax be the minimal
and maximal component of µf , respectively, and let the coefficients of f be given as
ratios of m-bit integers. Then β(kf + i) ≥ i holds for all i ∈ N and for any of the
following choices of kf :

1. 4mn + ⌈3nmax{0,− log µmin}⌉;
2. 4mn2n;
3. 7mn if f satisfies f(0) ≻ 0;
4. 2m(n + 1) if f satisfies both f(0) ≻ 0 and µmax ≤ 1.

We further show that Newton iteration can also be used to obtain a sequence of
upper approximations of µf . Those upper approximations converge to µf , asymp-
totically as fast as the Newton sequence. More precisely, Theorem 5.15 states the
following: Let f be a quadratic scSPP, let cmin be the smallest nonzero coefficient of f ,
and let µmin be the minimal component of µf . Further, for all Newton approximants
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ν(k) with ν(k) ≻ 0, let ν
(k)
min be the smallest coefficient of ν(k). Then

ν(k) ≤ µf ≤ ν(k) +




∥∥ν(k) − ν(k−1)
∥∥
∞(

cmin · min{ν
(k)
min , 1}

)n




where [s] denotes the vector x with xj = s for all 1 ≤ j ≤ n.
In § 6 we turn to general (not necessarily strongly connected) SPPs. We show

in Theorem 6.5 that Newton’s method converges linearly and give a bound on the
convergence rate, i.e., the number of iterations that is asymptotically needed to gain
one valid bit. More precisely, the theorem proves that for every quadratic SPP f ,
there is a threshold kf ∈ N such that β(kf + i · n · 2n) ≥ i for all i ∈ N. That is, in
the worst case n · 2n extra iterations are needed in order to get one new valid bit. § 7
shows that the bound is essentially tight.

§ 8 gives a geometrical interpretation of Newton’s method on quadratic SPP
equations. Let R be the region bounded by the coordinate axes and by the quadrics
corresponding to the individual equations. Theorem 8.10 shows that all Kleene and
Newton approximations lie within R, i.e.: ν(i),κ(i) ∈ R for every i ∈ N.

4. Fundamental Properties of Newton’s Method.

4.1. Effectiveness. Etessami and Yannakakis [14] suggested to use Newton’s
method for SPPs. More precisely, they showed that the sequence obtained by applying
Newton’s method to the equation system X = f(X) converges to µf as long as f

is strongly connected. We extend their result to arbitrary SPPs, thereby reusing and
extending several proofs of [14].

Recall Definition 2.8 where we defined the Newton operator Nf as

Nf (X) := X +
(
Id − f ′(X)

)−1
(f(X) − X)

and the associated Newton sequence (ν(k))k∈N. Before we prove some fundamental
properties of the Newton sequence (see Theorem 4.8 below) we study a sequence
generated by a somewhat weaker version of the Newton operator:

Proposition 4.1. Let f be an SPP. Let the operator N̂f be defined as follows:

N̂f (X) := X +

∞∑

d=0

(
f ′(X)d(f(X) − X)

)
.

Then the sequence (ν(k))k∈N with ν(k) := N̂ k
f (0) is monotonically increasing, bounded

from above by µf (i.e. ν(k) ≤ f(ν(k)) ≤ ν(k+1) ≤ µf) and converges to µf .

Theorem 4.8 below essentially states that N̂ can be replaced by N without chang-
ing the properties of the associated sequence. For the proof of Proposition 4.1 we will
need the following generalization of Taylor’s theorem.

Lemma 4.2. Let f be an SPP, d ∈ N, and 0 ≤ u, and 0 ≤ x ≤ f(x). Then

fd(x + u) ≥ fd(x) + f ′(x)du .

In particular, by setting u := f(x) − x we get

fd+1(x) − fd(x) ≥ f ′(x)d(f(x) − x) .
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Proof. By induction on d. For d = 0 the statement is trivial. Let d ≥ 0. Then,
by Taylor’s theorem (Lemma 2.3), we have:

fd+1(x + u) = f(fd(x + u))

≥ f(fd(x) + f ′(x)du) (induction hypothesis)

≥ fd+1(x) + f ′(fd(x))f ′(x)du (Lemma 2.3)

≥ fd+1(x) + f ′(x)d+1u (fd(x) ≥ x)

Lemma 4.2 can be used to prove the following.
Lemma 4.3. Let f be an SPP. Let 0 ≤ x ≤ µf and x ≤ f(x). Then

x +
∞∑

d=0

(
f ′(x)d(f(x) − x)

)
≤ µf .

Proof. Observe that

lim
d→∞

fd(x) = µf (4.1)

because 0 ≤ x ≤ µf implies fd(0) ≤ fd(0) ≤ µf and and as (fd(0))d∈N converges
to µf by Theorem 2.4, so does (fd(x))d∈N. We have:

x +

∞∑

d=0

(
f ′(x)d(f(x) − x)

)
≤ x +

∞∑

d=0

(
fd+1(x) − fd(x)

)
(Lemma 4.2)

= lim
d→∞

fd(x)

= µf (by (4.1))

Now we can prove Proposition 4.1.
Proof. [of Proposition 4.1] First we prove the following inequality by induction

on k:

ν(k) ≤ f(ν(k))

The induction base (k = 0) is easy. For the step, let k ≥ 0. Then

ν(k+1) = ν(k) +

∞∑

d=0

(
f ′(ν(k))d(f(ν(k)) − ν(k))

)

= f(ν(k)) +

∞∑

d=1

(
f ′(ν(k))d(f(ν(k)) − ν(k))

)

= f(ν(k)) + f ′(ν(k))

∞∑

d=0

(
f ′(ν(k))d(f(ν(k)) − ν(k))

)

≤ f

(
ν(k) +

∞∑

d=0

(
f ′(ν(k))d(f(ν(k)) − ν(k))

))
(Lemma 2.3)

= f(ν(k+1)) .
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Now, the inequality ν(k) ≤ µf follows from Lemma 4.3 by means of a straight-
forward induction proof. Hence, it follows f(ν(k)) ≤ f(µf) = µf . Further we have

f(ν(k)) = ν(k) + (f(ν(k)) − ν(k))

≤ ν(k) +

∞∑

d=0

(
f ′(ν(k))d(f(ν(k)) − ν(k))

)
= ν(k+1) .

(4.2)

So it remains to show that (ν(k))k∈N converges to µf . As we have already shown
ν(k) ≤ µf it suffices to show that κ(k) ≤ ν(k) because (κ(k))k∈N converges to µf by
Theorem 2.4. We proceed by induction on k. The induction base (k = 0) is easy. For
the step, let k ≥ 0. Then

κ(k+1) = f(κ(k))

≤ f(ν(k)) (induction hypothesis)

≤ ν(k+1) (by (4.2))

This completes the proof.
For Theorem 4.8 below we wish to replace the operator N̂ in Proposition 4.1

by the Newton operator N . To achieve this goal it is convenient to move to the
extended reals R[0,∞], i.e., we extend R≥0 by an element ∞ such that addition satisfies
a + ∞ = ∞ + a = ∞ for all a ∈ R≥0 and multiplication satisfies 0 · ∞ = ∞ · 0 = 0
and a · ∞ = ∞ · a = ∞ for all a ∈ R≥0.

The following proposition will be crucial.
Proposition 4.4. The matrix series f ′(ν(k))∗ := Id+f ′(ν(k))+f ′(ν(k))2 + · · ·

converges in R≥0 for all Newton approximants ν(k), i.e., there are no ∞ entries.

In R[0,∞], N̂ (ν(k)) = ν(k) +
∑∞

d=0

(
f ′(ν(k))d(f(ν(k)) − ν(k))

)
can be rewritten

as ν(k) + f ′(ν(k))∗(f(ν(k)) − ν(k)). Notice that Proposition 4.4 does not follow triv-
ially from Proposition 4.1, because ∞ entries of f ′(ν(k))∗ could be cancelled out by
matching 0 entries of f(ν(k)) − ν(k).

For the proof of Proposition 4.4 we need several lemmata. In the following, if M
is a matrix we often write M i

jk resp. M∗
jk when we mean (M i)jk resp. (M∗)jk.

The following lemma assures that a starred matrix has an ∞ entry if and only if
it has an ∞ entry on the diagonal.

Lemma 4.5. Let A = (aij) ∈ R
n×n
≥0 . Let A∗ have an ∞ entry. Then A∗ also has

an ∞ entry on the diagonal, i.e., A∗
ii = ∞ for some 1 ≤ i ≤ n.

Proof. By induction on n. The base case n = 1 is clear. For n > 1 assume w.l.o.g.
that A∗

1n = ∞. We have

A∗
1n = A∗

11

n∑

j=2

a1j(A[2..n,2..n])
∗
jn , (4.3)

where by A[2..n,2..n] we mean the square matrix obtained from A by erasing the first
row and the first column. To see why (4.3) holds, think of A∗

1n as the sum of weights
of paths from 1 to n in the complete graph over the vertices {1, . . . , n}. The weight
of a path P is the product of the weight of P ’s edges, and ai1i2 is the weight of the
edge from i1 to i2. Each path P from 1 to n can be divided into two sub-paths P1, P2

as follows. The second sub-path P2 is the suffix of P leading from 1 to n and not
returning to 1. The first sub-path P1, possibly empty, is chosen such that P = P1P2.
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Now, the sum of weights of all possible P1 equals A∗
11, and the sum of weights of all

possible P2 equals
∑n

j=2 a1j(A[2..n,2..n])
∗
jn. So (4.3) holds.

As A∗
1n = ∞, it follows that either A∗

11 or some (A[2..n,2..n])
∗
jn equals ∞. In the

first case, we are done. In the second case, by induction, there is an i such that
(A[2..n,2..n])

∗
ii = ∞. But then also A∗

ii = ∞, because every entry of (A[2..n,2..n])
∗ is

less or equal the corresponding entry of A∗.
The following lemma treats the case that f is strongly connected (cf. [14]).
Lemma 4.6. Let f be non-trivially strongly connected. Let 0 ≤ x ≺ µf . Then

f ′(x)∗ does not have ∞ as an entry.
Proof. By Theorem 2.4 the Kleene sequence (κ(i))i∈N converges to µf . Further-

more, κ(i) ≺ µf holds for all i, because, as every component depends non-trivially on
itself, any increase in any component results in an increase of the same component
in a later Kleene approximant. So, we can choose a Kleene approximant y = κ(i)

such that x ≤ y ≺ µf . Notice that y ≤ f(y). By monotonicity of f ′ it suffices to
show that f ′(y)∗ does not have ∞ as an entry. By Lemma 4.2 (taking x := y and
u := µf − y) we have

f ′(y)d(µf − y) ≤ µf − fd(y) .

As d → ∞, the right hand side converges to 0, because, by Kleene’s theorem, fd(y)
converges to µf . So the left hand side also converges to 0. Since µf − y ≻ 0, every
entry of f ′(y)d must converge to 0. Then, by standard facts about matrices (see e.g.
[24]), the spectral radius of f ′(y) is less than 1, i.e., |λ| < 1 for all eigenvalues λ
of f ′(y). This, in turn, implies that the series f ′(y)∗ = Id + f ′(y) + f ′(y)2 + · · ·
converges in R≥0, see [24], page 531. In other words, f ′(y)∗ and hence f ′(x)∗ do not
have ∞ as an entry.

The following lemma states that Newton’s method can only terminate in a com-
ponent s after certain other components ℓ have reached µf ℓ.

Lemma 4.7. Let 1 ≤ s, ℓ ≤ n. Let the term f ′(X)∗ss contain the variable Xℓ. Let

0 ≤ x ≤ f(x) ≤ µf and xs < µfs and xℓ < µf ℓ. Then N̂ (x)s < µfs.
Proof. This proof follows closely a proof of [14]. Let d ≥ 0 such that f ′(X)d

ss

contains Xℓ. Let m′ ≥ 0 such that fm′

(x) ≻ 0 and fm′

(x)ℓ > xℓ. Such an m′ exists
because with Kleene’s theorem the sequence (fk(x))k∈N converges to µf . Notice that

our choice of m′ guarantees f ′(fm′

(x))d
ss > f ′(x)d

ss.
Now choose m ≥ m′ such that fm+1(x)s > fm(x)s. Such an m exists because

the sequence (fk(x)s)k∈N never reaches µfs. This is because s depends on itself
(since f ′(X)∗ss is not constant 0), and so every increase of the s-component results in
an increase of the s-component in some later iteration of the Kleene sequence.

Now we have

fd+m+1(x) − fd+m(x)

≥ f ′(fm(x))d(fm+1(x) − fm(x)) (Lemma 4.2)

≥∗ f ′(x)d(fm+1(x) − fm(x))
≥ f ′(x)df ′(x)m(f(x) − x) (Lemma 4.2)
= f ′(x)d+m(f(x) − x) .

The inequality marked with ∗ is strict in the s-component, due to the choice of d
and m above. So, with b = d + m we have:

(f b+1(x) − f b(x))s > (f ′(x)b(f(x) − x))s (4.4)
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Again by Lemma 4.2, inequality (4.4) holds for all b ∈ N, but with ≥ instead of >.
Therefore:

µfs =
(
x +

∑∞
i=0(f

i+1(x) − f i(x))
)
s

(Kleene)

>
(
x + f ′(x)∗(f(x) − x)

)
s

(inequality (4.4))

=
(
N̂ (x)

)
s

Now we are ready to prove Proposition 4.4.

Proof. [of Proposition 4.4] Using Lemma 4.5 it is enough to show that
f ′(ν(k))∗ss 6= ∞ for all s. If the s-component constitutes a trivial SCC then
f ′(ν(k))∗ss = 0 6= ∞. So we can assume in the following that the s-component belongs
to a non-trivial SCC, say S. Let XL be the set of variables contained by the term
f ′(X)∗ss. For any t ∈ S we have f ′(X)∗ss ≥ f ′(X)∗stf

′(X)∗ttf
′(X)∗ts. Neither f ′(X)∗st

nor f ′(X)∗ts is constant zero, because S is non-trivial. Therefore, f ′(X)∗ss contains
all variables that f ′(X)∗tt contains, and vice versa, for all t ∈ S. So, XL is, for all
t ∈ S, exactly the set of variables contained by f ′(X)∗tt.

We distinguish two cases.

Case 1: There is a component ℓ ∈ L such that the sequence (ν
(k)
ℓ )k∈N does not

terminate, i.e., ν
(k)
ℓ < µf ℓ holds for all k. Then, by Lemma 4.7, the sequence (ν

(k)
s )k∈N

cannot reach µfs either. In fact, we have ν
(k)
S ≺ µfS . Let M denote the set of those

components that the S-components depend on, but do not depend on S. In other
words, M contains the components that are “lower” in the DAG of SCCs than S.
Define g(XS) := fS(X)[M/µfM ]. Then g(XS) is an scSPP with µg = µfS . As

ν
(k)
S ≺ µg, Lemma 4.6 is applicable, so g′(ν

(k)
S )∗ does not have ∞ as an entry. With

f ′(ν(k))∗SS ≤ g′(ν
(k)
S )∗, we get f ′(ν(k))∗ss < ∞, as desired.

