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Abstract. This paper presents a novel generic technique for solving dataflow equations in interproce-
dural dataflow-analysis. The technique is obtained by generalizing Newton’s method for computing a
zero of a differentiable function to ω-continuous semirings. Complete semilattices, the common program
analysis framework, are a special class of ω-continuous semirings. We show that our generalized method
always converges to the solution, and requires at most as many iterations as current methods based
on Kleene’s fixed-point theorem. We also show that, contrary to Kleene’s method, Newton’s method
always terminates for arbitrary idempotent and commutative semirings. Furthermore, the number of
iterations required to solve a system of n equations is at most n.

1 Introduction

This paper presents a novel generic technique for solving dataflow equations in interprocedural dataflow-
analysis. It is obtained by generalizing Newton’s method, the 300-year-old technique for computing a zero
of a differentiable function.

Our approach to interprocedural analysis is very similar to Sharir and Pnueli’s functional approach
[SP81,JM82,KS92,RHS95,SRH96,NNH99,RSJM05]. Sharir and Pnueli assume the following as given: a (join-
) semilattice1 of values, a mapping assigning to every program instruction a value, and a concatenation
operator that, given the values of two sequences of instructions, returns the value corresponding to their
concatenation. Sharir and Pnueli assume that the concatenation operator distributes over the lattice’s join.2

Sharir and Pnueli define a system of abstract data flow equations, containing one variable for each program
point. They show that for every procedure P of the program and for every program point p of P , the least
solution of the system is the join of the values of all valid program paths starting at the initial node of P
and leading to p. Sharir and Pnueli’s result was later extended by [KS92] to programs with local variables
and to non-distributive concatenation operators, which allows to deal with certain non-distributive analyses
[NNH99].

We slightly generalize Sharir and Pnueli’s setting. Loosely speaking, we allow to replace the join operator
with any operator satisfying the same algebraic properties but possibly idempotence. In algebraic terms, we
extend the framework from the class of lattices considered in [SP81] to an ω-continuous semiring [Kui97],
an algebraic structure with two operations, usually called sum and product. The interest of this otherwise
simple extension is that our framework now encompasses equations over the semiring of the nonnegative reals
with addition and multiplication. This allows us to compare the efficiency of generic solution methods for
dataflow analysis when applied to the reals, with the efficiency of methods applied by numerical mathematics,
in particular Newton’s method.

It is well-known that Newton’s method, when it converges to a solution, usually converges much faster
than classical fixed-point iteration (see e.g. [OR70]). Furthermore, Etessami and Yannakakis have recently
proved that Newton’s method is guaranteed to converge for an analysis concerning the probability of ter-
mination of recursive programs [EY05]. These facts raise the question whether Newton’s method can be

⋆ This work was partially supported by the DFG project Algorithms for Software Model Checking.
1 For reasons that will be clear later, we use join-semilattices rather than meet-semilattices, deviating from the

classical dataflow analysis literature such as [Kil73,KU77,SP81]. As a consequence, we also replace greatest fixed
points by least fixed points, meet-over-all-paths by join-over-all-paths, etc. This change is purely notational.

2 Actually, in [SP81] the value of a program instruction is the function describing its effect on program variables, and
the extension operator is function composition. However, the extension to an arbitrary distributive concatenation
operator is unproblematic.



generalized to the more abstract dataflow setting, where values are arbitrary entities, while preserving these
good properties.

In the first part of the paper we show that the generalization is indeed possible. Inspired by work of
Hopkins and Kozen on Kleene algebras [HK99], we show that the notion of a differential of a function lying
at the heart of Newton’s method, and the method itself, can be suitably generalized. This allows to apply
Newton’s method to, for instance, language equations.

In the second part of the paper we study the properties of Newton’s method on idempotent semirings,
the classical domain of program analysis. Recall that the method is iterative: it constructs better and better
approximations to the solution of the equation system. We obtain a characterization of the approximants,
and use it to derive two results, both showing that well-known concepts and procedures of the theory of
context-free languages and Kleene algebras are particular instances of application of Newton’s method. In
the first instance we are interested in analysing the complete traces (terminating executions) of a program. In
the simplest case of control-flow analysis, where data is abstracted away, the complete traces are a context-
free language. We show that Newton’s method corresponds to approximating a context-free language by
context-free languages of finite index, a classical notion of language theory [Ynt67,GS68,Sal69,Gru71]. In the
second instance we examine commutative idempotent semirings, previously studied by Hopkins and Kozen
in a beautiful paper [HK99]. Hopkins and Kozen propose a generic solution method for the equations, and
prove that it terminates after O(3n) iterations, where n is the number of equations. We show that their
method is in fact Newton’s method. Applying our characterization of the approximants, we further prove
that it terminates after at most n iterations.

Finally, in a short section we extend our framework to the non-distributive case. We show that Newton’s
method, like the classical fixed-point iteration, computes an overapproximation of the join of the values of
all valid program paths.

In the rest of this introduction we go again through the paper’s skeleton sketched above, but providing
some more details.

1.1 A Summary of Sharir and Pnueli’s Approach

[SP81] provide, for distributive analyses, a system of equations such that, for every procedure P of the
program and for every program point p of P , the p-component of the least solution of the equation system
equals the join of the values of all valid program paths starting at the initial node of P and leading to p. We
show in this subsection how to construct this system of equations.

Consider a program with three procedures X,Y,Z, whose flow-graphs are shown in Figure 1. Nodes
correspond to program points, and edges to program instructions. For instance, procedure X can execute b
and terminate, or execute a, call itself recursively, and, after the recursive call has terminated, call Y .
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Fig. 1. Flowgraphs of three procedures



Sharir and Pnueli assume as given: a complete lattice3 of values with a join operator ∨; a mapping φ assigning
to each non-call edge (m,n) a lattice value φ(m,n), and a concatenation operator · that distributes over ∨
and has a neutral element 1. The system of equations contains a variable and an equation for each program
node. If n is the initial node of a procedure then it contributes the equation vn = 1, where vn denotes n’s
variable. Otherwise, it contributes the equation

vn =
∨

m∈pred(n)

vm · h(m,n)

where pred(n) denotes the set of immediate predecessors of n, and h(m,n) is defined as follows: if (m,n)
is a call edge calling, e.g., procedure X, then h(m,n) is the variable for the return node of X; otherwise
h(m,n) = φ(m,n).

The system of equations for Figure 1 can be more compactly represented if variables for all program
points other than return points are eliminated by substitution. Only three equations remain, namely those
for the return points n4, n10, and n14. If moreover, and abusing language, we reuse X,Y,Z to denote the
variables for these points, and a, . . . , i to denote the values φ(n1, n2), . . . , φ(n11, n14), we obtain the system

X = a · X · Y ∨ b

Y = c · Y · Z ∨ d · Y · X ∨ e (1)

Z = g · X · h ∨ i

which very closely resembles the structure of the flowgraphs. Since the right-hand-sides of the equations are
monotonic mappings, and · distributes over ∨, the existence of the least fixed point is guaranteed by Kleene’s
fixed-point theorem.