Case 2: For all components ℓ ∈ L the sequence (ν
(k)
ℓ )k∈N terminates. Let i ∈ N the

least number such that ν
(i)
ℓ = µf ℓ holds for all ℓ ∈ L. By Lemma 4.7 we have ν

(i)
s <

µfs. But as, according to Proposition 4.1, (ν
(k)
s )k∈N converges to µfs, there must exist

a j ≥ i such that 0 <
(
f ′(ν(j))∗(f(ν(j)) − ν(j))

)
s

< ∞. So there is a component u

with 0 < f ′(ν(j))∗su(f(ν(j))−ν(j))u < ∞. This implies 0 < f ′(ν(j))∗su < ∞, therefore
also f ′(ν(j))∗ss < ∞. By monotonicity of f ′, we have f ′(ν(k))∗ss ≤ f ′(ν(j))∗ss < ∞ for

all k ≤ j. On the other hand, since f ′(X)∗ss contains only L-variables and ν
(k)
L = µfL

holds for all k ≥ j, we also have f ′(ν(k))∗ss = f ′(ν(j))∗ss < ∞ for all k ≥ j.

Now the following theorem follows from Proposition 4.4.

Theorem 4.8. Let f be an SPP. Let the Newton operator Nf be defined as in
Definition 3.1:

Nf (X) := X + (Id − f ′(X))−1(f(X) − X)

1. Then the Newton sequence (ν(k))k∈N with ν(k) = N k
f (0) is well-defined (i.e.,

the matrix inverses exist), monotonically increasing, bounded from above by
µf (i.e. ν(k) ≤ f(ν(k)) ≤ ν(k+1) ≤ µf), and converges to µf .

2. We have (Id − f ′(ν(k)))−1 = f ′(ν(k))∗ for all k ∈ N.
We also have (Id − f ′(x))−1 = f ′(x)∗ for all x ≺ µf .

Proof. By Proposition 4.4 the matrix f ′(ν(k))∗ has no ∞ entries. Then we clearly
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have f ′(ν(k))∗(Id − f ′(ν(k))) = Id, so (Id − f ′(ν(k)))−1 = f ′(ν(k))∗. Hence, we have

N̂ (ν(k)) = ν(k) +

∞∑

d=0

(
f ′(ν(k))d(f(ν(k)) − ν(k))

)

= ν(k) + f ′(ν(k))∗(f(ν(k)) − ν(k))

= ν(k) + (Id − f ′(ν(k)))−1(f(ν(k)) − ν(k))

= N (ν(k)) ,

so we can replace N̂ by N . It remains to show (Id−f ′(x))−1 = f ′(x)∗ for all x ≺ µf .
It suffices to show that f ′(x)∗ has no ∞ entries. By part 1. the sequence (ν(k))k∈N

converges to µf . So there is a k′ such that x ≤ ν(k′). By Proposition 4.4, f ′(ν(k′))∗

has no ∞ entries, so, by monotonicity, f ′(x)∗ has no ∞ entries either.

4.2. Monotonicity.
Lemma 4.9 (Monotonicity of the Newton operator). Let f be an SPP. Let

0 ≤ x ≤ y ≤ f(y) ≤ µf and let Nf (y) exist. Then

Nf (x) ≤ Nf (y) .

Proof. For x ≤ y we have f ′(x) ≤ f ′(y) as every entry of f ′(X) is a monotone
polynomial. Hence, f ′(x)∗ ≤ f ′(y)∗. With this at hand we get:

Nf (y) = y + f ′(y)∗(f(y) − y) (Theorem 4.8)

≥ y + f ′(x)∗(f(y) − y) (f ′(y)∗ ≥ f ′(x)∗)

≥ y + f ′(x)∗(f(x) + f ′(x)(y − x) − y) (Lemma 2.3)

= y + f ′(x)∗((f(x) − x) − (Id − f ′(x))(y − x))

= y + f ′(x)∗(f(x) − x) − (y − x) (f ′(x)∗ =

(Id − f ′(x))−1)

= Nf (x) (Theorem 4.8)

4.3. Exponential Convergence Order in the Nonsingular Case. If the
matrix Id − f ′(µf) is nonsingular, Newton’s method has exponential convergence
order in the sense of Definition 2.8.3 This is, in fact, a well known general property
of Newton’s method, see e.g. [27]. For completeness, we show that Newton’s method
for “nonsingular” SPPs has exponential convergence order, see Theorem 4.13 below.

Lemma 4.10. Let f be an SPP. Let 0 ≤ x ≤ µf such that f ′(x)∗ exists. Then
there is a bilinear function B : R

n
≥0 × R

n
≥0 → R

n
≥0 with

µf −N (x) ≤ f ′(x)∗B(µf − x, µf − x) .

3In numerical analysis, the terms “quadratic convergence” or “Q-quadratic convergence” are
commonly used, see e.g. [27]. It means that the error e′ of the new approximant is bounded by c · e2

where e is the error of the old approximant and c > 0 is some constant. “Quadratic convergence”
implies exponential convergence order in the sense of Definition 2.8, and we avoid the notion of
“quadratic convergence” in the following.
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Proof. Write d := µf − x. By Taylor’s theorem (cf. Lemma 2.3) we obtain

f(x + d) ≤ f(x) + f ′(x)d + B(d,d) (4.5)

for the bilinear map B(X) := f ′′(µf)(X,X), where f ′′(µf) denotes the rank-3
tensor of the second partial derivatives evaluated at µf [27]. We have

µf −N (x) = d − f ′(x)∗(f(x) − x)

= d − f ′(x)∗(d + f(x) − (x + d))

= d − f ′(x)∗(d + f(x) − f(x + d)) (x + d = µf = f(µf))

≤ d − f ′(x)∗
(
d − f ′(x)d − B(d,d)

)
(by (4.5))

= d − f ′(x)∗
(
(Id − f ′(x))d − B(d,d)

)

= d − d + f ′(x)∗B(d,d) (f ′(x)∗ = (Id − f ′(x))−1)

= f ′(x)∗B(d,d)

Define for the following lemmata ∆(k) := µf − ν(k), i.e., ∆(k) is the error after

k Newton iterations. The following lemma bounds
∥∥∥∆(k+1)

∥∥∥ in terms of
∥∥∥∆(k)

∥∥∥
2

if

Id − f ′(µf) is nonsingular.
Lemma 4.11. Let f be an SPP such that Id−f ′(µf) is nonsingular. Then there

is a constant c > 0 such that
∥∥∥∆(k+1)

∥∥∥ ≤ c ·
∥∥∥∆(k)

∥∥∥
2

for all k ∈ N.

Proof. As Id−f ′(µf) is nonsingular, we have, by Theorem 4.8, (Id−f ′(x))−1 =
f ′(x)∗ for all 0 ≤ x ≤ µf . By continuity, there is a c1 > 0 such that

∥∥f ′(x)∗
∥∥ ≤ c1

for all 0 ≤ x ≤ µf . Similarly, there is a c2 > 0 such that ‖B(x,x)‖ ≤ c2 ‖x‖
2

for all 0 ≤ x ≤ µf , because B is bilinear. So it follows from Lemma 4.10 that∥∥∥∆(k+1)
∥∥∥ ≤ c1c2

∥∥∥∆(k)
∥∥∥

2

.

Lemma 4.11 can be used to show that the error ∆(i) decays double-exponentially
in the nonsingular case:

Lemma 4.12. Let f be an SPP such that Id−f ′(µf) is nonsingular. Then there

is a constant k̃f ∈ N such that for all i ∈ N

∥∥∥∆(k̃f +i)
∥∥∥ ≤ 2−2i

for all i ∈ N.

Proof. We can assume w.l.o.g. that c ≥ 1 for the c from Lemma 4.11. As the ∆(k)

converge to 0, we can choose k̃f ∈ N large enough such that d := − log
∥∥∥∆(k̃f )

∥∥∥ −
log c ≥ 1. As c, d ≥ 1, it suffices to show the following inequality:

∥∥∥∆(k̃f +i)
∥∥∥ ≤

2−d·2i

c
.

We proceed by induction on i. For i = 0, the inequality above follows from the
definition of d. Let i ≥ 0. Then

∥∥∥∆(k̃f +i+1)
∥∥∥ ≤ c ·

∥∥∥∆(k̃f +i)
∥∥∥

2

(Lemma 4.11)
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≤ c ·
2−d·2i·2

c2
(induction hypothesis)

=
2−d·2i+1

c
.

Now it follows easily that Newton’s method has an exponential convergence order
in the nonsingular case. More precisely:

Theorem 4.13. Let f be an SPP such that Id − f ′(µf) is nonsingular. Then
there is a constant kf ∈ N such that

β(kf + i) ≥ 2i for all i ∈ N.

Proof. Choose m ∈ N large enough such that 2m+i + log(µf j) ≥ 2i holds for all
components j. Thus

∆
(k̃f +m+i)
j /µf j ≤ 2−2m+i

/µf j (Lemma 4.12 with ‖·‖∞-norm)

= 2−(2m+i+log(µfj))

≤ 2−2i

(choice of m) .

So, with kf := k̃f +m, the approximant ν(kf +i) has at least 2i valid bits of µf .
This type of analysis has serious shortcomings. In particular, Theorem 4.13 ex-

cludes the case where Id−f ′(µf) is singular. We will include this case in our conver-
gence analysis in § 5 and § 6. Furthermore, and maybe more severely, Theorem 4.13
does not give any bound on kf . We solve this problem for strongly connected SPPs
in § 5.

4.4. Reduction to the Quadratic Case. In this section we reduce SPPs to
quadratic SPPs, i.e., to SPPs in which every polynomial fi(X) has degree at most 2,
and show that the convergence on the quadratic SPP is no faster than on the original
SPP. In the following sections we will obtain convergence speed guarantees of Newton’s
method on quadratic SPPs. Hence, one can perform Newton’s method on the original
SPP and, using the results of this section, convergence is at least as fast as on the
corresponding quadratic SPP.

The idea to reduce the degree of our SPP f is to introduce auxiliary variables
that express quadratic subterms. This can be done repeatedly until all polynomials in
the system have reached degree at most 2. The construction is very similar to the one
that transforms a context-free grammar into another grammar in Chomsky normal
form. The following theorem shows that the transformation does not accelerate the
convergence of Newton’s method.

Theorem 4.14. Let f(X) be an SPP such that fs(X) = g(X) + h(X)XiXj

for some 1 ≤ i, j, s ≤ n, where g(X) and h(X) are polynomials with nonnegative

coefficients. Let f̃(X, Y ) be the SPP given by

f̃ℓ(X, Y ) = fℓ(X) for every ℓ ∈ {1, . . . , s − 1}

f̃s(X, Y ) = g(X) + h(X)Y

f̃ℓ(X, Y ) = fℓ(X) for every ℓ ∈ {s + 1, . . . , n}

f̃n+1(X, Y ) = XiXj .
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Then the function b : R
n → R

n+1 given by b(X) = (X1, . . . ,Xn,XiXj)
⊤ is a bi-

jection between the set of fixed points of f(X) and f̃(X, Y ). Moreover, ν̃
(k) ≤

(ν
(k)
1 , . . . , ν

(k)
n , ν

(k)
i ν

(k)
j )⊤ for all k ∈ N, where ν̃

(k) and ν(k) are the Newton approxi-

mants of f̃ and f , respectively.
Proof. We first show the claim regarding b: if x is a fixed point of f , then

b(x) = (x, xixj) is a fixed point of f̃ . Conversely, if (x, y) is a fixed point of f̃ , then
we have y = xixj implying that x is a fixed point of f . Therefore, the least fixed

point µf of f determines µf̃ , and vice versa.
Now we show that the Newton sequence of f converges at least as fast as the

Newton sequence of f̃ . In the following we write Y for the (n+1)-dimensional vector
of variables (X1, . . . ,Xn, Y )⊤ and, as usual, X for (X1, . . . ,Xn)⊤. For an (n + 1)-
dimensional vector x, we let x[1,n] denote its restriction to the n first components,

i.e., x[1,n] := (x1, . . . , xn)⊤. Note that Y [1,n] = X. Let es denote the unit vector

(0, . . . , 0, 1, 0 . . . 0)⊤, where the “1” is on the s-th place. We have:

f̃(Y ) =

(
f(X) + esh(X)(Y − XiXj)

XiXj

)

and

f̃
′
(Y ) =

(
f ′(X) + es∂Xh(X)(Y − XiXj) esh(X)

∂XXiXj 0

)

We need the following lemma.

Lemma 4.15. Let z ∈ R
n
≥0, δ =

(
Id − f ′(z)

)−1
(f(z) − z) and δ̃ =

(
Id − f̃

′
(z, zizj)

)−1

(f̃(z, zizj) − (z, zizj)
⊤). Then δ = δ̃[1,n].

Proof of the lemma.

f̃
′
(z, zizj) =

(
f ′(z) + esh(z)∂X(Y − XiXj)|Y =(z,zizj) esh(z)

∂XXiXj |Y =(z,zizj) 0

)

=

(
f ′(z) − esh(z)∂X(XiXj)|X=z esh(z)

∂XXiXj |X=z 0

)

We have (Id − f̃
′
(z, zizj))δ̃ = (f̃(z, zizj) − (z, zizj)

⊤), or equivalently:

(
Id − f ′(z) + esh(z)∂X(XiXj)|X=z −esh(z)

−∂XXiXj |X=z 1

)
·

(
δ̃[1,n]

δ̃n+1

)
=

(
f(z) − z

0

)

Multiplying the last row by esh(z) and adding to the first n rows yields:

(
Id − f ′(z)

)
δ̃[1,n] = f(z) − z

So we have δ̃[1,n] =
(
Id − f ′(z)

)−1
(f(z) − z) = δ, which proves the lemma.

Now we proceed by induction on k to show ν̃
(k)
[1,n] ≤ ν(k), where ν̃

(k) is the Newton

sequence for f̃ . By definition of the Newton sequence this is true for k = 0. For the

step, let k ≥ 0 and define u := (ν̃
(k)
[1,n], ν̃

(k)
i · ν̃

(k)
j )⊤. Then we have:

ν̃
(k+1)
[1,n] = N

f̃
(ν̃(k))[1,n]
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(∗)

≤ N
f̃
(u)[1,n] (see below)

= ν̃
(k)
[1,n] +

(
(Id − f̃

′
(u))−1(f̃(u) − u)

)

[1,n]

= ν̃
(k)
[1,n] + (Id − f ′(ν̃

(k)
[1,n]))

−1(f(ν̃
(k)
[1,n]) − ν̃

(k)
[1,n]) (Lemma 4.15)

= Nf (ν̃
(k)
[1,n])

≤ Nf (ν(k)) (induction)

= ν(k+1)

At the inequality marked with (∗) we used the monotonicity of N
f̃

(Lemma 4.9)

combined with Theorem 4.8, which states ν̃
(k) ≤ f̃(ν̃(k)), hence in particular ν̃

(k)
n+1 ≤

ν̃
(k)
i ν̃

(k)
j . This concludes the proof of Theorem 4.14.

5. Strongly Connected SPPs. In this section we study the convergence speed
of Newton’s method on strongly connected SPPs, short scSPPs, see Definition 2.7.

5.1. Cone Vectors. Our convergence speed analysis makes crucial use of the
existence of cone vectors.

Definition 5.1. Let f be an SPP. A vector d ∈ R
n
≥0 is a cone vector if d ≻ 0

and f ′(µf)d ≤ d.
We will show that any scSPP has a cone vector, see Proposition 5.4 below. As a

first step, we show the following lemma.
Lemma 5.2. Any scSPP f has a vector d > 0 with f ′(µf)d ≤ d.
Proof. Consider the Kleene sequence (κ(k))k∈N. We have 0 ≤ κ(k) ≺ µf for all

k ∈ N. By Theorem 4.8.2., the matrices (Id − f ′(κ(k)))−1 = f ′(κ(k))∗ exist for all k.
Let ‖·‖ be any norm. Define the vectors

d(k) :=
f ′(κ(k))∗1∥∥f ′(κ(k))∗1

∥∥ .

Notice that for all k ∈ N we have (Id−f ′(κ(k)))d(k) = 1

‖f ′(κ(k))∗1‖
≥ 0. Furthermore

we have d(k) ∈ C, where C := {x ≥ 0 | ‖x‖ = 1} is compact. So the sequence

(d(k))k∈N has a convergent subsequence, whose limit, say d, is also in C. In particular

d > 0. As (κ(k))k∈N converges to µf and (Id − f ′(κ(k)))d(k) ≥ 0, it follows by
continuity (Id − f ′(µf))d ≥ 0.

Lemma 5.3. Let f be an scSPP and let d > 0 with f ′(µf)d ≤ d. Then d is a
cone vector, i.e., d ≻ 0.

Proof. Since f is an SPP, every component of f ′(µf) is nonnegative. So,

0 ≤ f ′(µf)nd ≤ f ′(µf)n−1d ≤ . . . ≤ f ′(µf)d ≤ d.

Let w.l.o.g. d1 > 0. As f is strongly connected, there is for all j with 1 ≤ j ≤ n an
rj ≤ n such that (f ′(µf)rj )j1 > 0. Hence, (f ′(µf)rj d)j > 0 for all j. With above
inequality chain, it follows that dj ≥ (f ′(µf)rj d)j > 0. So, d ≻ 0.

The following proposition follows immediately by combining Lemmata 5.2 and 5.3.
Proposition 5.4. Any scSPP has a cone vector.
We remark that using Perron-Frobenius theory [3] there is a simpler proof for

Proposition 5.4: By Theorem 4.8 f ′(x)∗ exists for all x ≺ f . So, by fundamental
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matrix facts [3], the spectral radius of f ′(x) is less than 1 for all x ≺ µf . As the
eigenvalues of a matrix depend continuously on the matrix, the spectral radius of
f ′(µf), say ρ, is at most 1. Since f is strongly connected, f ′(µf) is irreducible,
and so Perron-Frobenius theory guarantees the existence of an eigenvector d ≻ 0 of
f ′(µf) with eigenvalue ρ. So we have f ′(µf)d = ρd ≤ d, i.e., the eigenvector d is a
cone vector.

5.2. Convergence Speed in Terms of Cone Vectors. Now we show that
cone vectors play a fundamental role for the convergence speed of Newton’s method.
The following lemma gives a lower bound of the Newton approximant ν(1) in terms
of a cone vector.

Lemma 5.5. Let f be a (not necessarily clean) SPP such that f ′(0)∗ exists. Let
d be a cone vector of f . Let 0 ≥ µf − λd for some λ ≥ 0. Then

N (0) ≥ µf −
1

2
λd .

Proof. We write f(X) as a sum

f(X) = c +

D∑

k=1

Lk(X, . . . ,X)X

where D is the degree of f , and every Lk is a (k − 1)-linear map from (Rn)k−1 to

R
n×n. Notice that f ′(X) =

∑D
k=1 k · Lk(X, . . . ,X). We write L for L1, and h(X)

for f(X) − LX − c.

λ

2
d =

λ

2
(L∗d − L∗Ld) (L∗ = Id + L∗L)

≥
λ

2
(L∗f ′(µf)d − L∗Ld) (f ′(µf)d ≤ d)

=
λ

2
L∗h′(µf)d (f ′(x) = h′(x) + L)

= L∗ 1

2
h′(µf)λd

≥ L∗ 1

2
h′(µf)µf (λd ≥ µf)

= L∗ 1

2

D∑

k=2

k · Lk(µf , . . . , µf)µf

≥ L∗
D∑

k=2

Lk(µf , . . . , µf)µf

= L∗h(µf)

= L∗(f(µf) − Lµf − c) (f(x) = h(x) + Lx + c)

= L∗µf − L∗Lµf − L∗c (f(µf) = µf)

= µf − L∗c (L∗ = Id + L∗L)

= µf −N (0) (N (0) = f ′(0)∗f(0) = L∗c)
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We extend Lemma 5.5 to arbitrary vectors x as follows.
Lemma 5.6. Let f be a (not necessarily clean) SPP. Let 0 ≤ x ≤ µf and

x ≤ f(x) such that f ′(x)∗ exists. Let d be a cone vector of f . Let x ≥ µf − λd for
some λ ≥ 0. Then

N (x) ≥ µf −
1

2
λd .

Proof. Define g(X) := f(X + x) − x. We first show that g is an SPP (not
necessarily clean). The only coefficients of g that could be negative are those of
degree 0. But we have g(0) = f(x) − x ≥ 0, and so these coefficients are also
nonnegative.

It follows immediately from the definition that µf −x ≥ 0 is the least fixed point
of g. Moreover, g satisfies g′(µf − x)d ≤ d, and so d is also a cone vector of g.
Finally, we have 0 ≥ µf − x − λd = µg − λd. So, Lemma 5.5 can be applied as
follows.

Nf (x) = x + f ′(x)∗(f(x) − x)

= x + g′(0)∗(g(0) − 0)

= x + Ng(0)

≥ x + µg −
1

2
λd (Lemma 5.5)

= µf −
1

2
λd

By induction we can extend this lemma to the whole Newton sequence:

Lemma 5.7. Let d be a cone vector of an SPP f and let λmax = maxj{
µfj

dj
}.

Then

ν(k) ≥ µf − 2−kλmaxd .

Before proving the lemma we illustrate it by a picture. The dashed line in Fig-
ure 5.1 is the ray r(t) = µf − td along a cone vector d. Notice that r(0) equals µf

and r(λmax ) is the greatest point on the ray that is below 0. The figure also shows
the Newton iterates ν(k) for 0 ≤ k ≤ 2 (shape: ×) and the corresponding points
r(2−kλmax ) (shape: +) located on the ray r. Observe that ν(k) ≥ r(2−kλmax ), as
claimed by Lemma 5.7.

Proof. [of Lemma 5.7] By induction on k. For the induction base (k = 0) we have
for all components i:

(µf − λmaxd)i =

(
µf − max

j

{
µf j

dj

}
d

)

i

≤ µf i −
µf i

di
di = 0 ,

so ν(0) = 0 ≥ µf − λmaxd.
For the induction step, let k ≥ 0. By induction hypothesis we have ν(k) ≥

µf − 2−kλmaxd. So we can apply Lemma 5.6 to get

ν(k+1) = N (ν(k)) ≥ µf −
1

2
2−kλmaxd = µf − 2−(k+1)λmaxd .
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X1 = f1(X)

X2 = f2(X)
µf = r(0)

0

−0.4

−0.2

0.2 0.4 0.6

0.2

X1

X2

r(λmax )

Fig. 5.1. Illustration of Lemma 5.7: The points (shape: +) on the ray r along a cone vector
are lower bounds on the Newton approximants (shape: ×).

The following proposition guarantees a convergence order of the Newton sequence
in terms of a cone vector.

Proposition 5.8. Let d be a cone vector of an SPP f and let λmax =

maxj

{
µfj

dj

}
and λmin = minj

{
µfj

dj

}
. Let kf ,d =

⌈
log λmax

λmin

⌉
. Then β(kf ,d + i) ≥ i

for all i ∈ N.

Proof. For all 1 ≤ j ≤ n the following holds.

(
µf − ν(kf,d+i)

)
j
≤ 2−(kf,d+i)λmaxdj (Lemma 5.7)

≤
λmin

λmax

2−iλmaxdj (def. of kf ,d)

= λmindj · 2
−i

≤ µf j · 2
−i (def. of λmin)

Hence, ν(kf,d+i) has i valid bits of µf .

5.3. Convergence Speed Independent from Cone Vectors. The conver-
gence order provided by Proposition 5.8 depends on a cone vector d. While Propo-
sition 5.4 guarantees the existence of a cone vector for scSPPs, it does not give any
information on the magnitude of its components. So we do not have any bound yet on
the “threshold” kf ,d from Proposition 5.8. The following theorem solves this problem.

Theorem 5.9. Let f be a quadratic scSPP. Let cmin be the smallest nonzero
coefficient of f and let µmin and µmax be the minimal and maximal component of µf ,
respectively. Let

kf =

⌈
log

µmax

µmin · (cmin · min{µmin , 1})n

⌉
.
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Then

β(kf + i) ≥ i for all i ∈ N.

Before we prove Theorem 5.9 we give an example.
Example 5.10. As an example of application of Theorem 5.9 consider the scSPP

equation of the back button process of Example 2.9.




X1

X2

X3


 =




0.4X2X1 + 0.6
0.3X1X2 + 0.4X3X2 + 0.3

0.3X1X3 + 0.7




We wish to know if there is a component s ∈ {1, 2, 3} with µfs = 1. Notice
that f(1) = 1, so µf ≤ 1. Performing 14 Newton steps (e.g. with Maple) yields an
approximation ν(14) to µf with




0.98
0.97
0.992


 ≤ ν(14) ≤




0.99
0.98
0.993


 .

We have cmin = 0.3. In addition, since Newton’s method converges to µf from below,
we know µmin ≥ 0.97. Moreover, µmax ≤ 1, as 1 = f(1) and so µf ≤ 1. Hence

kf ≤

⌈
log

1

0.97 · (0.3 · 0.97)3

⌉
= 6. Theorem 5.9 then implies that ν(14) has 8 valid

bits of µf . As µf ≤ 1, the absolute errors are bounded by the relative errors, and
since 2−8 ≤ 0.004 we know:

µf ≤ ν(14) +




2−8

2−8

2−8


 ≤




0.994
0.984
0.997


 ≺




1
1
1




So Theorem 5.9 yields a proof that µfs < 1 for all three components s.
Notice also that the Newton sequence converges much faster than the Kleene se-

quence (κ(k))k∈N. We have κ(14) ≺
(
0.89, 0.83, 0.96

)⊤
, so κ(14) has no more than 4

valid bits in any component, whereas ν(14) has, in fact, more than 30 valid bits in
each component.

For the proof of Theorem 5.9 we need the following lemma.
Lemma 5.11. Let d be a cone vector of a quadratic scSPP f . Let cmin be the

smallest nonzero coefficient of f and µmin the minimal component of µf . Let dmin

and dmax be the smallest and the largest component of d, respectively. Then

dmin

dmax

≥ (cmin · min{µmin , 1})n
.

Proof. In what follows we shorten µf to µ. Let w.l.o.g. d1 = dmax and dn = dmin .
We claim the existence of indices s, t with 1 ≤ s, t ≤ n such that f ′

st(µ) 6= 0 and

dmin

dmax

≥

(
ds

dt

)n

. (5.1)

To prove that such s, t exist, we use the fact that f is strongly connected, i.e., that
there is a sequence 1 = r1, r2, . . . , rq = n with q ≤ n such that f ′

rj+1rj
(X) is not
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constant zero. As µ ≻ 0, we have f ′
rj+1rj

(µ) 6= 0. Furthermore

d1

dn
=

dr1

dr2

· · ·
drq−1

drq

, and so

log
d1

dn
= log

dr1

dr2

+ · · · + log
drq−1

drq

.

So there must exist a j such that

log
d1

dn
≤ (q − 1) log

drj

drj+1

≤ n log
drj

drj+1

, and so

dn

d1
≥

(
drj+1

drj

)n

.

Hence one can choose s = rj+1 and t = rj .
As d is a cone vector we have f ′(µ)d ≤ d and thus f ′

st(µ)dt ≤ ds. Hence

f ′
st(µ) ≤

ds

dt
. (5.2)

On the other hand, since f is quadratic, f ′ is a linear mapping such that

f ′
st(µ) = 2(b1 · µ1 + · · · + bn · µn) + ℓ

where b1, . . . , bn and ℓ are coefficients of quadratic, respectively linear, monomials of
f . As f ′

st(µ) 6= 0, at least one of these coefficients must be nonzero and so greater
than or equal to cmin . It follows f ′

st(µ) ≥ cmin · min{µmin , 1}. So we have

(cmin · min{µmin , 1})n ≤
(
f ′

st(µ)
)n

≤

(
ds

dt

)n

(by (5.2))

≤
dmin

dmax

(by (5.1)) .

Now we can prove Theorem 5.9.
Proof. [of Theorem 5.9] By Proposition 5.4, f has a cone vector d. Let dmax =

maxj{dj} and dmin = minj{dj} and λmax = maxj

{
µfj

dj

}
and λmin = minj

{
µfj

dj

}
.

We have:

λmax

λmin

≤
µmax · dmax

µmin · dmin

(as λmax ≤
dmax

µmin

and λmin ≥
dmin

µmax

)

≤
µmax

µmin · (cmin · min{µmin , 1})n (Lemma 5.11) .

So the statement follows with Proposition 5.8.
The following consequence of Theorem 5.9 removes some of the parameters on

which the kf from Theorem 5.9 depends.
Theorem 5.12. Let f be a quadratic scSPP, let µmin and µmax be the minimal

and maximal component of µf , respectively, and let the coefficients of f be given as
ratios of m-bit integers. Then

β(kf + i) ≥ i for all i ∈ N

holds for any of the following choices of kf .
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1. ⌈4mn + 3nmax{0,− log µmin}⌉;
2. 4mn2n;
3. 7mn whenever f(0) ≻ 0;
4. 2mn + m whenever both f(0) ≻ 0 and µmax ≤ 1.

Items 3. and 4. of Theorem 5.12 apply in particular to termination SPPs of strict
pPDAs (§ 2.4), i.e., they satisfy f(0) ≻ 0 and µmax ≤ 1.

To prove Theorem 5.12 we need some relations between the parameters of f . We
collect them in the following lemma.

Lemma 5.13. Let f be a quadratic scSPP. With the terminology of Theorem 5.9
and Theorem 5.12 the following relations hold.

1. cmin ≥ 2−m.
2. If f(0) ≻ 0 then µmin ≥ cmin .
3. If cmin > 1 then µmin > 1.
4. If cmin ≤ 1 then µmin ≥ c2n−1

min .
5. If f is strictly quadratic, i.e. nonlinear, then the following inequalities hold:

cmin ≤ 1 and µmax · c3n−2
min · min{µ2n−2

min , 1} ≤ 1.

Proof. We show the relations in turn.