1.2 A Slight Generalization: From Semilattices to Semirings

Let us examine the properties of the join operator ∨. First of all, since the lattice is complete, it is defined for
arbitrary, finite or countably infinite, sets of lattice elements. Furthermore, it is associative, commutative,
idempotent, and concatenation distributes over it. If we use the symbols 0 for the bottom element of the
lattice (corresponding to an abort operation) and 1 for the element corresponding to a NOP instruction, then
we have 0∨a = a∨0 = a and 1 ·a = a ·1 = a for every a. It is argued in [SF00] that one can transform every
program analysis to an essentially equivalent one that satisfies 0 · a = a · 0 = 0. So the lattice, together with
the two operations ∨ and · and the elements 0 and 1, constitutes an idempotent semiring. In the following
we write ‘+’ for ‘∨’ to conform with the standard semiring notation.

Idempotence of the join operator is not crucial for the existence of the least fixed point; it can be
replaced by a weaker property. Consider the relation ⊑ on semiring elements defined as follows: a ⊑ a + b
for all elements a, b. A semiring is naturally ordered if this relation is a partial order, and a naturally ordered
semiring in which infinite sums exist and satisfy standard properties is called ω-continuous. Using Kleene’s
fixed-point theorem it is easy to show that systems of equations over ω-continuous semirings still have a
least fixed point with respect to the partial order ⊑ (see for instance [Kui97]).

As an example of application of this more general setting, assume that the program of Figure 1 is proba-
bilistic, and the values a, . . . , i are real numbers corresponding to the probabilities of taking the transitions.
A particular case is shown in Figure 2. The semiring operations are addition and multiplication over the
nonnegative reals. Notice that addition is not idempotent. The semiring is ω-continuous if a new element ∞
with the usual properties is added. It is not difficult to show [EKM04,EY05] that the least solution of the
system

X = 0.4XY + 0.6

3 More precisely, [SP81] initially considers semilattices with a least and a greatest element that satisfy the ascending-
chain property (every non-decreasing chain eventually becomes stationary). However, the paper later concentrates
on finite lattices, which are complete.
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Fig. 2. Probabilistic flowgraphs

Y = 0.3Y Z + 0.4Y X + 0.3

Z = 0.3X + 0.7

yields the probability of termination of each procedure. (Incidentally, notice that, contrary to the intraproce-
dural case, this probability may be different from 1 even if every execution can be extended to a terminating
execution.)

1.3 Solving Systems of Equations

Current generic algorithms for solving Sharir and Pnueli’s equations (like the classical worklist algorithm of
dataflow analysis) are based on variants of Kleene’s fixed-point theorem [Kui97]. The theorem states that
the least solution µf of a system of equations X = f(X) over an ω-continuous semiring is equal to the
supremum of the sequence (κ(i))i∈N of Kleene approximants given by κ(0) = 0 and κ(i+1) = f(κ(i)). This
yields a procedure (let us call it Kleene’s method) to compute or at least approximate µf . If the domain
satisfies the well-known ascending chain condition [NNH99], then the procedure terminates, because there
exists an i such that κ(i) = κ(i+1) = µf .

Kleene’s method is generic and robust: it always converges when started at the vector 0 of 0-elements, for
any ω-continuous semiring and for any system of equations. On the other hand, it often fails to terminate,
and it can converge very slowly to the solution. We illustrate this point by means of two simple examples.
Consider the equation X = a · X + b over the lattice of subsets of the language {a, b}∗. The least solution
is the regular language a∗b, but we have κ(i) = {b, ab, . . . , ai−1b}, i.e., the solution is not reached in any
finite number of steps. For our second example consider a very simple probabilistic procedure that can either
terminate or call itself twice, both with probability 1/2. The probability of termination of this program is
given by the least solution of the equation X = 1/2+1/2X2. It is easy to see that the least solution is equal
to 1, but we have κ(i) ≤ 1 − 1

i+1 for every i ≥ 0, i.e., in order to approximate the solution within i bits of

precision we have to compute about 2i Kleene approximants. For instance, we have κ(200) = 0.9990, i.e., 200
iterations produce only three digits of precision.

After our slight generalization of Sharir and Pnueli’s framework, quantitative analyses like the probability
of termination fall within the scope of the approach. So we can look at numerical mathematics for help with
the inefficiencies of Kleene’s method.

As could be expected, faster approximation techniques for equations over the reals have been known for a
long time. In particular, Newton’s method, suggested by Isaac Newton more than 300 years ago, is a standard
efficient technique to approximate a zero of a differentiable function, and can be adapted to our problem.
Since the least solution of X = 1/2 + 1/2X2 is a zero of 1/2 + 1/2X2 − X, the method can be applied, and
it yields ν(i) = 1− 2−i for the i-th Newton approximant. So the i-th Newton approximant already has i bits
of precision, instead of log i bits for the Kleene approximant.

However, Newton’s method also has a number of disadvantages, at least at first sight. Newton’s method
on the real field is by far not as robust and well behaved as Kleene’s method on semirings. The method may
converge very slowly, converge only locally (only when started in a small neighborhood of the zero), or even



not converge at all [OR70]. So we face the following situation. Kleene’s method, a robust and general solution
technique for arbitrary ω-continuous semirings, is inefficient in many cases. Newton’s method is usually very
efficient, but it is only defined for the real field, and it is not robust.

As part of their study of Recursive Markov Chains, [EY05] showed that a variant of Newton’s method
is robust for certain systems of equations over the real semiring: the method always converges when started
at zero. In other words, moving from the real field to the real semiring (only nonnegative numbers) makes
the instability problems disappear. Inspired by this work, in this paper we obtain a more general result.
We show that Newton’s method can be generalized to arbitrary ω-continuous semirings, and prove that on
these structures it is as robust as Kleene’s method. We then proceed to further analyse our generalized
Newton’s method. We provide a characterization of the Newton approximants, and apply it to idempotent
semirings, the structures of classical program analysis. We first study the language semiring, where equation
variables are interpreted over languages of finite words, sum is interpreted as union of languages, and product
as concatenation. The least solutions of fixed-point equations are the context-free languages, and so our
generalized Newton’s method can be seen as a tool for approximating context-free languages. We show that
the Newton approximants are the context-free languages of finite index, a well-known class studied since
the 1960s in language theory [Ynt67,GS68,Sal69,Gru71]. We then proceed to study the case of commutative
and idempotent semirings. Loosely speaking, these semirings correspond to counting analysis, in which one
is interested on how often program points are visited, but not in which order. These semirings do not
always satisfy the ascending chain condition, and Kleene’s method may not terminate. We show that a
very elegant iterative solution method for these semirings due to [HK99], is exactly Newton’s method, and
always terminates in a finite number of steps. As mentioned above, we further use our characterization of
Newton approximants to show that the least fixed point is reached after at most n iterations, a tight bound,
improving on the O(3n) bound of [HK99].

In the final section of the paper we study the case in which · does not distribute over +, and only the
inequality a · (b + c) ⊒ a · b + a · c holds. It is well-known that in this case classical fixed-point iteration
yields an overapproximation of the join-over-all-paths value, still useful for program analysis purposes (see
e.g. [KS92,RHS95,SRH96,NNH99]). We show that the same property holds for Newton’s method.

The paper is organized as follows. Section 2 introduces ω-continuous semirings, systems of fixed-point
equations, and some semirings investigated in the rest of the paper. Section 3 recalls Newton’s method,
and generalizes it to arbitrary ω-continuous semirings. Section 4 characterizes the Newton approximants in
terms of derivation trees, a generalization of the derivation trees of language theory. Section 5 considers
the particular case of idempotent semirings and applies the characterization to the language semiring. Sec-
tion 6 applies the characterization to idempotent and commutative semirings. Finally, Section 7 shows that
Newton’s method can also be applied to non-distributive program analyses.

2 ω-Continuous Semirings

Definition 2.1. A semiring is a tuple 〈S,+, ·, 0, 1〉 where S is a set containing two distinguished elements
0 and 1, and the binary operations +, · : S × S → S satisfy the following conditions:

(1) 〈S,+, 0〉 is a commutative monoid.

(2) 〈S, ·, 1〉 is a monoid.

(3) 0 · a = a · 0 = 0 for all a ∈ S.

(4) a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c for all a, b, c ∈ S.

A semiring 〈S,+, ·, 0, 1〉 is ω-continuous if the following additional conditions hold:

(5) The relation ⊑ := {(a, b) ∈ S × S | ∃d ∈ S : a + d = b} is a partial order.

(6) Every ω-chain (ai)i∈N (i.e. ai ⊑ ai+1 with ai ∈ S) has a supremum w.r.t. ⊑ denoted by supi∈N ai.

(7) Given an arbitrary sequence (bi)i∈N, define

∑

i∈N

bi := sup{b0 + b1 + . . . + bi | i ∈ N}



(the supremum exists by condition (6)). For every sequence (ai)i∈N, for every c ∈ S, and for every
partition (Ij)j∈J of N:

c ·

(
∑

i∈N

ai

)
=
∑

i∈N

(c · ai),

(
∑

i∈N

ai

)
· c =

∑

i∈N

(ai · c),
∑

j∈J



∑

i∈Ij

aj


 =

∑

i∈N

ai .

An (ω-continuous) semiring is idempotent, if a + a = a holds for all a ∈ S. It is commutative, if a · b = b · a
for all a, b ∈ S. In an ω-continuous semiring we define the Kleene-star ∗ : S → S by

a∗ :=
∑

k∈N

ak = sup{1 + a + a · a + . . . + ak|k ∈ N} for a ∈ S.

We have the following important property:

Lemma 2.2. In any ω-continuous semiring 〈S,+, ·, 0, 1〉 addition and multiplication are ω-continuous, i.e.
for any ω-chain (ai)i∈N and any c ∈ S we have

c · (sup
i∈N

ai) = sup
i∈N

(c · ai), (sup
i∈N

ai) · c = sup
i∈N

(ai · c), c + (sup
i∈N

ai) = sup
i∈N

(c + ai).

Proof. By (5) and (6) in the definition above, for any ω-chain (ai)i∈N, there exists a sequence (di)i∈N such
that d0 = a0 and ai +di = ai+1 (i.e. di is a difference of ai+1 and ai), and so supi∈N ai =

∑
i∈N

di. The result
follows by applying (7) to this sequence.

Example 2.3. Common examples of ω-continuous semirings are the real semiring, i.e. non-negative real num-
bers extended by infinity 〈R≥0 ∪ {∞},+, ·, 0, 1〉, and the language semiring over some finite alphabet Σ, i.e.
〈2Σ∗

,∪, ·, ∅, {ε}〉 with · the canonical concatenation of languages, and ε the empty word. In both of these
instances the natural order coincides with the canonical order on the respective carrier, i.e., ⊑≡≤, resp.
⊑≡⊆ in the case of the real semiring, resp. the language semiring.

In the following we often write ab instead of a · b.

2.1 Vectors, Polynomials and Power Series.

Let S be an ω-continuous semiring and let X be a finite set of variables. A vector is a mapping v : X → S
which assigns every variable X ∈ X the value v(X). We usually write vX for v(X). If there is some natural
total order given on X like e.g. the lexicographic order in the case X = {X,Y,Z} or the total order on
the indices in the case X = {X1,X2,X3} we will also write a vector v as a column vector of dimension
|X | enumerating the values starting with the lowest variable as the topmost value. The set of all vectors is
denoted by V .

Given a countable set I and a vector vi for every i ∈ I, we denote by
∑

i∈I vi the vector given by(∑
i∈I vi

)
X

=
∑

i∈I(vi)X for every X ∈ X . Throughout the paper we use bold letters like ‘v’ or ‘a’ for
vectors.

A monomial is a finite expression a1X1a2X2 · · · akXkak+1 , where k ≥ 0, a1, . . . , ak+1 ∈ S and
X1, . . . ,Xk ∈ X . Note that this more general definition of monomial is necessary as we do not require
that multiplication is commutative. A polynomial is an expression of the form m1 + . . . + mk where k ≥ 0
and m1, . . . ,mk are monomials. A power series is an expression of the form

∑
i∈I mi, where I is a countable

set and mi is a monomial for every i ∈ I.
Given a monomial f = a1X1a2X2 . . . akXkak+1 and a vector v, we define f(v), the value of f at v, as

a1vX1
a2vX2

· · · akvXk
ak+1. We extend this to any power series f =

∑
i∈I fi by f(v) =

∑
i∈I fi(v).

A vector of power series is a mapping f that assigns to each variable X ∈ X a power series f(X). Again
we write fX for f(X). Given a vector v, we define f(v) as the vector satisfying (f(v))X = fX(v) for every
X ∈ X , i.e., f(v) is the vector that assigns to X the result of evaluating the power series fX at v. So, f

naturally induces a mapping f : V → V .



2.2 Fixed-Point Equations and Kleene’s Theorem.

The partial order ⊑ on the semiring S can be lifted to a partial order on vectors, also denoted by ⊑, and
defined by v ⊑ v′ if vX ⊑ v′

X for every X ∈ X .
Given a vector of power series f , we are interested in the least fixed point of f , i.e., the least vector v

w.r.t. ⊑ satisfying v = f(v). We briefly recall Kleene’s theorem, which guarantees that the least fixed point
exists.

A mapping f : S → S is monotone if a ⊑ b implies f(a) ⊑ f(b), and ω-continuous if for any infinite
chain a0 ⊑ a1 ⊑ a2 ⊑ . . . we have sup{f(ai)} = f(sup{ai}). These definitions are extended to mappings
f : V → V from vectors to vectors by requiring them to hold in every component of f . The following result
is taken from [Kui97].

Proposition 2.4. Let f be a vector of power series. The mapping induced by f is monotone and ω-
continuous. Hence, by Kleene’s theorem, f has a unique least fixed point µf . Further, µf is the supremum
(w.r.t. ⊑) of the Kleene sequence given by κ(0) = f(0), and κ(i+1) = f(κ(i)).4

2.3 Some Semiring Interpretations.

We recall that different interesting pieces of information about the program of Figure 1 correspond to the
least solution of Equations (1) over different semirings.5 For the rest of the section let Σ = {a, b, . . . , i} be
the set of actions in the program, and let σ denote an arbitrary element of Σ.