1. The smallest nonzero coefficient representable as a ratio of m-bit numbers is
1

2m .
2. As f(0) ≻ 0, in all components i there is a nonzero coefficient ci such that

fi(0) = ci. We have µf ≥ f(0), so µf i ≥ fi(0) = ci ≥ cmin > 0 holds for
all i. Hence µmin > 0.

3. Let cmin > 1. Recall the Kleene sequence (κ(k))k∈N with κ(k) = fk(0). We
first show by induction on k that for all k ∈ N and all components i either

κ
(k)
i = 0 holds or κ

(k)
i > 1. For the induction base we have κ(0) = 0. Let

k ≥ 0. Then κ
(k+1)
i = fi(κ

(k)) is a sum of products of numbers which are

either coefficients of f (and hence by assumption greater than 1) or κ
(k)
j for

some j. By induction, κ
(k)
j is either 0 or greater than 1. So, κ

(k+1)
i must be

0 or greater than 1.
By Theorem 2.4, the Kleene sequence converges to µf . As f is clean, we
have µf ≻ 0, and so there is a k ∈ N such that κ(k) ≻ 1. The statement
follows with µf ≥ κ(k).

4. Let cmin ≤ 1. We prove the following stronger statement by induction on k:
For every k with 0 ≤ k ≤ n there is a set Sk ⊆ {1, . . . , n}, |Sk| = k,

such that µfs ≥ c2k−1
min holds for all s ∈ Sk. The induction base (k = 0)

is trivial. Let k ≥ 0. Consider the SPP f̂(X{1,...,n}\Sk
) that is obtained

from f(X) by removing the Sk-components from f and replacing every Sk-
variable in the polynomials by the corresponding component of µf . Clearly,
µf̂ = (µf){1,...,n}\Sk

. By induction, the smallest nonzero coefficient ĉmin

of f̂ satisfies ĉmin ≥ cmin(c2k−1
min )2 = c2k+1−1

min . Pick a component i with

f̂i(0) > 0. Then µf̂ i ≥ f̂i(0) ≥ ĉmin ≥ c2k+1−1
min . So set Sk+1 := Sk ∪ {i}.

5. Let w.l.o.g. µmax = µf1. The proof is based on the idea that X1 indirectly
depends quadratically on itself. More precisely, as f is strongly connected
and strictly quadratic, component 1 depends (indirectly) on some component,
say ir, such that fir

contains a degree-2-monomial. The variables in that
monomial, in turn, depend on X1. This gives an inequality of the form
µf1 ≥ C · µf1

2, implying µf1 · C ≤ 1.
We give the details in the following. As f is strongly connected and strictly
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quadratic there exists a sequence of variables Xi1 , . . . ,Xir
and a sequence of

monomials mi1 , . . . ,mir
(1 ≤ r ≤ n) with the following properties:

– Xi1 = X1,
– miu

is a monomial appearing in fiu
(1 ≤ u ≤ r),

– miu
= ciu

· Xiu+1
(1 ≤ u ≤ r),

– mir
= cir

· Xj1 · Xk1
for some variables Xj1 ,Xk1

.

Notice that

µmax = µf1 ≥ ci1 · . . . · cir
· µf j1 · µfk1

≥ min(cn
min , 1) · µf j1 · µfk1

.
(5.3)

Again using that f is strongly connected, there exists a sequence of variables
Xj1 , . . . ,Xjs

and a sequence of monomials mj1 , . . . ,mjs−1
(1 ≤ s ≤ n) with

the following properties:

– Xjs
= X1,

– mju
is a monomial appearing in fju

(1 ≤ u ≤ s − 1),
– mju

= cju
· Xju+1

or mju
= cju

· Xju+1
· Xj′

u+1

for some variable Xj′

u+1
(1 ≤ u ≤ s − 1).

Notice that

µf j1 ≥ cj1 · . . . · cjs−1
· min(µs−1

min , 1) · µf1

≥ min(cn−1
min , 1) · min(µn−1

min , 1) · µf1 .
(5.4)

Similarly, there exists a sequence of variables Xk1
, . . . ,Xkt

(1 ≤ t ≤ n) with
Xkt

= X1 showing

µfk1
≥ min(cn−1

min , 1) · min(µn−1
min , 1) · µf1 . (5.5)

Combining (5.3) with (5.4) and (5.5) yields

µmax ≥ min(c3n−2
min , 1) · min(µ2n−2

min , 1) · µ2
max ,

or

µmax · min(c3n−2
min , 1) · min(µ2n−2

min , 1) ≤ 1 . (5.6)

Now it suffices to show cmin ≤ 1. Assume for a contradiction cmin > 1. Then,
by statement 3., µmin > 1. Plugging this into (5.6) yields µmax ≤ 1. This
implies µmax < µmin , contradicting the definition of µmax and µmin .

Now we are ready to prove Theorem 5.12.
Proof. [of Theorem 5.12]
1. First we check the case where f is linear, i.e., all polynomials fi have degree

at most 1. In this case, Newton’s method reaches µf after one iteration, so
the statement holds. Consequently, we can assume in the following that f

is strictly quadratic, meaning that f is quadratic and there is a polynomial
in f of degree 2.
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By Theorem 5.9 it suffices to show

log
µmax

µmin · cn
min · min{µn

min , 1}
≤ 4mn + 3nmax{0,− log µmin} .

We have

log
µmax

µmin · cn
min · min{µn

min , 1}

≤ log
1

c4n−2
min · min{µ3n−1

min , 1}
(Lemma 5.13.5.)

≤ 4n · log
1

cmin

− log(min{µ3n−1
min , 1}) (Lemma 5.13.5.: cmin ≤ 1)

≤ 4mn − log(min{µ3n−1
min , 1}) (Lemma 5.13.1.) .

If µmin ≥ 1 we have − log(min{µ3n−1
min , 1}) ≤ 0, so we are done in this

case. If µmin ≤ 1 we have − log(min{µ3n−1
min , 1}) = −(3n − 1) log µmin ≤

3n · (− log µmin).
2. By statement 1. of this corollary, it suffices to show that 4mn +

3nmax{0,− log µmin} ≤ 4mn2n. This inequality obviously holds if µmin ≥ 1.
So let µmin ≤ 1. Then, by Lemma 5.13.3., cmin ≤ 1. Hence, by Lemma 5.13
parts 4. and 1., µmin ≥ c2n−1

min ≥ 2−m(2n−1). So we have an upper bound on
− log µmin with − log µmin ≤ m(2n − 1) and get:

4mn + 3nmax{0,− log µmin} ≤ 4mn + 3nm(2n − 1)

≤ 4mn + 4nm(2n − 1) = 4mn2n

3. Let f(0) ≻ 0. By statement 1. of this corollary it suffices to show
that 4mn + 3nmax{0,− log µmin} ≤ 7mn holds. By Lemma 5.13 parts
2. and 1., we have µmin ≥ cmin ≥ 2−m, so − log µmin ≤ m. Hence,
4mn + 3nmax{0,− log µmin} ≤ 4mn + 3nm = 7mn.

4. Let f(0) ≻ 0 and µmax ≤ 1. By Theorem 5.9 it suffices to show that

log
µmax

µmin · cn
min · min{µn

min , 1}
≤ 2mn + m. We have:

log
µmax

µmin · cn
min · min{µn

min , 1}

≤ −n log cmin − (n + 1) log µmin (as µmin ≤ µmax ≤ 1)

≤ −(2n + 1) log cmin (Lemma 5.13.2.)

≤ 2mn + m (Lemma 5.13.1.)

5.4. Upper Bounds on the Least Fixed Point Via Newton Approxi-
mants. By Theorem 4.8 each Newton approximant ν(k) is a lower bound on µf .
Theorem 5.9 and Theorem 5.12 give us upper bounds on the error ∆(k) := µf −ν(k).
Those bounds can directly transformed into upper bounds on µf , as µf = ν(k)+∆(k),
cf. Example 5.10.

Theorem 5.9 and Theorem 5.12 allow to compute bounds on ∆(k) even before the
Newton iteration has been started. However, this may be more than we actually need.
In practice, we may wish to use an iterative method that yields guaranteed lower and
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upper bounds on µf that improve during the iteration. The following theorem and
its corollary can be used to this end.

Theorem 5.14. Let f be a quadratic scSPP. Let 0 ≤ x ≤ µf and x ≤ f(x)
such that f ′(x)∗ exists. Let cmin be the smallest nonzero coefficient of f and µmin

the minimal component of µf . Then

‖N (x) − x‖∞
‖µf −N (x)‖∞

≥ (cmin · min{µmin , 1})n
.

We prove Theorem 5.14 at the end of the section. The theorem can be applied
to the Newton approximants:

Theorem 5.15. Let f be a quadratic scSPP. Let cmin be the smallest nonzero
coefficient of f and µmin the minimal component of µf . For all Newton approximants

ν(k) with ν(k) ≻ 0, let ν
(k)
min be the smallest coefficient of ν(k). Then

ν(k) ≤ µf ≤ ν(k) +




∥∥ν(k) − ν(k−1)
∥∥
∞(

cmin · min{ν
(k)
min , 1}

)n




where [s] denotes the vector x with xj = s for all 1 ≤ j ≤ n.
Proof. [of Theorem 5.15] Theorem 5.14 applies, due to Theorem 4.8, to the

Newton approximants with x = ν(k−1). So we get

∥∥∥µf − ν(k)
∥∥∥
∞

≤

∥∥ν(k) − ν(k−1)
∥∥
∞

(cmin · min{µmin , 1})n

≤

∥∥ν(k) − ν(k−1)
∥∥
∞(

cmin · min{ν
(k)
min , 1}

)n (as ν(k) ≤ µf) .

Hence the statement follows from ν(k) ≤ µf .
Example 5.16. Consider again the equation X = f(X) from Examples 2.9

and 5.10:



X1

X2

X3


 =




0.4X2X1 + 0.6
0.3X1X2 + 0.4X3X2 + 0.3

0.3X1X3 + 0.7




Again we wish to verify that there is no component s ∈ {1, 2, 3} with µfs = 1.
Performing 10 Newton steps yields an approximation ν(10) to µf with




0.9828
0.9738
0.9926


 ≺ ν(10) ≺




0.9829
0.9739
0.9927


 .

Further, it holds
∥∥ν(10) − ν(9)

∥∥
∞

≤ 2 · 10−6. So we have
∥∥ν(10) − ν(9)

∥∥
∞(

cmin · min{ν
(10)
min , 1}

)3 ≤
2 · 10−6

(0.3 · 0.97)
3 ≤ 0.00009

and hence by Theorem 5.15

ν(10) ≤ µf ≤ ν(10) + [0.00009] ≤




0.983
0.974
0.993
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In particular we know that µfs < 1 for all three components s.

Example 5.17. Consider again the SPP f from Example 5.16. Setting

u(k) := ν(k) +



∥∥ν(k) − ν(k−1)

∥∥
∞(

0.3 · ν
(k)
min

)3


 ,

Theorem 5.15 guarantees

ν(k) ≤ µf ≤ u(k) .

Let us measure the tightness of the bounds ν(k) and u(k) on µf in the first component.
Let

plower (k) := − log2(µf1 − ν
(k)
1 ) and

pupper (k) := − log2(u
(k)
1 − µf1) .

Roughly speaking, ν
(k)
1 and u

(k)
1 have plower (k) and pupper (k) valid bits of µf1, respec-

tively. Figure 5.2 shows plower (k) and pupper (k) for k ∈ {1, . . . , 11}.

It can be seen that the slope of plower (k) is approximately 1 for k = 2, . . . , 6. This
corresponds to the linear convergence of Newton’s method according to Theorem 5.9.
Since Id− f ′(µf) is non-singular4, Newton’s method actually has, asymptotically, an
exponential convergence order, cf. Theorem 4.13. This behavior can be observed in
Figure 5.2 for k ≥ 7. For pupper , we roughly have (using ν(k) ≈ µf):

pupper (k) ≈ plower (k − 1) + log
(
0.3 · ν

(k)
min

)3

≈ plower (k − 1) − 5 .

The proof of Theorem 5.14 uses similar techniques as the proof of Theorem 5.9,
in particular Lemma 5.11.

Proof. [of Theorem 5.14] By Proposition 5.4, f has a cone vector d. Let dmin

and dmax be the smallest and the largest component of d, respectively. Let λmax :=

maxj{
µfj−xj

dj
}, and let w.l.o.g. λmax = µf1−x1

d1
. We have x ≥ µf − λmaxd, so we can

apply Lemma 5.6 to obtain N (x) ≥ µf − 1
2λmaxd. Thus

‖N (x) − x‖∞ ≥ (N (x) − x)1 ≥ µf1 −
1

2
λmaxd1 − x1 =

1

2
λmaxd1 ≥

1

2
λmaxdmin .

On the other hand, with Lemma 4.3 we have 0 ≤ µf − N (x) ≤ 1
2λmaxd and so

‖µf −N (x)‖∞ ≤ 1
2λmaxdmax . Combining those inequalities we obtain

‖N (x) − x‖∞
‖µf −N (x)‖∞

≥
dmin

dmax

.

Now the statement follows from Lemma 5.11.

4In fact, the matrix is “almost” singular, with det(Id − f ′(µf) ≈ 0.006.
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Fig. 5.2. Number of valid bits of the lower (shape: ×) and upper (shape: +) bounds on µf1,
see Example 5.17.

6. General SPPs. In § 5 we considered strongly connected SPPs, see Defini-
tion 2.7. However, it is not always guaranteed that the SPP f is strongly connected.
In this section we analyze the convergence speed of two variants of Newton’s method
that both compute approximations of µf , where f is an SPP that is not necessarily
strongly connected (“general SPPs”).

The first one was suggested by Etessami and Yannakakis [14] and is called De-
composed Newton’s Method (DNM). It works by running Newton’s method separately
on each SCC, see § 6.1. The second one is the regular Newton’s method from § 4. We
will analyze its convergence speed in § 6.2.

The reason why we first analyze DNM is that our convergence speed results about
Newton’s method for general SPPs (Theorem 6.5) build on our results about DNM
(Theorem 6.2). From an efficiency point of view it actually may be advantageous to
run Newton’s method separately on each SCC. For those reasons DNM deserves a
separate treatment.

6.1. Convergence Speed of the Decomposed Newton’s Method (DNM).
DNM, originally suggested in [14], works as follows. It starts by using Newton’s
method for each bottom SCC, say S, of the SPP f . Then the corresponding variables
XS are substituted for the obtained approximation for µfS , and the corresponding
equations XS = fS(X) are removed. The same procedure is then applied to the new
bottom SCCs, until all SCCs have been processed.