Language interpretation Consider the following semiring. The carrier is 2Σ∗

(i.e., the set of languages over
Σ). The semiring element σ is interpreted as the singleton language {σ}. The sum and product operations
are union and concatenation of languages, respectively. We call it language semiring over Σ. Under this
interpretation, Equations (1) are nothing but the following context-free grammar in Backus-Naur form:

X → aXY | b Y → cY Z | dY X | e Z → gXh | i

The least solution of (1) is the triple (L(X), L(Y ), L(Z)), where, for U ∈ {X,Y,Z}, L(U) denotes the set
of terminating executions of the program with U as main procedure, or, in language-theoretic terms, the
language of the associated grammar with U as axiom.

Relational interpretation Assume that an action σ corresponds to a program instruction whose semantics
is described by means of a relation Rσ(V, V ′) over a set V of program variables (as usual, primed and
unprimed variables correspond to the values before and after executing the instruction). Consider now the
following semiring. The carrier is the set of all relations over (V, V ′). The semiring element σ is interpreted
as the relation Rσ. The sum and product operations are union and join of relations, respectively, i.e.,
(R1 · R2)(V, V ′) = ∃V ′′R1(V, V ′′) ∧ R2(V

′′, V ′). Under this interpretation, the U -component of the least
solution of (1) is the summary relation RU (V, V ′) containing the pairs V, V ′ such that if procedure U starts
at valuation V , then it may terminate at valuation V ′.

Counting interpretation Assume we wish to know how many as, bs, etc. we can observe in a (terminating)
execution of the program, but we are not interested in the order in which they occur. In the terminology of
abstract interpretation, we abstract an execution w ∈ Σ∗ by the vector (na, . . . , ni) ∈ N

|Σ| where na, . . . , ni

are the number of occurrences of a, . . . , i in w. We call (na, . . . , ni) the Parikh image of w. The Parikh images

of L(X), L(Y ), L(Z) are the least solution of (1) for the following semiring. The carrier is 2N
|Σ|

. The j-th
action of Σ is interpreted as the singleton set {(0, . . . , 0, 1, 0 . . . , 0)} with the “1” at the j-th position. The
sum operation is set union, and the product operation is given by

S · T = {(sa + ta, . . . , si + ti) | (sa, . . . , si) ∈ S, (ta, . . . , ti) ∈ T} .

4 Defining κ(0) = 0 would be more straightforward, but less convenient for this paper.
5 This will be no surprise for the reader acquainted with abstract interpretation, but the examples will be used all

throughout the paper.



Probabilistic interpretations Assume that the choices between actions are stochastic. For instance,
actions a and b are chosen with probability p and (1−p), respectively. The probability of termination is given
by the least solution of (1) when interpreted over the following semiring (the real semiring) [EKM04,EY05].
The carrier is the set of non-negative real numbers, enriched with an additional element ∞. The semiring
element σ is interpreted as the probability of choosing σ among all enabled actions. Sum and product are
the standard operations on real numbers, suitably extended to ∞.

Assume now that actions are assigned not only a probability, but also a duration. Let dσ denote the
duration of σ. We are interested in the expected termination time of the program, under the condition that
the program terminates (the conditional expected time). For this we consider the following semiring. The
elements are the set of pairs (r1, r2), where r1, r2 are non-negative reals or ∞. We interpret σ as the pair
(pσ, dσ), i.e., the probability and the duration of σ. The sum operation is defined as follows (where to simplify
the notation we use +e and ·e for the operations of the semiring, and + and · for sum and product of reals):

(p1, d1) +e (p2, d2) =

(
p1 + p2,

p1 · d1 + p2 · d2

p1 + p2

)

(p1, d1) ·e (p2, d2) = (p1 · p2, d1 + d2)

The reader can easily check that this definition satisfies the semiring axioms. The U -component of the least
solution of (1) is now the pair (tU , eU ), where tU is the probability that procedure U terminates, and eU is
its conditional expected time.

3 Newton’s Method for ω-Continuous Semirings

We introduce our generalization of Newton’s method for ω-continuous semirings. In Section 3.1 we consider
the univariate case, i.e. the case of one equation in a single variable, which already allows us to introduce
all important ideas. Here we first recall Newton’s method as known from calculus, i.e., as a method for
approximating a zero of a differentiable function. We then take a close look at the analytical definition, and
identify the obstacles for a generalization to ω-continuous semirings. Finally, we propose a definition that
overcomes the obstacles. In Section 3.2 we turn to the multivariate case. Sections 3.3 and 3.4 prove that our
generalization of Newton’s method is well-defined and converges to the least fixed point.

3.1 The Univariate Case

Given a differentiable function g : R → R, Newton’s method computes a zero of g, i.e., a solution of the
equation g(X) = 0. The method starts at some value ν(0) “close enough” to the zero, and proceeds iteratively:
given ν(i), it computes a value ν(i+1) closer to the zero than ν(i). For that, the method linearizes g at ν(i),
i.e., computes the tangent to g passing through the point (ν(i), g(ν(i))), and takes ν(i+1) as the zero of the
tangent (i.e., the x-coordinate of the point at which the tangent cuts the x-axis).

It is convenient for our purposes to formulate Newton’s method in terms of the differential of g at a given
point v ∈ R. Recall that the differential of g is the mapping Dg|v : R → R that assigns to each v ∈ R the
linear function describing the tangent of g at the point (v, g(v)) in the coordinate system having (v, g(v))
as origin. If we denote the differential of g at v by Dg|v, then we have Dg|v(X) = g′(v) · X (for example,
if g(X) = X2 + 3X + 1, then Dg|3(X) = 9X). In terms of differentials, Newton’s method is formulated as
follows. Starting at some ν(0), compute iteratively ν(i+1) = ν(i) +∆(i), where ∆(i) is the solution of the linear
equation Dg|ν(i)(X) + g(ν(i)) = 0 (assume for simplicity that the solution of the linear system is unique).

Computing the solution of a fixed-point equation, f(X) = X amounts to computing a zero of g(X) =
f(X) − X, and so we can apply Newton’s method. Since for every real number v we have Dg|v(X) =
Df |v(X) − X, the method looks as follows:

Starting at some ν(0), compute iteratively

ν(i+1) = ν(i) + ∆(i) (2)

where ∆(i) is the solution of the linear equation

Df |ν(i)(X) + f(ν(i)) − ν(i) = X . (3)



So Newton’s method “breaks down” the problem of finding a solution to a non-linear system f(X) = X
into finding solutions to the sequence (3) of linear systems.

Generalization Generalizing Newton’s method to arbitrary ω-continuous semirings requires to overcome
two obstacles. First, the notion of differential seems to require a richer algebraic structure than a semiring:
differentials are usually defined in terms of derivatives, which are the limit of a quotient of differences, which
requires both the sum and product operations to have inverses. Second, equation (3) contains the term
f(ν(i)) − ν(i), which again seems to be defined only if summation has an inverse.

The first obstacle Differentiable functions satisfy well known algebraic rules with respect to sums and prod-
ucts of functions. We take these rules as the definition of the differential of a power series f over an ω-
continuous semiring S. We remark that this definition of differential generalizes the usual algebraic definition
of derivatives.

Definition 3.1. Let f be a power series in one variable X over an ω-continuous semiring S. The differential
of f at the point v is the mapping Df |v : S → S inductively defined as follows for every b ∈ S:

Df |v(b) =





0 if f ∈ S
b if f = X

Dg|v(b) · h(v) + g(v) · Dh|v(b) if f = g · h∑
i∈I Dfi|v(b) if f =

∑
i∈I fi(b) .

Example 3.2. First consider a polynomial f over some commutative ω-continuous semiring. Because of
commutative multiplication, we may write any monomial as a · Xk for some k ∈ N and a ∈ S, and so
f =

∑n
k=0 ak · Xk for suitable n ∈ N and ak ∈ S. Let f ′ denote the usual algebraic derivative of f w.r.t. X,

i.e. f ′ =
∑n

k=1 k · ak · Xk−1 where k · ak is an abbreviation of
∑k

i=1 ak. We then have

Df |v(b) =
∑n

k=0 D(ak · Xk)|v(b)

=
∑n

k=0(Dak|v(b) · (Xk)(v) +
∑k−1

j=0 ak · (Xj)(v) · DX|v(b) · (Xk−1−j)(v))

=
∑n

k=0

∑k−1
j=0 ak · vj · DX|v(b) · vk−1−j

= (
∑n

k=1 k · ak · vk−1) · b
= f ′(v) · b.

So, on commutative semirings, we have Df |v(b) = f ′(v) · b for all v, b ∈ S.
Now, assume that multiplication is not commutative, and consider the simple case of a quadratic mono-

mial m = a0Xa1Xa2. We then have

Dm|v(b) = a0 · DX|v(b) · a1 · v · a2 + a0 · v · a1 · DX|v(b) · a2

= a0 · b · a1 · v · a2 + a0 · v · a1 · b · a2.

The important point here is that the differential “remembers” the position of the variables, and therefore
not simply appends the value b. ⊓⊔

The second obstacle Profiting from the fact that 0 is the unique minimal element of S with respect to ⊑,
we fix ν(0) = f(0), which guarantees ν(0) ⊑ f(ν(0)). We guess that with this choice ν(i) ⊑ f(ν(i)) will hold
not only for i = 0, but for every i ≥ 0 (the correctness of this guess is proved in Theorem 3.8). If the guess
is correct, then, by the definition of ⊑, the semiring contains an element δ(i) such that f(ν(i)) = ν(i) + δ(i).
We replace f(ν(i)) − ν(i) by any such δ(i). This leads to the following definition:

Definition 3.3. Let f be a power series in one variable. A Newton sequence (ν(i))i∈N is given by:

ν(0) = f(0) and ν(i+1) = ν(i) + ∆(i) (4)

where ∆(i) is the least solution of
Df |ν(i)(X) + δ(i) = X (5)

and δ(i) is any element satisfying f(ν(i)) = ν(i) + δ(i).



In Section 3.3 we show that Newton sequences always exist (i.e., there is always at least one possible
choice for δ(i)), and that they all converge at least as fast as the Kleene sequence. More precisely, we show
that for every i ≥ 0

κ(i) ⊑ ν(i) ⊑ ν(i+1) ⊑ µf .

Since we have µf = supi∈N κ(i) by Kleene’s theorem, Newton sequences converge to µf .
In general, there can be more than one choice for δ(i). In Section 3.4 we show, however, that the Newton

sequence (ν(i))i≥0 itself is uniquely determined by f (and S). In other words, the choice of δ(i) does not
influence the Newton approximants ν(i).

Before proving these results, let us consider some examples.

Examples We compute the Newton sequence for a program that can execute a and terminate, or execute b
and then call itself twice, recursively (the abstract scheme of a divide-and-conquer procedure). The abstract
equation of the program is

X = a + b · X · X (6)

The real semiring Consider the case a = b = 1/2 (we can interpret a and b as probabilities). We have
Df |v(X) = v ·X, and one single possible choice for δ(i), namely δ(i) = f(ν(i))−ν(i) = 1/2+1/2 (ν(i))2−ν(i).
Equation (5) becomes

ν(i) X + 1/2 + 1/2 (ν(i))2 − ν(i) = X

with ∆(i) = (1 − ν(i))/2 as unique solution. We get

ν(0) = 1/2 ν(i+1) = (1 + ν(i))/2

and therefore ν(i) = 1 − 2(i+1). So the Newton sequence converges to 1, and gains one bit of accuracy per
iteration.

The language semiring Consider the language semiring with Σ = {a, b}. The product operation is con-
catenation of languages, and hence non-commutative. So we have Df |v(X) = bvX + bXv. We show in
Proposition 5.1 that when sum is idempotent (as in this case, where it is union of languages) the definition
of the Newton sequence can be simplified to

ν(0) = f(0) and ν(i+1) = ∆(i), (7)

where ∆(i) is the least solution of
Df |ν(i)(X) + f(ν(i)) = X . (8)

With f = a + b · X · X from Equation (6), Equation (8) becomes

bν(i)X + bXν(i)

︸ ︷︷ ︸
Df |

ν(i) (X)

+ a + bν(i)ν(i)

︸ ︷︷ ︸
f(ν(i))

= X . (9)

Its least solution (which by (7) is equal to (i + 1)-th Newton approximant) is a context-free language. Let
G(i) be a grammar with axiom S(i) such that ν(i) = L(G(i)). Since ν(0) = f(0), the grammar G(0) contains
one single production, namely S(0) → a. Equation (9) allows us to define G(i+1) in terms of G(i), and we get:

G(0) = {S(0) → a}
G(i+1) = G(i) ∪ {S(i+1) → a | bS(i+1)S(i) | bS(i)S(i+1) | bS(i)S(i)}

Let G = {S → a | bSS} be the grammar derived from Equation (6). We have L(G) =
⋃n

i=1 L(G(i)).
It is easy to see that L(G(i)) contains the words of L(G) of index i + 1. Loosely speaking, the index of a
word w ∈ L(G) is the least number i such that some derivation of w contains no intermediate word having
more than i occurrences of variables [Sal69]. Formally, the index of w ∈ L(G) is the least number i for
which a derivation X = α0 ⇒ · · · ⇒ αr = w exists such that for every i ∈ {0, . . . , r} the projection of αi

onto {X1, . . . ,Xn} has at most length i. In Section 5.1 we show that this characterization of the Newton
approximants holds in general, i.e., the i-th Newton approximant of the language generated by a grammar
G contains the words of L(G) of index at most i + 1.