Etessami and Yannakakis did not provide a particular criterion for the number of
Newton iterations to be applied in each SCC. Consequently, they did not analyze the
convergence speed of DNM. We will treat those issues in this section, thereby taking
advantage of our previous analysis of scSPPs.
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We fix a quadratic SPP f for this section. We assume that we have already
computed the DAG (directed acyclic graph) of SCCs. This can be done in linear time
in the size of f . To each SCC S we can associate its depth t: it is the longest path
in the DAG of SCCs from S to a top SCC. Notice that 0 ≤ t ≤ n − 1. We write
SCC(t) for the set of SCCs of depth t. We define the height h(f) as the largest depth
of an SCC and the width w(f) := maxt |SCC(t)| as the largest number of SCCs of the
same depth. Notice that f has at most (h(f) + 1) · w(f) SCCs. Further we define
the component sets [t] :=

⋃
S∈SCC(t) S and [> t] :=

⋃
t′>t[t

′] and similarly [< t].

function DNM (f , i) /* The parameter i controls the precision. */
for t from h(f) downto 0

forall S ∈ SCC(t) /* for all SCCs S of depth t */

ρ
(i)
S := N i·2t

fS
(0) /* perform i · 2t Newton iterations */

f [<t] := f [<t][S/ρ
(i)
S ] /* apply ρ

(i)
S in the upper SCCs */

return ρ(i)

Fig. 6.1. Decomposed Newton’s Method (DNM) for computing an approximation ρ(i) of µf

Figure 6.1 shows our version of DNM. We suggest to run Newton’s method in
each SCC S for a number of steps that depends (exponentially) on the depth of S
and (linearly) on a parameter i that controls the precision.

Proposition 6.1. The function DNM(f , i) of Figure 6.1 runs at most
i · w(f) · 2h(f)+1 ≤ i · n · 2n iterations of Newton’s method.

Proof. The number of iterations is
∑h(f)

t=0 |SCC(t)| · i · 2t. This can be estimated
as follows.

h(f)∑

t=0

|SCC(t)| · i · 2t ≤ w(f) · i ·

h(f)∑

t=0

2t

≤ w(f) · i · 2h(f)+1

≤ i · n · 2n (as w(f) ≤ n and h(f) < n)

The following theorem states that DNM has linear convergence order.

Theorem 6.2. Let f be a quadratic SPP. Let ρ(i) denote the result of calling
DNM(f , i) (see Figure 6.1). Let βρ denote the convergence order of (ρ(i))i∈N. Then
there is a kf ∈ N such that βρ(kf + i) ≥ i for all i ∈ N.

Theorem 6.2 can be interpreted as follows: Increasing i by one yields asymptot-
ically at least one additional bit in each component and, by Proposition 6.1, costs
at most n · 2n additional Newton iterations. Notice that for simplicity we do not
take into account here that the cost of performing a Newton step on a single SCC is
not uniform, but rather depends on the size of the SCC (e.g. cubically if Gaussian
elimination is used for solving the linear systems).

For the proof of Theorem 6.2, let ∆(i) denote the error when running DNM with
parameter i, i.e., ∆(i) := µf − ρ(i). Observe that the error ∆(i) can be understood
as the sum of two errors:

∆(i) := µf − ρ(i) = (µ − µ̃
(i)) + (µ̃(i) − ρ(i)) ,
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where µ̃
(i)
[t] := µ

(
f [t][[> t]/ρ

(i)
[>t]]

)
, i.e., µ̃

(i)
[t] is the least fixed point of f [t] after the

approximations from the lower SCCs have been applied. So, ∆
(i)
[t] consists of the

propagation error (µf [t] − µ̃
(i)
[t] ) (resulting from the error at lower SCCs) and the

approximation error (µ̃
(i)
[t] − ρ

(i)
[t] ) (resulting from the newly added error of Newton’s

method on level t).
The following lemma gives a bound on the propagation error.
Lemma 6.3 (Propagation error). There is a constant Cf > 0 such that

∥∥∥µf [t] − µ̃[t]

∥∥∥ ≤ Cf ·

√∥∥∥µf [>t] − ρ[>t]

∥∥∥

holds for all ρ[>t] with 0 ≤ ρ[>t] ≤ µf [>t], where µ̃[t] = µ
(
f [t][[> t]/ρ[>t]]

)
.

Roughly speaking, Lemma 6.3 states that if ρ
(i)
[>t] has k valid bits of µf [>t], then

µ̃
(i)
[t] has at least about k/2 valid bits of µf [t]. In other words, (at most) one half of

the valid bits are lost on each level of the DAG due to the propagation error. The
proof of Lemma 6.3 is technically involved and, unfortunately, not constructive in
that we know nothing about Cf except for its existence. The proof can be found in
Appendix A.

The following lemma gives a bound on the error
∥∥∥∆(i)

[t]

∥∥∥ on level t, taking both

the propagation error and the approximation error into account.

Lemma 6.4. There is a Cf > 0 such that
∥∥∥∆(i)

[t]

∥∥∥ ≤ 2Cf−i·2t

for all i ∈ N.

Proof. Let f̃
(i)

[t] := f [t][[> t]/ρ
(i)
[>t]]. Observe that the coefficients of f̃

(i)

[t] and

thus its least fixed point µ̃
(i)
[t] are monotonically increasing with i, because ρ

(i)
[>t] is

monotonically increasing as well. Consider an arbitrary depth t and choose real
numbers cmin > 0 and µmin > 0 and an integer i0 such that, for all i ≥ i0, cmin and

µmin are lower bounds on the smallest nonzero coefficient of f̃
(i)

[t] and the smallest

coefficient of µ̃
(i)
[t] , respectively. Let µmax be the largest component of µf [t]. Let

k̃ :=
⌈
n · log µmax

cmin ·µmin ·min{µmin ,1}

⌉
. Then it follows from Theorem 5.9 that performing

k̃ + j Newton iterations (j ≥ 0) on depth t yields j valid bits of µ̃
(i)
[t] for any i ≥ i0.

In particular, k̃ + i · 2t Newton iterations give i · 2t valid bits of µ̃
(i)
[t] for any i ≥ i0.

So there exists a constant c1 > 0 such that, for all i ≥ i0,
∥∥∥µ̃(i)

[t] − ρ
(i)
[t]

∥∥∥ ≤ 2c1−i·2t

, (6.1)

because DNM (see Figure 6.1) performs i · 2t iterations to compute ρ
(i)
S where S is an

SCC of depth t. Choose c1 large enough such that Equation (6.1) holds for all i ≥ 0
and all depths t.

Now we can prove the theorem by induction on t. In the base case (t = h(f))
there is no propagation error, so the claim of the lemma follows from (6.1). Let
t < h(f). Then

∥∥∥∆(i)
[t]

∥∥∥ =
∥∥∥µf [t] − µ̃

(i)
[t] + µ̃

(i)
[t] − ρ

(i)
[t]

∥∥∥

≤
∥∥∥µf [t] − µ̃

(i)
[t]

∥∥∥+
∥∥∥µ̃(i)

[t] − ρ
(i)
[t]

∥∥∥
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≤
∥∥∥µf [t] − µ̃

(i)
[t]

∥∥∥+ 2c1−i·2t

(by (6.1))

≤ c2 ·

√∥∥∥∆(i)
[>t]

∥∥∥+ 2c1−i·2t

(Lemma 6.3)

≤ c2 ·
√

2c3−i·2t+1 + 2c1−i·2t

(induction hypothesis)

≤ 2c4−i·2t

for some constants c2, c3, c4 > 0.
Now Theorem 6.2 follows easily.
Proof. [of Theorem 6.2] From Lemma 6.4 we deduce that for each component

j ∈ [t] there is a cj such that

(µf j − ρ
(i)
j )/µf j ≤ 2cj−i·2t

≤ 2cj−i .

Let kf ≥ cj for all 1 ≤ j ≤ n. Then

(µf j − ρ
(i+kf )
j )/µf j ≤ 2cj−(i+kf ) ≤ 2−i .

Notice that, unfortunately, we cannot give a bound on kf , mainly because
Lemma 6.3 does not provide a bound on Cf .

6.2. Convergence Speed of Newton’s Method. We use the Theorem 6.2
to prove the following theorem for the regular (i.e. not decomposed) Newton se-
quence (ν(i))i∈N.

Theorem 6.5. Let f be a quadratic SPP. There is a threshold kf ∈ N such that
β(kf + i · n · 2n) ≥ β(kf + i · (h(f) + 1) · 2h(f)) ≥ i for all i ∈ N.

In the rest of the section we prove this theorem by a sequence of lemmata. The
following lemma states that a Newton step is not faster on an SCC, if the values of
the lower SCCs are fixed.

Lemma 6.6. Let f be an SPP. Let 0 ≤ x ≤ f(x) ≤ µf such that f ′(x)∗ exists.
Let S be an SCC of f and let L denote the set of components that are not in S, but
on which a variable in S depends. Then (Nf (x))S ≥ NfS [L/xL](xS).

Proof.

(Nf (x))S =
(
f ′(x)∗(f(x) − x)

)
S

= f ′(x)∗SS(f(x) − x)S + f ′(x)∗SL(f(x) − x)L

≥ f ′(x)∗SS(f(x) − x)S

=
(
(fS [L/xL])′(xS)

)∗
(fS [L/xL](xS) − xS)

= NfS [L/xL](xS)

Recall Lemma 4.9 which states that the Newton operator N is monotone. This
fact and Lemma 6.6 can be combined to the following lemma stating that i · (h(f) +
1) iterations of the regular Newton’s method “dominate” a decomposed Newton’s
method that performs i Newton steps in each SCC.

Lemma 6.7. Let ν̃
(i) denote the result of a decomposed Newton’s method which

performs i iterations of Newton’s method in each SCC. Let ν(i) denote the result of i

iterations of the regular Newton’s method. Then ν(i·(h(f)+1)) ≥ ν̃
(i).
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Proof. Let h = h(f). Let [t] and [> t] again denote the set of components of
depth t and > t, respectively. We show by induction on the depth t:

ν
(i·(h+1−t))
[t] ≥ ν̃

(i)
[t]

The induction base (t = h) is clear, because for bottom SCCs the two methods are
identical. Let now t < h. Then

ν
(i·(h+1−t))
[t] = N i

f (ν(i·(h−t)))[t]

≥ N i

f [t][[>t]/ν
(i·(h−t))

[>t]
]
(ν

(i·(h−t))
[t] ) (Lemma 6.6)

≥ N i

f [t][[>t]/ν̃
(i)

[>t]
]
(ν

(i·(h−t))
[t] ) (induction hypothesis)

≥ N i

f [t][[>t]/ν̃
(i)

[>t]
]
(0[t]) (Lemma 4.9)

= ν̃
(i)
[t] (definition of ν̃

(i))

Now, the lemma itself follows by using Lemma 4.9 once more.
As a side note, observe that above proof of Lemma 6.7 implicitly benefits from

the fact that SCCs of the same depth are independent. So, SCCs with the same depth
are handled in parallel by the regular Newton’s method. Therefore, w(f), the width
of f , is irrelevant here (cf. Proposition 6.1).

Now we can prove Theorem 6.5.
Proof. [of Theorem 6.5] Let k2 be the kf of Theorem 6.2, and let

k1 = k2 · (h(f) + 1) · 2h(f). Then we have

ν(k1+i·(h(f)+1)·2h(f)) = ν((k2+i)·(h(f)+1)·2h(f))

≥ ν̃
((k2+i)·2h(f)) (Lemma 6.7)

≥ ρ(k2+i) ,

where the last step follows from the fact that DNM(f , k2+i) runs at most (k2+i)·2h(f)

iterations in every SCC. By Theorem 6.2, ρ(k2+i) and hence ν(k1+i·(h(f)+1)·2h(f)) have
i valid bits of µf . Therefore, Theorem 6.5 holds with kf = k1.

7. Upper Bounds on the Convergence. In this section we show that the
lower bounds on the convergence order of Newton’s method that we obtained in the
previous section are essentially tight, meaning that an exponential (in n) number of
iterations may be needed per bit.

More precisely, we expose a family
(
f (n)

)

n≥1
of SPPs with n variables, such

that more than k · 2n−1 iterations are needed for k valid bits. Consider the following
system.

X = f (n)(X) =




1
2 + 1

2X2
1

1
4X2

1 + 1
2X1X2 + 1

4X2
2

...
1
4X2

n−1 + 1
2Xn−1Xn + 1

4X2
n


 (7.1)

The only solution of (7.1) is µf (n) = (1, . . . , 1)⊤. Notice that each component of f (n)

is an SCC. We prove the following theorem.
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Theorem 7.1. The convergence order of Newton’s method applied to the
SPP f (n) from (7.1) (with n ≥ 2) satisfies

β(k · 2n−1) < k for all k ∈ {1, 2, . . .}.

In particular, β(2n−1) = 0.

Proof. We write f := f (n) for simplicity. Let

∆(i) := µf − ν(i) = (1, . . . , 1)⊤ − ν(i) .

Notice that (ν
(i)
1 )i∈N = (0, 1

2 , 3
4 , 7

8 , . . .) which is the same sequence as obtained by
applying Newton’s method to the 1-dimensional system X1 = 1

2 + 1
2X2

1 . So we have

∆
(i)
1 = 2−i, i.e., after i iterations we have exactly i valid bits in the first component.

We know from Theorem 4.8 that for all j with 1 ≤ j ≤ n − 1 we have ν
(i)
j+1 ≤

fj+1(ν
(i)) = 1

4 (ν
(i)
j )2 + 1

2ν
(i)
j ν

(i)
j+1 + 1

4 (ν
(i)
j+1)

2 and ν
(i)
j+1 ≤ 1. It follows that ν

(i)
j+1

is at most the least solution of Xj+1 = 1
4 (ν

(i)
j )2 + 1

2ν
(i)
j Xj+1 + 1

4 (Xj+1)
2, and so

∆
(i)
j+1 ≥ 2

√
∆

(i)
j − ∆

(i)
j >

√
∆

(i)
j .

By induction it follows that ∆
(i)
j+1 > (∆

(i)
1 )2

−j

. In particular,

∆(k·2n−1)
n >

(
∆

(k·2n−1)
1

)2−(n−1)

= 2−k·2n−1·2−(n−1)

= 2−k.

Hence, after k · 2n−1 iterations we have less than k valid bits.
Notice that the proof exploits that an error in the first component gets “amplified”

along the DAG of SCCs. One can also show along those lines that computing µf is
an ill-conditioned problem: Consider the SPP g(n,ε) obtained from f (n) by replacing
the first component by 1 − ε where 0 ≤ ε < 1. If ε = 0 then (µg(n,ε))n = 1, whereas
if ε = 1

22n−1 then (µg(n,ε))n < 1
2 . In other words, to get 1 bit of precision of µg one

needs exponentially in n many bits in g. Note that this observation is independent
from any particular method to compute or approximate the least fixed point.

8. Geometrical Aspects of SPPs. As shown in § 4.4 we can assume that f

consists of quadratic polynomials. For quadratic polynomials the locus of zeros is
also called a quadric surface, or more commonly quadric. Quadrics are one of the
most fundamental class of hypersurfaces. It is therefore natural to study the quadrics
induced by a quadratic SPP f , and how the Newton sequence is connected to these
surfaces.

Let us write q for f −X. Every component qi of q is also a quadratic polynomial
each defining a quadric denoted by

Qi := {x ∈ R
n | qi(x) = fi(x) − xi = 0}.

Finding µf thus corresponds to finding the least non-negative point of intersection of
these n quadrics Qi.