The counting semiring Consider the counting semiring with ra = {(1, 0)} and rb = {(0, 1)}. Since the sum
operation is union of sets of vectors, it is idempotent and Equations (7) and (8) hold. Since the product
operation is now commutative, we obtain for our example

b · ν(i) · X + a + b · ν(i) · ν(i) = X (10)

Using Kleene’s fixed-point theorem (Proposition 2.4), it is easy to see that the least solution of a linear
equation X = u · X + v over a commutative ω-continuous semiring is u∗ · v, where u∗ =

∑
i∈N

ui. The least

solution ∆(i) of Equation (10) is then given by

∆(i) = (rb · ν
(i))∗ · (ra + rb · ν

(i) · ν(i))

and we obtain:

ν(0) = ra = {(1, 0)}
ν(1) = (rb · ra)∗ · (ra + rb · ra · ra) = {(n, n) | n ≥ 0} · {(1, 0), (2, 1)}

= {(n + 1, n) | n ≥ 0}
ν(2) = ({(n, n) | n ≥ 1})∗ · ({(1, 0)} ∪ {(2n + 2, 2n + 1) | n ≥ 0})

= {(n + 1, n) | n ≥ 0}

So the Newton sequence reaches a fixed point after one iteration. In Section 6 we show that the Newton
sequence of a system of n equations over any commutative and idempotent semiring converges after at most
n iterations. Further note that the counting semiring does not satisfy the ascending-chain property, i.e. there
are monotonically increasing sequences in the counting semiring which do not become stationary. Therefore,
the Kleene sequence (and possible variations) does not reach µf after a finite number of steps in general.

3.2 The Multivariate Case

Newton’s method can be easily generalized to the multivariate case. Given differentiable functions
g1, . . . , gn : R

n → R, the method computes a solution of g(X) = 0, where g = (g1, . . . , gn); starting at

some ν(0), the method computes ν(i+1) = ν(i) + ∆(i), where ∆(i) is the solution of the system of linear
equations

Dg1|ν(i)(X) + g1(ν
(i)) = 0

...

Dgn|ν(i)(X) + gn(ν(i)) = 0

and Dgj |ν(i)(X) is the differential of gj at ν(i), i.e., the function corresponding to the tangent hyperplane
of gj at the point (ν(i), gj(ν

(i)).

Given a function g : R
n → R differentiable at a point v, there exists a function DXg|v for each variable

X ∈ X such that Dg|v =
∑

X∈X DXg|v. These functions are closely related to the partial derivatives, more

precisely we have DXg|v(X) = ∂g
∂X

∣∣∣
v
· X.

We denote the system above by Dg|ν(i)(X) + g(ν(i)) = 0. For the problem of computing a solution of a
system of fixed-point equations, the method looks as follows:

starting at some ν(0), compute iteratively

ν(i+1) = ν(i) + ∆(i) (11)

where ∆(i) is the least solution of the linear system of fixed-point equations

Df |ν(i)(X) + f(ν(i)) − ν(i) = X . (12)



Generalization Again, we use the algebraic definition of differential:

Definition 3.4. Let f be a power series over an ω-continuous semiring S and let X ∈ X be a variable. The
differential of f w.r.t. X at the point v is the mapping DXf |v : V → S inductively defined as follows:

DXf |v(b) =





0 if f ∈ S or f ∈ X \ {X}
bX if f = X

DXg|v(b) · h(v) + g(v) · DXh|v(b) if f = g · h∑
i∈I DXfi|v(b) if f =

∑
i∈I fi .

Further, we define the differential of f at v as the function

Df |v :=
∑

X∈X

DXf |v.

Finally, the differential of a vector of power series f at v is defined as the function Df |v : V → V with

(Df |v(b))X := DfX |v(b) .

As in the univariate case we guess that ν(i) ⊑ f(ν(i)) will hold for every i ≥ 0. If the guess is correct,

then the semiring contains an element δ(i) such that f(ν(i)) = ν(i) + δ(i), and Equation (12) becomes

Df |ν(i)(X) + δ(i) = X . (13)

This leads to the following definition:

Definition 3.5. Let f : V → V be a vector of power series.

– Let i ∈ N. An i-th Newton approximant ν(i) is inductively defined by

ν(0) = f(0) and ν(i+1) = ν(i) + ∆(i) ,

where ∆(i) is the least solution of Equation (13) and δ(i) is any vector satisfying f(ν(i)) = ν(i) + δ(i).
– A sequence (ν(i))i∈N of Newton approximants is called Newton sequence.

Remark 3.6. One can easily show by induction that for any v,a,a′ ∈ V , and any vector of power series f

we have
Df |v(b + b′) = Df |v(b) + Df |v(b′) .

Remark 3.7. If the product operation of the semiring is commutative, the differential DXf |v(a) can be
written as ∂f

∂X
|v · aX , where ∂f

∂X
|v denotes the usual partial derivative of the power series f w.r.t. X, taken

at v, as known from algebra:

∂f

∂X

∣∣∣∣v =





0 if f ∈ S or f ∈ X \ {X}
1 if f = X

∂g
∂x

|v · h(v) + g(v) · ∂h
∂X

|v if f = g · h∑
i∈I

∂fi

∂X
|v if f =

∑
i∈I fi .

So, in commutative semirings we may use the usual representation of the differential by means of the gradient
of a power series f , or more generally, by the Jacobian of a vector f of power series.

3.3 Fundamental Properties of the Newton Sequences

In the rest of the section we prove the following theorem, showing that there exists exactly one Newton
sequence, that it converges to the least fixed point, and that it does so at least as fast as the Kleene
sequence.

Theorem 3.8. Let f : V → V be a vector of power series.



– There is exactly one Newton sequence (ν(i))i∈N.
– The Newton sequence is monotonically increasing, converges to the least fixed point and does so at least

as fast as the Kleene sequence. More precisely, it satisfies

κ(i) ⊑ ν(i) ⊑ f(ν(i)) ⊑ ν(i+1) ⊑ µf = sup
j∈N

κ(j) for all i ∈ N.

We split the proof Theorem 3.8 in two propositions. Proposition 3.14 in Section 3.4 states that there is
only one Newton sequence. The following proposition covers the rest of Theorem 3.8:

Proposition 3.9. Let f : V → V be a vector of power series.

– For every Newton approximant ν(i) there exists a vector δ(i) such that f(ν(i)) = ν(i) + δ(i). So there is
at least one Newton sequence.

– It satisfies κ(i) ⊑ ν(i) ⊑ f(ν(i)) ⊑ ν(i+1) ⊑ µf = supj∈N κ(j) for all i ∈ N.

The proof of Proposition 3.9 is based on two lemmata. The first one, an easy consequence of Kleene’s
theorem, provides a closed form for the least solution of a linear system of fixed-point equations in terms of
the Kleene star operator, defined as follows:

Definition 3.10. Let g : V → V be a monotone map. The map g∗ : V → V is defined as g∗(v) :=∑
i∈N

gi(v), where g0(v) := v, gi+1(v) := g(gi(v)) for every i ≥ 0. Similarly, we set for all j ∈ N:
g≤j :=

∑
0≤i≤j gi(v).

The existence of
∑

i∈N
gi(v) is guaranteed by the properties of ω-continuous semirings. Observe that

v ⊑ g∗(v) and g∗(v) = v + g(g∗(v)) hold.

Lemma 3.11. Let f : V → V be a vector of power series, and u,v ∈ V . Then the least solution of
Df |u(X) + v = X is Df |∗u(v). In particular, a Newton sequence from Definition 3.5 can be equivalently

defined by setting ν(0) = f(0) and ν(i+1) = ν(i) + Df |∗
ν(i)(δ

(i)).