Example 8.1. Consider the SPP f given by

f(X,Y ) =

(
1
2X2 + 1

4Y 2 + 1
4

1
4X + 1

4XY + 1
4Y 2 + 1

4

)

leading to

q1(X,Y ) =
1

2
X2 +

1

4
Y 2 +

1

4
− X and q2(X,Y ) =

1

4
X +

1

4
XY +

1

4
Y 2 +

1

4
− Y.
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Using standard techniques from linear algebra one can show that q1 defines an ellipse
while q2 describes a parabola (see Figure 8.1).

(a) (b)

Fig. 8.1. (a) The quadrics induced by the SPP from Example 8.1 with “q1 = 0” an ellipse, and
“q2 = 0” a parabola. (b) Close-up view of the region important for determining µf. The crosses
show the Newton approximants of µf.

Figure 8.1 shows the two quadrics induced by the SPP f discussed in the example
above. In Figure 8.1 (a) one can recognize one of the two quadrics as an ellipse while
the other one is a parabola. In this example the Newton approximants (depicted as
crosses) stay within the region enclosed by the coordinate axes and the two quadrics
as shown in Figure 8.1 (b).

In this section we want to show that the above picture in principle is the same for
all scSPP, i.e., feasible, clean, and strongly connected SPPs. That is, we show that
the Newton (and Kleene) approximants always stay in the region enclosed by the
coordinate axes and the quadrics. We characterize this region and study some of the
properties of the quadrics restricted to this region. This eventually leads to another
method for approximating µf . We then compare this new method with Newton’s
method, thereby obtaining a unification of both methods. We close the section by
discussing some properties of this more general method. All missing proofs can be
found in the appendix.

Let us start with the properties of the quadrics Qi. We restrict our attention to
the region [0, µf). For this we set

Mi := Qi ∩ [0, µf) = {x ∈ [0, µf) | qi(x) = 0}.

We start by showing that for every x ∈ Mi the gradient q′i(x) in x at Mi does not
vanish. As q′i(x) is perpendicular to the tangent plane in x at Mi, this means that the
normal of the tangent plane is determined by q′i(x) (up to orientation). See Figure 8.2
for an example. This will later allow us to apply the implicit function theorem.

Lemma 8.2. For every quadric qi induced by a scSPP f we have

q′i(x) = (∂X1
qi(x), ∂X2

qi(x), . . . , ∂Xn
qi(x)) 6= 0 and ∂Xi

qi(x) < 0 ∀x ∈ [0, µf).
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Fig. 8.2. The normals (scaled down) of the quadrics from Example 8.1.

In the following, for i ∈ {1, . . . , n} we write x−i for the vector
(x1, . . . , xi−1, xi+1, . . . , xn) and define (x−i, xi) to also denote the original vector x.

We next show that there exists a complete parametrization of “the lower part”
of Mi. With “lower part” we refer to the set

Si := {x ∈ Mi | ∀y ∈ Mi : (x−i = y−i) ⇒ xi ≤ yi}.

Taking a look at Figure 8.1, the surfaces S1 and S2 are those parts of M1, resp. M2,
which delimit that part of R

2
≥0 shown in Figure 8.1 (b).

If x ∈ Si then xi is the least non-negative root of the (at most) quadratic polyno-
mial qi(Xi,x−i). As we will see, these roots can also be represented by the following
functions:

Definition 8.3. For an scSPP f we define for all k ∈ N the polynomial h
(k)
i by

h
(0)
i (X−i) := fi[i/0](X−i), h

(k+1)
i (X−i) := fi[i/h

(k)
i (X−i)](X−i)

The function hi(X) is then defined pointwise by

hi(x−i) := lim
k→∞

h
(k)
i (x−i)

for all x−i ∈ [0, µf−i].
We show in the appendix (see Proposition B.1) that the function hi is well-defined

and exists. We therefore can parameterize the surface Si w.r.t. to the remaining
variables X−i, i.e., hi is the “height” of the surface Si above the “ground” Xi = 0.

By the preceding proposition the map

pi : [0, µf−i) → [0, µf ] : x−i 7→ (x1, . . . , xi−1, hi(x−i), xi+1, . . . , xn)

gives us a pointwise parametrization of Si. We want to show that pi is continuously
differentiable. For this it suffices to show that hi is continuously differentiable which
follows easily from the implicit function theorem (see e.g. [27]).

Lemma 8.4. hi is continuously differentiable with

∂Xj
hi(x−i) =

∂Xj
fi(x)

−∂Xi
qi(x)

=
∂Xj

qi(x)

−∂Xi
qi(x)

for x ∈ Si and j 6= i.
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In particular, ∂Xj
hi is monotonically increasing with x.

Corollary 8.5. The map

pi : [0, µf−i) → [0, µf ] : x−i 7→ (x1, . . . , xi−1, hi(x−i), xi+1, . . . , xn)

is continuously differentiable and a local parametrization of the manifold Si.
Example 8.6. For the SPP f defined in Example 8.1 we can simply solve

q1(X,Y ) for X leading to

h1(Y ) = 1 −

√
1

2
(1 − Y 2).

The important point is that by the previous result we know that this function has to
be defined on [0, µf2], and differentiable on [0, µf2). Similarly, we get

h2(X) = 2 −
1

2
X −

1

2

√
X2 − 12X + 12.

Figure 8.1 (b) conveys the impression that the surfaces Si are convex w.r.t. to the
parameterizations pi. As we have seen, the functions hi are monotonically increasing.
Thus, in the case of two dimensions the functions hi even have to be strictly mono-
tonically increasing (as f is strongly-connected), so that the surfaces Si are indeed
convex. (Recall that a surface S is convex in a point x ∈ S if S is located completely
on one side of the tangent plane at S in x.) But in the case of more than two variables
this does not need to hold anymore.

Example 8.7. The equation

Z =
1

8
X2 +

3

4
XY +

1

8
Y 2 +

1

4

is an admissible part of any SPP. It defines the hyperbolic paraboloid depicted in
Figure 8.3 which is clearly not convex.

(a) (b) (c)

Fig. 8.3. (a) The hyperbolic paraboloid defined by Z = 1
8
X2 + 3

4
XY + 1

8
Y 2 + 1

4
for X, Y, Z ∈

[−10, 10]. (b) A visualization of an SPP consisting of three copies of the quadric of (a) with µf =
( 1
2
, 1
2
, 1
2
) the upper apex. (c) One of the three quadrics of (b) over [0, µf]. Clearly, even limited to

this range the surface is not convex.

Still, as shown in Lemma 2.3 it holds for all 0 ≤ x ≤ y that

x + f ′(x) · y ≤ f(x + y).
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Fig. 8.4. The graphic shows the quadric defined by q1 = 0 with the tangent and normal in x

at S1. Every point y of S1 above x is located on the same side of the the tangent. More precisely,
we have ∇q1|x · (y − x) ≤ 0.

It now follows (see the following lemma) that the surfaces Si have the property that
for every x ∈ [0, µf) the “relevant” part of Si for determining µf , i.e. Si ∩ [x, µf ], is
located on the same side of the tangent plane at Si in x (see Figure 8.4).

Lemma 8.8. For all x ∈ Si we have

∀y ∈ Si ∩ [x, µf ] : q′i(x) · (y − x) ≤ 0.

In particular

∀y ∈ Si ∩ [x, µf ] : yi ≥ xi +
∑

j 6=i

∂Xj
hi(x−i) · (yj − xj).

Consider now the set

R :=

n⋂

i=1

{x ∈ [0, µf) | xi ≤ hi(x−i)},

i.e., the region of [0, µf) delimited by the coordinate axes and the surfaces Si. Note
that the gradient q′i(x) for x ∈ Si points from Si into R (see Figure 8.2).

Proposition 8.9. It holds

x ∈ R ⇔ x ∈ [0, µf) ∧ q(x) ≥ 0.

From this last result it now easily follows that R is indeed the region of [0, µf)
where all Newton and Kleene steps are located in.

Theorem 8.10. All Newton and Kleene steps starting from 0 lie within R, i.e.

ν(i),κ(i) ∈ R (∀i ∈ N).

Proof. For an scSPP we have κ(i),ν(i) ∈ [0, µf) for all i. Further, κ(i) ≤ κ(i+1) =
f(κ(i)) and ν(i) ≤ f(ν(i)) holds for all i, too.
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In the rest of this section we will use the results regarding R and the surfaces Si

for interpreting Newton’s method geometrically and for obtaining a generalization of
Newton’s method:

The preceding results suggest another way of determining µf (see Figure 8.5):
Let x be some point inside of R. We may move from x onto one of the surface Si by
going upward along the line x+t·ei which gives us the point pi(x−i) = (x−i, hi(x−i)).
As x ∈ R, we have x,pi(x−i) ≤ µf . Consider now the tangent plane

Ti|x =
{
y ∈ R

n | q′i(pi(x−i)) ·
(
y − pi(x−i)

)
= 0
}

at Si in pi(x−i). Recall that by Lemma 8.8 we have

Fig. 8.5. Given a point x inside of R the intersection of the tangents at the quadrics in the
points p1(x2), resp. p2(x1) is also located inside of R, yielding a better approximation of µf.

∀y ∈ Si ∩ [pi(x−i), µf) : q′i(pi(x−i)) · (y − pi(x−i)) ≤ 0,

i.e., the part of Si relevant for determining µf is located completely below (w.r.t.
q′i(()pi(x−i))) this tangent plane. By continuity this also has to hold for y = µf .
Hence, when taking the intersection of all the tangent planes T1 to Tn this gives us
again a point T (x) inside of R. That this point T (x) exists and is uniquely determined
is shown in the following lemma.

Lemma 8.11. Let x(1), . . . ,x(n) ∈ [0, µf). Then the matrix




q′1(x
(1))

...
q′n(x(n))




is regular, i.e., the vectors {q′i(x
(i)) | i = 1, . . . , n} are linearly independent.

By this lemma the normals at the quadrics in the points pi(x−i) for x ∈ [0, µf)
are linearly independent. Thus, there exists a unique point of intersection of tangent
planes at the quadrics in these points.

Definition 8.12. For x ∈ R define T (x) to be the unique solution of the equation
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system

q′1(p1(x−1)) · X = q′1(p1(x−1)) · p1(x−1)
...

q′n(pn(x−n)) · X = q′n(pn(x−n)) · pn(x−n)

.

Theorem 8.13. We have

x ≤ T (x) and N (x) ≤ T (x) ≤ µf .

Further, for y ∈ R with x ≤ y

T (x) ≤ T (y).

See Figure 8.6 for a geometrical interpretation of Newton’s method.

9. Conclusions. We have studied the convergence order and convergence rate of
Newton’s method for fixed-point equations of systems of positive polynomials (SPP
equations). These equations appear naturally in the analysis of several stochastic
computational models that have been intensely studied in recent years, and they also
play a central rôle in the theory of stochastic branching processes.

The restriction to positive coefficients leads to strong results. For arbitrary poly-
nomial equations Newton’s method may not converge or converge only locally, i.e.,
when started at a point sufficiently close to the solution. We have extended a result
by Etessami and Yannakakis [14], and shown that for SPP equations the method al-
ways converges starting at 0. Moreover, we have proved that the method has at least
linear convergence order, and have determined the asymptotic convergence rate. To
the best of our knowledge, this is the first time that a lower bound on the convergence
order is proved for a significant class of equations with a trivial membership test.5

Finally, we have also obtained upper bounds on the threshold, i.e., the number of
iterations necessary to reach the “steady state” in which valid bits are computed at
the asymptotic rate. These results lead to practical tests for checking whether the
least fixed point of an SPP exceeds a given bound.

There are still at least two important open questions. The behavior of Newton’s
method when arithmetic operations only have a fixed accuracy should be further in-
vestigated. We wish to develop tests allowing to decide whether the result of applying
Newton’s method with a certain fixed accuracy is reliable or not. For the second ques-
tion, say that Newton’s method is polynomial for a class of SPP equations if there is a
polynomial p(x, y, z) such that for every k ≥ 0 and for every system in the class with n
equations and coefficients of size m, the p(n,m, k)-th Newton approximant ν(p(n,m,k))

has k valid bits. We have proved in Theorem 5.12 that Newton’s method is polynomial
for SPPs f satisfying f(0) ≻ 0; for this class one can take p(n,m, k) = 7mn + k. We
have also exhibited in § 7 a class for which computing the first bit of the least solution
takes 2n iterations. The members of this class, however, are non-strongly-connected,
and this is the fact we have exploited to construct them. So the following question
remains open: Is Newton’s method polynomial for strongly connected SPPs?

Appendix A. Proof of Lemma 6.3.

5Notice the contrast with the classical result stating that if (Id − f ′(µf) is non-singular, then
Newton’s method has exponential convergence order; here the membership test is highly non-trivial,
and, for what we know, as hard as computing µf itself).
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(a) (b)

(c) (d)

Fig. 8.6. Geometrical interpretation of Newton’s method: (a) Given a point x ∈ R Newton’s
method first consideres the “enlarged” quadrics defined by qi(X) = qi(x) (drawn dashed and dotted)
which contain the current approximation x. (b) Then the tangents in x at these enlarged quadrics
are computed (drawn dotted), i.e., q′

i
(x) · (X − x) = 0. (c) Finally, these tangents are corrected

by moving them towards the actual quadrics, i.e. q′
i
(x) · (X − x) = −qi(x). The intersection of

these corrected tangents gives the next Newton approximation. (d) A comparison between N (x) and
T (x): N (x), resp. T (x) is given by the intersection of the dotted, resp. dashed lines. Clearly, we
have N (x) ≤ T (x).

The proof of Lemma 6.3 is by a sequence of lemmata. The following two Lemmata
A.1 and A.2 provide a lower bound on ‖f(x) − x‖ for an “almost-fixed-point” x.

Lemma A.1. Let f be a quadratic SPP without linear terms, i.e., f(X) =
B(X,X) + c where B is a bilinear map, and c is a constant vector. Let f(X) be
non-constant in every component. Let R ∪̇ S = {1, . . . , n} with S 6= ∅. Let every
component depend on every S-component and not on any R-component. Then there
is a constant Cf > 0 such that

‖f(µf − δ) − (µf − δ)‖ ≥ Cf · ‖δ‖2

for all δ with 0 ≤ δ ≤ µf .
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Proof. With the given component dependencies we can write f(X) as follows:

fR(X) =

(
fR(X)
fS(X)

)
=

(
BR(XS ,XS) + cR

BS(XS ,XS) + cS

)

A straightforward calculation shows

e(δ) := f(µf − δ) − (µf − δ) = (Id − f ′(µf))δ + B(δ, δ) .

Furthermore, ∂XR
f is constant zero in all entries, so

eR(δ) = δR − ∂XS
fR(µf) · δS + BR(δS , δS) and

eS(δ) = δS − ∂XS
fS(µf) · δS + BS(δS , δS) .