Proof. Set g(X) := Df |u(X) + v. The vector g is a power series in every component and thus a monotone
map from V to V . By Kleene’s fixed-point theorem, the least solution of g(X) = X is given by sup{gi(0) |
i ∈ N} = sup{Df |≤i

u (v) | i ∈ N} = Df |∗u(v). ⊓⊔

The second lemma, which is interesting by itself, is a generalization of Taylor’s theorem to arbitrary
ω-continuous semirings.

Lemma 3.12. Let f : V → V be a vector of power series and let u,v be two vectors. We have

f(u) + Df |u(v) ⊑ f(u + v) ⊑ f(u) + Df |u+v(v) .

Proof. It suffices to show those inequalities for each component separately, so let w.l.o.g. f = f : V → S be
a power series. We proceed by induction on the construction of f . The base case (where f is a constant)
and the case where f is a sum of polynomials are easy, and so it suffices to consider the case in which f is a
monomial. So let

f = g · X · a

for a monomial g, a variable X ∈ X and a constant a. We have

f(u) = g(u) · uX · a and Df |u(v) = g(u) · vX · a + Dg|u(v) · uX · a .

By induction we obtain:

f(u + v) = g(u + v) · (uX + vX) · a

⊒
(
g(u) + Dg|u(v)

)
· (uX + vX) · a

= g(u) · uX · a + g(u) · vX · a + Dg|u(v) · (uX + vX) · a

⊒ f(u) + g(u) · vX · a + Dg|u(v) · uX · a

= f(u) + Df |u(v)



and

f(u + v) = g(u + v) · (uX + vX) · a

⊑
(
g(u) + Dg|u+v(v)

)
· (uX + vX) · a

= g(u) · uX · a + g(u) · vX · a + Dg|u+v(v) · (uX + vX) · a

⊑ f(u) + g(u + v) · vX · a + Dg|u+v(v) · (uX + vX) · a

= f(u) + Df |u+v(v)

⊓⊔

We can now proceed to prove Proposition 3.9.

Proof (of Proposition 3.9). First we prove for all i ∈ N that a suitable δ(i) exists and, at the same time, that
the inequality κ(i) ⊑ ν(i) ⊑ f(ν(i)) holds. We proceed by induction on i. The base case i = 0 is easy. For
the step, let i ≥ 0.

κ(i+1) = f(κ(i)) (definition of κ(i))

⊑ f(ν(i)) (induction: κ(i) ⊑ ν(i))

= ν(i) + δ(i) for some δ(i) (induction)

⊑ ν(i) + Df |∗ν(i)(δ
(i)) (v ⊑ g∗(v))

= ν(i+1) (Lemma 3.11)

= ν(i) + δ(i) + Df |ν(i)(Df |∗ν(i)(δ
(i))) (g∗(v) = v + g(g∗(v)) )

= f(ν(i)) + Df |ν(i)(Df |∗ν(i)(δ
(i))) (definition of δ(i))

⊑ f(ν(i) + Df |∗ν(i)(δ
(i))) (Lemma 3.12)

= f(ν(i+1)) (Lemma 3.11)

Since ν(i+1) ⊑ f(ν(i+1)), there exists a δ(i+1) such that ν(i+1) +δ(i+1) ⊑ f(ν(i+1)). Next we prove f(ν(i)) ⊑
ν(i+1):

f(ν(i)) = ν(i) + δ(i) (as proved above)

⊑ ν(i) + Df |∗ν(i)(δ
(i)) (v ⊑ g∗(v))

= ν(i+1) (Lemma 3.11)

It remains to prove supj∈N κ(j) = µf and ν(i) ⊑ µf for all i. The equation supj∈N κ(j) = µf holds by

Kleene’s theorem (Proposition 2.4). To prove ν(i) ⊑ µf for all i we need a lemma.

Lemma 3.13. Let f(x) ⊒ x. For all d ≥ 0 there exists a vector e(d)(x) such that

fd(x) + e(d)(x) = fd+1(x) and

e(d)(x) ⊒ Df |fd−1(x)(Df |fd−2(x)(. . .Df |x(e(0)(x)) . . .))

⊒ Df |dx(e(0)(x)) .

Proof of the lemma. By induction on d. For d = 0 there is an appropriate e(0)(x) by assumption. Let
d ≥ 0.

fd+2(x) = f(fd(x) + e(d)(x)) (induction)

⊒ fd+1(x) + Df |fd(x)(e
(d)(x)) (Lemma 3.12)

⊒ fd+1(x) + Df |fd(x)(. . .Df |x(e(0)(x)) . . .) (induction)



Therefore, there exists an e(d+1)(x) ⊒ Df |fd(x)(. . .Df |x(e(0)(x)) . . .). Since Df |y is monotone in y and

x ⊑ f(x) ⊑ f2(x) ⊑ . . ., the second inequality also holds. This completes the proof of the lemma. ⊓⊔

Notice that Lemma 3.13 holds for x = ν(i) and e(0)(ν(i)) = δ(i), because we have already shown
ν(i) ⊑ f(ν(i)). Now we can prove ν(i) ⊑ µf by induction on i. The case i = 0 is trivial. Let i ≥ 0.
We have:

ν(i+1) = ν(i) + Df |∗ν(i)(δ
(i)) (Lemma 3.11)

= ν(i) +
∑

d∈N

Df |dν(i)(δ
(i)) (definition of Df |∗ν(i))

⊑ ν(i) +
∑

d∈N

e(d)(ν(i)) (Lemma 3.13)

= sup
d∈N

fd(ν(i)) (ω-continuity)

⊑ µf (induction:

ν(i) ⊑ f(ν(i)) ⊑ f(f(ν(i))) ⊑ . . . ⊑ µf)

This completes the proof of Proposition 3.9. ⊓⊔

3.4 Uniqueness

In Definition 3.5 the Newton approximant ν(i) is defined in terms of a vector δ(i) satisfying ν(i) + δ(i) =
f(ν(i)). In the previous section we have shown that such a vector always exists. However, in a semiring there

there may be multiple such δ(i)’s, and so in principle there could be multiple Newton sequences. We show
now that this is not the case, i.e., there is only one Newton sequence (ν(i))i∈N, independent of the choice of

δ(i):

Proposition 3.14. Let f : V → V be a vector of power series. There is exactly one Newton sequence
(ν(i))i∈N.

Theorem 3.8 follows directly by combining Proposition 3.9 and Proposition 3.14. So for Theorem 3.8 it
remains to prove Proposition 3.14, which we do in the rest of this section.

It is convenient for the proof to introduce substitutionals, a notion related to differentials, see Defini-
tion 3.4.

Definition 3.15. Let f be a power series over an ω-continuous semiring S and let s ∈ N+. The substitu-
tional of f w.r.t. s at the point v is the mapping $sf |v : V → S defined as follows:
If f is a monomial, i.e., of the form f = a1X1 · · · akXkak+1, then

$sf |v(b) =

{
a1vX1

· · · as−1vXs−1
asbXs

as+1vXs+1
· · · akvXk

ak+1 if 1 ≤ s ≤ k

0 otherwise.

If f is a power series, i.e., of the form f =
∑

i∈I fi, then

$sf |v(b) =
∑

i∈I

$sfi|v(b).