Notice that for every real number r > 0 we have

min
0≤δ≤µf ,‖δ‖≥r

‖e(δ)‖

‖δ‖

2

> 0 ,

because otherwise µf − δ < µf would be a fixed point of f . We have to show:

inf
0≤δ≤µf ,‖δ‖>0

‖e(δ)‖

‖δ‖

2

> 0

Assume, for a contradiction, that this infimum equals zero. Then there exists

a sequence (δ(i))i∈N with 0 ≤ δ(i) ≤ µf ,
∥∥∥δ(i)

∥∥∥ > 0 such that limi→∞

∥∥∥δ(i)
∥∥∥ = 0

and limi→∞
‖e(δ(i))‖
‖δ(i)‖2 = 0. Define r(i) :=

∥∥∥δ(i)
∥∥∥ and d(i) := δ(i)

‖δ(i)‖
. Notice that

d(i) ∈ {d ∈ R
n
≥0 | ‖d‖ = 1} =: D where D is compact. So some subsequence

of (d(i))i∈N, say w.l.o.g. the sequence (d(i))i∈N itself, converges to some vector d∗. By
our assumption we have

e(δ(i))/
∥∥∥δ(i)

∥∥∥
2

=

∥∥∥∥
1

r(i)
(Id − f ′(µf))d(i) + B(d(i),d(i))

∥∥∥∥ −→ 0 . (A.1)

As B(d(i),d(i)) is bounded, 1
r(i) (Id − f ′(µf))d(i) must be bounded, too. Since r(i)

converges to 0,
∥∥∥(Id − f ′(µf))d(i)

∥∥∥ must converge to 0, so

(Id − f ′(µf))d∗ = 0 .

In particular,
(
(Id − f ′(µf))d∗

)
R

= d∗
R − ∂XS

fR(µf) · d∗
S = 0. So we have d∗

S > 0,
because d∗

S = 0 would imply d∗
R = 0 which would contradict d∗ > 0.

In the remainder of the proof we focus on fS . Define the scSPP g(XS) := fS(X).
Notice that µg = µfS . We can apply Lemma 5.3 to g and d∗

S and obtain d∗
S ≻ 0.

As fS(X) is non-constant we get BS(d∗
S ,d∗

S) ≻ 0. By (A.1), 1
r(i) (Id − g′(µg))d

(i)
S

converges to −BS(d∗
S ,d∗

S) ≺ 0. So there is a j ∈ N such that (Id − g′(µg))d
(j)
S ≺ 0.

Let δ̃ := rd(j) for some small enough r > 0 such that 0 < δ̃
∗

S ≤ µg and

eS(δ̃) = (Id − g′(µg))δ̃S + BS(δ̃S , δ̃S)

= r(Id − g′(µg))d
(j)
S + r2BS(d

(j)
S ,d

(j)
S ) ≺ 0 .
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So we have g(µg − δ̃S) ≺ µg − δ̃S . However, µg is the least point x with g(x) ≤ x.
Thus we get the desired contradiction.

Lemma A.2. Let f be a quadratic strongly connected SPP. Then there is a
constant Cf > 0 such that

‖f(µf − δ) − (µf − δ)‖ ≥ Cf · ‖δ‖2

for all δ with 0 ≤ δ ≤ µf .
Proof. Write f(X) = B(X,X)+LX +c for a bilinear map B, a matrix L and a

constant vector c. By Theorem 4.8.2. the matrix L∗ = (Id − L)−1 = (Id − f ′(0))−1

exists. Define the SPP f̃(X) := L∗B(X,X) + L∗c. A straightforward calculation

shows that the sets of fixed points of f and f̃ coincide and that

f(µf − δ) − (µf − δ) = (Id − L)
(
f̃(µf − δ) − (µf − δ)

)
.

Further we have
∥∥∥(Id − L)

(
f̃(µf − δ) − (µf − δ)

)∥∥∥
2
≥ σ1(Id − L)

∥∥∥f̃(µf − δ) − (µf − δ)
∥∥∥

2

where σ1(Id−L) denotes the smallest singular value of Id−L. Note that σ1(Id−L) > 0
because Id − L is invertible. So it suffices to show that

∥∥∥f̃(µf − δ) − (µf − δ)
∥∥∥ ≥ Cf · ‖δ‖2

.

If f(X) is linear (i.e. B(X,X) ≡ 0) then f̃(X) is constant and we have∥∥∥f̃(µf − δ) − (µf − δ)
∥∥∥ = ‖δ‖, so we are done in that case. Hence we can assume

that some component of B(X,X) is not the zero polynomial. It remains to argue

that f̃ satisfies the preconditions of Lemma A.1. By definition, f̃ does not have linear
terms. Define

S := {i | 1 ≤ i ≤ n, Xi is contained in a component of B(X,X)} .

Notice that S is non-empty. Let i0, i1, . . . , im, im+1 (m ≥ 0) be any sequence such
that, in f , for all j with 0 ≤ j < m the component ij depends directly on ij+1

via a linear term and im depends directly on im+1 via a quadratic term. Then i0
depends directly on im+1 via a quadratic term in LmB(X,X) and hence also in f̃ .
So all components are non-constant and depend (directly or indirectly) on every S-
component. Furthermore, no component depends on a component that is not in S,
because L∗B(X,X) contains only S-components. Thus, Lemma A.1 can be applied,
and the statement follows.

The following lemma gives a bound on the propagation error for the case that f

has a single top SCC.
Lemma A.3. Let f be a quadratic SPP. Let S ⊆ {1, . . . , n} be the single top SCC

of f . Let L := {1, . . . , n} \ S. Then there is a constant Cf ≥ 0 such that

‖µfS − µ̃S‖ ≤ Cf ·
√

‖µfL − xL‖

for all xL with 0 ≤ xL ≤ µfL where µ̃S := µ (fS [XL/xL]).
Proof. We write fS(X) = fS(XS ,XL) in the following.
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If S is a trivial SCC then µfS = fS(0, µfL) and µ̃S = fS(0,xL). In this case
we have with Taylor’s theorem (cf. Lemma 2.3)

‖µfS − µ̃S‖ = ‖fS(0, µfL) − fS(0,xL)‖

≤ ‖∂XfS(0, µfL) · (µfL − xL)‖

≤ ‖∂XfS(0, µfL)‖ · ‖µfL − xL‖

= ‖∂XfS(0, µfL)‖ ·
√
‖µfL − xL‖ ·

√
‖µfL − xL‖

≤ ‖∂XfS(0, µfL)‖ ·
√
‖µfL‖ ·

√
‖µfL − xL‖

and the statement follows by setting Cf := ‖∂XfS(0, µfL)‖ ·
√

‖µfL‖.
Hence, in the following we can assume that S is a non-trivial SCC. Set g(XS) :=

fS(XS , µfL). Notice that g is an scSPP with µg = µfS . By applying Lemma A.2
to g and setting c := 1/

√
Cg (the Cg from Lemma A.2) we get:

‖µfS − µ̃S‖ ≤ c ·
√
‖g(µg − (µfS − µ̃S)) − (µg − (µfS − µ̃S))‖

= c ·
√

‖fS(µ̃S , µfL) − µ̃S‖

= c ·
√
‖fS(µ̃S , µfL) − fS(µ̃S ,xL)‖

with Taylor’s theorem (cf. Lemma 2.3):

≤ c ·
√
‖∂XL

fS(µ̃S , µfL)(µfL − xL)‖

≤ c ·
√
‖∂XL

fS(µfS , µfL)(µfL − xL)‖

≤ c ·
√
‖∂XL

fS(µfS , µfL)‖ ·
√
‖µfL − xL‖

So the statement follows by setting Cf := c ·
√
‖∂XL

fS(µfS , µfL)‖.
Now we can extend Lemma A.3 to Lemma 6.3, restated here.

Lemma 6.3. There is a constant Cf > 0 such that

∥∥∥µf [t] − µ̃[t]

∥∥∥ ≤ Cf ·

√∥∥∥µf [>t] − ρ[>t]

∥∥∥

holds for all ρ[>t] with 0 ≤ ρ[>t] ≤ µf [>t], where µ̃[t] = µ
(
f [t][[> t]/ρ[>t]]

)
.

Proof. Observe that µf [t], µ̃[t], µf [>t] and ρ[>t] do not depend on the components
of depth < t. So we can assume w.l.o.g. that t = 0. Let SCC(0) = {S1, . . . , Sk}.

For any Si from SCC(0), let f (i) be obtained from f by removing all top SCCs

except for Si. Lemma A.2 applied to f (i) guarantees a C(i) such that

∥∥µfSi
− µ̃Si

∥∥ ≤ C(i) ·

√∥∥∥µf [>0] − ρ[>0]

∥∥∥

holds for all ρ[>0] with 0 ≤ ρ[>0] ≤ µf [>0]. Using the equivalence of norms let w.l.o.g.

the norm ‖·‖ be the maximum-norm ‖·‖∞. Let Cf := max1≤i≤k C(i). Then we have

∥∥∥µf [0] − µ̃[0]

∥∥∥ = max
1≤i≤k

∥∥µfSi
− µ̃Si

∥∥ ≤ Cf ·

√∥∥∥µf [>0] − ρ[>0]

∥∥∥

for all ρ[>0] with 0 ≤ ρ[>0] ≤ µf [>0].
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Appendix B. Proofs of § 8.
Lemma 8.2. For every quadric qi induced by a scSPP f we have

q′i(x) = (∂X1
qi(x), ∂X2

qi(x), . . . , ∂Xn
qi(x)) 6= 0 and ∂Xi

qi(x) < 0 ∀x ∈ [0, µf).

Proof. As shown by Etessami and Yannakakis in [14] under the above precondi-
tions it holds for all x ∈ [0, µf) that

(
Id − f ′(x)

)
is invertible with

(
Id − f ′(x)

)−1
= f ′(x)∗.

Thus, we have

q′(x)−1 =
(
f ′(x) − Id

)−1
= −

(
f ′(x)∗

)
,

implying that q′i(x) 6= 0 for all x ∈ [0, µf) as q′(x) has to have full rank n in order for
q′(x)−1 to exist. Furthermore, it follows that all entries of q′(x)−1 are non-positive
as f ′(x)∗ is non-negative. Now, as qi(X) = fi(X) − Xi and fi(X) is a polynomial
with non-negative coefficients, it holds that

q′i(x) · ej = ∂Xj
qi(x) = ∂Xj

fi(x) ≥ 0

for all j 6= i and x ≥ 0. With every entry of q′(x)−1 non-positive, and

q′i(x) · q′(x)−1 = e⊤
i ,

we conclude ∂Xi
qi(x) < 0.

Proposition B.1. Let x,y ∈ [0, µf ] with x ≤ y.

(a) 0 ≤ h
(k)
i (x−i) ≤ µf i.

(b) h
(k)
i (x−i) ≤ h

(k+1)
i (x−i) for all k ∈ N.

(c) h
(k)
i (x−i) ≤ h

(k)
i (y−i) for all k ∈ N.

(d) hi(x−i) ≤ µf i, and hi is a map from [0, µf−i] to [0, µf i].
If fi depends on at least one other variable except Xi, we also have
hi([0, µf−i)) ⊆ [0, µf i).

(e) hi(x−i) ≤ hi(y−i).
(f) fi(x−i, hi(x−i)) = hi(x−i).
(g) For xi = fi(x) we have hi(x−i) ≤ xi.
(h) hi(µf−i) = µf i.
Proof. Let 0 ≤ x ≤ y ≤ µf . Using the monotonicity of fi over R

n
≥0 we proceed

by induction on k.
(a) For k = 0 we have

0 ≤ h
(0)
i (x−i) = fi(0,x−i) ≤ fi(µf) = µf i.

We then get

0 ≤ h
(k+1)
i (x−i) = fi(h

(k)
i (x−i),x−i) ≤ fi(µf) = µf i.

(b) For k = 0 we have

h
(0)
i (x−i) = fi(0,x−i) ≤ fi(h

(0)
i (x−i),x−i) = h

(1)
i (x−i).

Thus

h
(k+1)
i (x−i) = fi(h

(k)
i (x−i),x−i) ≤ fi(h

(k+1)
i (x−i),x−i) = h

(k+2)
i (x−i)

follows.
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(c) As x ≤ y, we have for k = 0

h
(0)
i (x−i) = fi(0,x−i) ≤ fi(0,y−i) = h

(0)
i (y−i).

Hence, we get

h
(k+1)
i (x−i) = fi(h

(k)
i (x−i),x−i) ≤ fi(h

(k)
i (y−i),y−i) = h

(k+1)
i (y−i).

(d) As the sequence (h
(k)
i (x−i))k∈N is monotonically increasing and bounded from

above by µf i, the sequence converges. Thus, for every x the value

hi(x−i) = lim
k→∞

h
(k)
i (x−i)

is well-defined, i.e., hi is a map from [0, µf−i] to [0, µfi].
If fi depends on at least one other variable except Xi, then hi is a non-
constant power series in this variable with non-negative coefficients. For
x−i ∈ [0, µf−i) we thus always have

hi(x−i) < hi(µf−i) = µf i

as x−i ≺ µf−i.
(e) This follows immediately from (b).
(f) As fi is continuous, we have

fi(hi(x−i),x−i) = fi( lim
k→∞

h
(k)
i (x−i),x−i) = lim

k→∞
h

(k+1)
i (x−i) = hi(x−i),

where the last equality holds because of (b).

(g) Using induction similar to (a) replacing µf by x, one gets h
(k)
i (x−i) ≤ xi for

all k ∈ N as fi(x−i) = xi. Thus, hi(x−i) ≤ xi follows similarly to (d).
(h) By definition, we have µf = limk→∞ fk(0). For k = 0, we have

(f0(0))i = 0 ≤ fi(0, µf−i) = h
(0)
i (µf−i).

We thus get by induction

(f (k+1)(0))i = fi(f
k(0)) ≤ fi(h

(k)
i (µf−i), µf−i) = h

(k+1)
i (µf−i).

Thus, we may conclude µf i ≤ hi(µf−i). As µf i = fi(µf), we get by virtue
of (g) that hi(µf−i) ≤ µf i, too.

Lemma 8.4. hi is continuously differentiable with

∂Xj
hi(x−i) =

∂Xj
fi(x)

−∂Xi
qi(x)

=
∂Xj

qi(x)

−∂Xi
qi(x)

for x ∈ Si and j 6= i.

In particular, ∂Xj
hi is monotonically increasing with x.

Proof. By Lemma 8.2 the implicit function theorem is applicable for every x ∈
Si. We therefore find for every x ∈ Si a local parametrization hx : U 7→ V with
hx(x−i) = xi. Thus hx(x−i) is the least non-negative solution of qi(Xi,x−i) = 0.
By continuity of qi it is now easily shown that for all y−i ∈ U it has to hold that
hx(y−i) is also the least non-negative solution of qi(Xi,y−i) = 0 (see below). By
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uniqueness we therefore have hx = hi and that hi is continuously differentiable for all
x−i ∈ [0, µf−i).

For every x−i ∈ [0, µf−i) we can solve the (at most) quadratic equation
qi(Xi,x−i) = 0. We already know that hi(x−i) is the least non-negative solution
of this equation. So, if there exists another solution, it has to be real, too.

Assume first that this equation has two distinct solutions for some fixed x−i ∈
[0, µf−i). Solving qi(Xi,x−i) = 0 thus leads to an expression of the form

−b(x−i) ±
√

b(x−i)2 − 4a · c(x−i)

2a

for the solutions where b, c are (at most) quadratic polynomials in X−i, c having non-
negative coefficients, and a is a positive constant (leading coefficient of X2

i in qi(X)).
As b and c are continuous, the discriminant b(·)2 − 4a · c(·) stays positive for some
open ball around x−i included inside of U (it is positive in x−i as we assume that
we have two distinct solutions). By making U smaller, we may assume that U is this
open ball. One of the two solutions has than to be the least non-negative solution.
As hx is the least non-negative solution for x−i, and hx is continuous, this also has to
hold for some open ball centered at x−i, wlog. U is this ball. So, hx and hi coincide
on U .

We turn to the case that qi(Xi,x−i) = 0 has only a single solution, i.e. hi(x−i).
Note that qi(X) is linear in Xi if, and only if, qi(Xi,x−i) is linear in Xi. Obviously,
if qi linear in Xi, then hi and hx coincide on U . Thus, consider the case that qi(X)
is quadratic in Xi, but qi(Xi,x−i) has only a single solution. This means that x−i

is a root of the discriminant, i.e. b(x−i) − 4ac(x−i) = 0. As hi(y−i) is a solution of
qi(Xi,y−i) = 0 for all y−i ∈ U , the discriminant is non-negative on U . If it equal
to zero on U , then we again have that hi is equal to hx on U . Therefore assume
that is positive in some point of U . As the discriminant is continuous, the solutions
change continuously with x−i. But this implies that for some y−i ∈ U there are at
least two yi, y

∗
i ∈ V such that (y−i, yi) and (y−i, y

∗
i ) are both located on the quadric

qi(X) = 0. But this contradicts the uniqueness of hx guaranteed by the implicit
function theorem.

Assume now that x ∈ Si. We then have

qi(x) = qi(x−i, hi(x−i)) = 0,

or equivalently

fi(x−i, hi(x−i)) = hi(x−i).

Calculating the gradient of both in x yields

f ′
i(x) · p′

i(x−i) = h′
i(x−i).

For the Jacobian of pi we obtain

p′
i(x−i) =




e⊤
1
...

e⊤
i−1

h′
i(x−i)
e⊤

i+1
...

e⊤
n




.
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This leads to

∂Xj
fi(x) + ∂Xi

fi(x) · ∂Xj
hi(x−i) = ∂Xj

hi(x−i)

which solved for ∂Xj
hi yields

∂Xj
hi(x−i) =

∂Xj
fi(x)

−∂Xi
qi(x)

.

As ∂Xi
qi(x) < 0 and both ∂Xj

fi and ∂Xi
qi monotonically increase with x, it follows

that ∂Xj
hi also monotonically increases with x. Finally, for j 6= i we have that

∂Xj
qi = ∂Xj

fi as qi = fi − Xi.
Lemma 8.8. For all x ∈ Si we have

∀y ∈ Si ∩ [x, µf ] : q′i(x) · (y − x) ≤ 0.

In particular

∀y ∈ Si ∩ [x, µf ] : yi ≥ xi +
∑

j 6=i

∂Xj
hi(x−i) · (yj − xj).

Proof. Let x ∈ Si, i.e. fi(x) = xi. We want to show that

q′i(x) · (y − x) ≤ 0

for all y ∈ Si ∩ [x, µf). As fi is quadratic in X, we may write

0 = qi(y)
= −yi + fi(y)

= −yi + fi(x)︸ ︷︷ ︸
=xi

+f ′
i(x) · (y − x) + (y − x)⊤ · A · (y − x)︸ ︷︷ ︸

≥0

≥ −yi + xi + f ′
i(x) · (y − x)

= f ′
i(x) · (y − x) − e⊤

i · (y − x)
= q′i(x) · (y − x)

where A is a symmetric square-matrix with non-negative components such that the
quadric terms of fi are given by X⊤AX.

The second claim is easily obtained by solving this inequality for yi and recalling

that by Lemma 8.4 we have ∂Xj
hi(x−i) =

∂Xj
qi(pi(x−i))

−∂Xi
qi(pi(x−i))

and ∂Xi
qi(pi(x−i)) < 0.

Proposition 8.9. It holds

x ∈ R ⇔ x ∈ [0, µf) ∧ q(x) ≥ 0.

Proof. Let x ∈ R and i ∈ {1, . . . , n}. Consider the function

g(t) := qi(pi(x−i) + tei).

As qi is a quadratic polynomial in X there exists a symmetric square-matrix A with
non-negative entries, a vector b, and a constant c such that

qi(X) = X⊤AX + b⊤X + c.
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It then follows that

qi(X + Y ) = qi(X) + q′i(X)Y + Y ⊤AY .

With qi(pi(x−i)) = 0 this implies

g(t) = q′i(pi(x−i))tei + t2 e⊤
i Aei︸ ︷︷ ︸

:=a≥0

= t · (∂Xi
qi(pi(x−i)) + a · t) .

As pi(x−i) ≺ µf (f is strongly connected and x ∈ [0, µf)), we know that
∂Xi

qi(pi(x−i)) < 0. Thus, g(t) has at most two zeros, one at 0, the other for some
t∗ ≥ 0.

For the direction (⇒) we only have to show that xi ≤ hi(x−i) implies that
qi(x) ≥ 0. This now easily follows as xi ≤ hi(x−i) implies that there is a t′ ≤ 0 with
pi(x−i) + tei = x. But for this t′ ≤ 0 we have qi(x) = g(t′) ≥ 0.

Consider therefore the other direction (⇐), that is x ∈ [0, µf) with q(x) ≥ 0.
Assume that x 6∈ R, i.e., for at least one i we have xi > hi(x−i). As qi(x) ≥ 0 there
has to be a t′′ > 0 with pi(x−i) + t′′ei = x and g(t′′) ≥ 0. This implies that a > 0
has to hold as otherwise g(t) would be linear in t and negative for t > 0. But then
the second root t∗ of g(t) has to be positive. Set x∗ = pi(x−i)+ t∗ei with qi(x

∗) = 0,
too.

A calculation similar to the one from above leads to

g(t + t∗) = qi(x
∗ + tei) = t · (∂Xi

qi(x
∗) + a · t) .

It follows that ∂Xi
qi(x

∗) has to be greater than zero for −t∗ to be a root (as a > 0).
But we have shown that ∂Xi

qi(x) < 0 for all x ∈ [0, µf).

Lemma 8.11. Let x(1), . . . ,x(n) ∈ [0, µf). Then the matrix




q′1(x
(1))

...
q′n(x(n))




is regular, i.e., the vectors {q′i(x
(i))|i = 1, . . . , n} are linearly independent.

Proof. Define x ∈ [0, µf) by setting

xi := max{x
(j)
i | j = 1, . . . , n}.

We then have x(i) ≤ x for all i, and x ≺ µf . As mentioned above, we therefore have
that q′(x) is regular with

q′(x)−1 = −
∑

k∈N

f ′(x)k.

As x(i) ≤ x it follows that




f ′
1(x

(1))
...

f ′
n(x(n))


 ≤ f ′(x).
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Hence, we also have

l∑

k=0




f ′
1(x

(1))
...

f ′
n(x(n))




l

≤
l∑

k=0

f ′(x)

implying that




f ′
1(x

(1))
...

f ′
n(x(n))




∗

and, thus,




q′1(x
(1))

...
q′n(x(n))




−1

exist.

So, the vectors {q′1(x
(1)), . . . , q′n(x(n))} have to be linearly independent.

Theorem 8.13. We have

x ≤ T (x) and N (x) ≤ T (x) ≤ µf .

Further, for y ∈ R with x ≤ y

T (x) ≤ T (y).

Proof. As x ≤ N (x) holds, we only need to show that N (x) ≤ T (x) ≤ µf . We
refer the reader to the proof of definition B.2 and Theorem B.3 for this.

We turn to the monotonicity of T . Let y ∈ R with x ≤ y. Assume first that x

and y are located on the surface Si, i.e.

hi(x−i) = xi and hi(y−i) = yi.

The tangent Ti|x at Si in x is spanned by the partial derivatives of pi in x. The part
Ti|x ∩ [x, µf ] relevant for T (x) can therefore be parameterized by

x +
∑

j 6=i

∂Xj
pi(x) · (uj − xj) with u−i ∈ [x−i, µf−i].

Similarly for Ti|y.
In particular, for u−i ∈ [y−i, µf−i] both points on the tangents defined by u−i

differ only in the ith coordinate being (the remaining coordinates are simply u−i)

ty = yi +
∑

j 6=i

∂Xj
hi(y) · (uj − yj), resp. tx = xi +

∑

j 6=i

∂Xj
hi(x) · (uj − xj).

By Lemma 8.8 we have

yi ≥ xi +
∑

j 6=i

∂Xj
hi(x) · (yj − xj).

From Lemma 8.4 it follows that ∂Xj
hi(y) ≥ ∂Xj

hi(x). Thus ty ≥ tx immediately
follows.

Now for x,y ∈ R with x ≤ y we can apply this result to the tangents at Si in
pi(x−i), resp. pi(y−i), and T (x) ≤ T (y) follows.
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Definition B.2. Let x ∈ R. For i = 1, . . . , n fix some ηi ∈ [xi, hi(x−i)], and set
η = (η1, . . . , ηn). We then let Tη(x) denote the solution of

q′i((x−i, ηi))(X − (x−i, ηi)) = −qi((x−i, ηi)) (i = 1, . . . , n).

Note that we have N (X) = Tx(X), and T (X) = T(h1(x−1),...,hn(x−n))(X).
Theorem B.3. Let x ∈ R. For i = 1, . . . , n fix some ηi ∈ [xi, hi(x−i)], and set

η = (η1, . . . , ηn). We then have

x ≤ N (x) ≤ Tη(x) ≤ T (x) ≤ µf

Proof. Set

πi := (x−i, ηi) and h := (h1(x−1), . . . , hn(x−n)).

We first show that x ≤ Tη(x):

Tη(x) =
(
q′i(πi)

)
)−1
i=1,...,n ·

(
q′i(πi) · πi − qi(πi)

)
i=1,...,n

=
(
f ′

i(πi)
)∗
i=1,...,n

·
(
−q′i(πi) · πi + qi(πi)

)
i=1,...,n

=
(
f ′

i(πi)
)∗
i=1,...,n

·
(
−q′i(πi) · (x + (ηi − xi) · ei) + qi(πi)

)
i=1,...,n

=
(
f ′

i(πi)
)∗
i=1,...,n︸ ︷︷ ︸

≥0 in every comp.

·
(
−q′i(πi) · x − ∂Xi

qi(πi)︸ ︷︷ ︸
<0

· (ηi − xi)︸ ︷︷ ︸
≥0

+ qi(πi)︸ ︷︷ ︸
≥0

)
i=1,...,n

≥ x.

Tη(x) is by definition the (unique) solution of the equation system defined by

q′i(πi)(X − πi) = −qi(πi) (i = 1, . . . , n).

As Tη(x) ≥ x we can also consider this system with the origin of the coordinate
system moved into x, i.e.

q′i(πi)(X + x − πi) = −qi(πi) (i = 1, . . . , n).

We show that this system is equivalent to an SPP. For this, we solve these equations
for Xi:

q′i(πi)(X + x − πi) = −qi(πi)

⇔ q′i(πi)X = −qi(πi) + q′i(πi) (πi − x)︸ ︷︷ ︸
=(ηi−xi)·ei

⇔ Xi =
∑

j 6=i

∂Xj
qi(πi)

−∂Xi
qi(πi)

· Xj + qi(πi)
−∂Xi

qi(πi)
+ (ηi − xi).

Again, we have ∂Xi
qi(πi) < 0 ≤ ∂Xj

qi(πi) as πi ∈ R, and q′i(πi) monotonically
increases with ηi. Hence, the above linear equation for Xi is indeed a polynomial with
non-negative coefficients. Denote by fη the SPP defined by these linear equations.
We then have µfη = Tη(x)−x as the above equation system has Tη(x)−x ≥ 0 as its

unique solution. Further, we know that the Kleene sequence
(
fk

η(0)
)
k∈N

converges to
µfη. We show that all coefficients of fη increase with η → h. This is straight-forward
for

∂Xj
qi(πi)

−∂Xi
qi(πi)
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as ∂Xi
qi(πi) < 0 ≤ ∂Xj

qi(πi), and all these terms increase with ηi → hi(x−i).
Consider therefore

0 ≥
qi(πi)

−∂Xi
qi(πi)

+ (ηi − xi) =
qi(πi) − ∂Xi

qi(πi)(ηi − xi)

−∂Xi
qi(πi)

.

We show that this term increases with ηi. Set δi := ηi−xi. We can find a non-negative,
symmetric square-matrix A, a vector b, and constant c such that

qi(X) = X⊤AX + b⊤X + c and q′i(X) = 2X⊤A + b⊤.

As πi = x + δiei we have

qi(πi) = qi(x + δiei) = qi(x) + ∂Xi
qi(x)δi + δ2

i Aii,

and

∂Xi
qi(πi) · δi = q′i(x + δiei)δiei = ∂Xi

qi(x)δi + 2δ2
i Aii.

This leads to

qi(πi) − ∂Xi
qi(πi)δi

−∂Xi
qi(πi)

=
qi(x) − δ2

i Aii

−∂Xi
qi(x) − 2δiAii

.

Deriving this w.r.t. δi yields:

−2Aiiδi

−∂Xi
qi(x)+2Aiiδi

− qi(x)−Aiiδ
2
i

(−∂Xi
qi(x)−2Aiiδi)2

(−2Aii)

=
2Aii∂Xi

qi(x)δi+4A2
iiδ

2
i +2Aiiqi(x)−2A2

iiδ
2
i

(−∂Xi
qi(x)−2Aiiδi)2

= 2Aii
Aiiδ

2
i +∂Xi

qi(x)δi+qi(x)

(−∂Xi
qi(x)−2Aiiδi)2

= 2Aii
qi(πi)

(−∂Xi
qi(πi))2

.

As qi(πi) ≥ 0 and Aii ≥ 0, it follows that

qi(πi)

−∂Xi
qi(πi)

+ (ηi − xi)

increases with ηi → hi(x−i). Thus, all coefficients of fη increase with ηi → hi(x−i),
and so for any η′ ∈ [η,h] it follows that

fη(y) ≤ fη′(y) for all y ≥ 0,

and

Tη(x) − x = µfη ≤ µfη′ = Tη′(x) − x.

As N (X) = Tx(X) and T (X) = Th(X) we may therefore conclude that

N (x) ≤ Tη(x) ≤ Tη′(x) ≤ T (x).

It remains to show that T (x) ≤ µf . This is equivalent to showing that µfh ≤ µf−x.
For fh(X) we have by definition and Lemma 8.4

(
fh(X)

)
i
=
∑

j 6=i

∂Xj
qi(pi(x−i))

−∂Xi
qi(pi(x−i))

Xj+(hi(x−i)−xi) =
∑

j 6=i

∂Xj
hi(x−i)Xj+(hi(x−i)−xi).
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By virtue of Lemma 8.8 it follows that µf is above all the tangents, i.e.

fh(µf − x) ≤ µf − x.

By monotonicity of fh we also have

fh(0) ≤ fh(µf − x).

A straight-forward induction therefore shows that

fk
h(0) ≤ µf − x (∀k ∈ N),

and, thus,

T (x) − x = µfh ≤ µf − x.
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