In words: if f is a monomial with at least s variables then $sf |v(b) is obtained from f by replacing the s-th
variable Xs by bXs

and all other variables by the corresponding component of v. If f is a monomial with
less than s variables then $sf |v(b) = 0. If f is a power series then the substitutional of f is the sum of the
substitutionals of f ’s monomials.

Analogously to differentials, we extend the definition of substitutionals to vectors of power series by
applying the substitution componentwise. Formally, we define the substitutional of a vector of power series f

at v as the function $sf |v : V → V with

($sf |v(b))X := $sfX |v(b) .



Observe that, like the differential (see Remark 3.6), the substitutional is “linear”, i.e., $sf |v(b + b′) =
$sf |v(b) + $sf |v(b′).

Notation 1. For any j ∈ N and any sequence s = (s1, . . . sj) ∈ N
j
+ we write $sf |v(b) for

$s1
f |v($s2

f |v(· · · $sj
f |v(b) · · · )), and $sf |v(b) = b if j = 0.

The following facts are immediate from the definitions.

Proposition 3.16. Let f be a monomial. Then

DXf |v(b) =
∑

{$sf |v(b) | X is the s-th variable in f} .

Let f be a vector of power series. Then:

1. Df |v(b) =
∑

s∈N+
$sf |v(b).

2. Df |jv(b) =
∑

s∈N
j

+
$sf |v(b).

3. For all s ∈ N+ we have f(v) ⊒ $sf |v(v).

Example 3.17. Consider the polynomial f = aXY X + cY . Then

$1f |v(b) = abXvY vX + cbY

$2f |v(b) = avXbY vX

$3f |v(b) = avXvY bX

DXf |v(b) = abXvY vX + avXvY bX

DY f |v(b) = avXbY vX + cbY .

Observe that Df |v(b) = DXf |v(b)+DY f |v(b) = $1f |v(b)+$2f |v(b)+$3f |v(b) and that f(v) = avXvY vX +
cvY ⊒ $sf |v(v) holds for all s ∈ N+. ⊓⊔

For the proof of Proposition 3.14 we need the following two lemmata.

Lemma 3.18. Let f be a vector of power series. Let ν + δ = f(ν). Let j ∈ N and (s1, . . . , sj+1) ∈ N
j+1
+ .

Then ν + Df |≤j
ν (δ) ⊒ $(s1,...,sj+1)f |ν(ν).

Proof. By induction on j. For j = 0 we have ν+Df |≤0
ν (δ) = ν+δ = f(ν) ⊒ $s1

f |ν(ν) by Proposition 3.16.3.
Let j ≥ 0. We have:

ν + Df |≤j+1
ν (δ) = ν + Df |≤j

ν (δ) + Df |j+1
ν (δ)

⊒ $(s1,...,sj+1)f |ν(ν) + Df |j+1
ν (δ) (induction)

⊒ $(s1,...,sj+1)f |ν(ν) + $(s1,...,sj+1)f |ν(δ) (Prop. 3.16.2.)

= $(s1,...,sj+1)f |ν(f(ν)) (ν + δ = f(ν))

⊒ $(s1,...,sj+1)f |ν($sj+2
f |ν(ν)) (Prop. 3.16.3.)

= $(s1,...,sj+2)f |ν(ν) ⊓⊔

Lemma 3.19. Let f be a vector of power series. Let ν + δ = ν + δ′ = f(ν). Then ν + Df |∗ν(δ) =
ν + Df |∗ν(δ′).

Proof. We show ν + Df |≤j
ν (δ) = ν + Df |≤j

ν (δ′) for all j ∈ N. Then the lemma follows by ω-continuity. We
proceed by induction on j. The induction base (j = 0) is clear. Let j ≥ 0. We have:

ν + Df |≤j+1
ν (δ) = ν + Df |≤j

ν (δ) + Df |j+1
ν (δ)

= ν + Df |≤j
ν (δ′) + Df |j+1

ν (δ) (induction)

= ν + Df |≤j
ν (δ′)︸ ︷︷ ︸

=:u

+
∑

s∈N
j+1
+

$sf |ν(δ) (Prop. 3.16.2.)



By Lemma 3.18, we have u ⊒ $sf |ν(ν) for all s ∈ N
j+1
+ . In other words, for all s ∈ N

j+1
+ there is a u′

such that u = u′ + $sf |ν(ν). Hence, for all s ∈ N
j+1
+ , we have u + $sf |ν(δ) = u′ + $sf |ν(ν) + $sf |ν(δ) =

u′ + $sf |ν(f(ν)) = u + $sf |ν(δ′). Therefore, in the above equation, we can replace δ by δ′ due to the
“presence” of u:

= ν + Df |≤j
ν (δ′) +

∑

s∈N
j+1
+

$sf |ν(δ′) (as argued above)

= ν + Df |≤j
ν (δ′) + Df |j+1

ν (δ′) (Prop. 3.16.2.)

= ν + Df |≤j+1
ν (δ′) ⊓⊔

Now Proposition 3.14 follows immediately from Lemma 3.19 by a straightforward inductive proof. ⊓⊔

4 Derivation Trees and the Newton Approximants

In this section we reinterpret a system of power-series as a context-free grammar, and assign it a set of
derivation trees. We then characterize the Kleene and Newton approximants of the system in terms of
subsets of this set of trees.

We assume that the reader is familiar with the notion of derivation tree of a context-free grammar. Recall
that the yield of a derivation tree (obtained by reading the leaves from left to right) is a word generated by
the grammar, and every word generated by the grammar is the yield of one or more derivation trees. In our
reinterpretation the non-terminals will be the variables of the system of power series, and the terminals will
be its coefficients.

We show that the Kleene approximants κ(i) are equal to the sum of the yields of the derivation trees
having a certain height. Similarly, we show that the Newton approximants ν(i) are equal to the sum of the
yields of the trees having a certain dimension, a notion introduced in Definition 4.6 below.

For the rest of the section we fix a vector f of power series over a fixed but arbitrary ω-continuous
semiring. Without loss of generality, we assume that fX =

∑
j∈J mX,j holds for every variable X ∈ X , i.e.,

we assume that for all variables the sum is over the same countable set J of indices.
Consider the set of ordered trees whose nodes are labelled by pairs (X, j), where X ∈ X and j ∈ J .

Sometimes we identify a tree and its root. In particular, we say that a tree t is labelled by (X, j) if its root
is labelled by (X, j). The mappings λ, λv and λm are defined by λ(t) := (X, j), λv(t) := X, and λm(t) := j.
Given a set T of trees, we denote by TX the set of trees t ∈ T such that λv(t) = X.

We define the set of derivation trees of f , and show how to assign to each tree a semiring element called the
yield of the tree. For technical reasons our definition differs slightly from the straightforward generalization
of derivation trees for grammars.

Definition 4.1 ((derivation tree, yield)). The derivation trees of f and their yields are inductively
defined as follows:

– For every monomial mX,j of fX , if no variable occurs in mX,j, then the tree t consisting of one single
node labelled by (X, j) is a derivation tree of f . Its yield Y (t) is equal to mX,j.

– Let mX,j = a1X1a2X2 . . . akXkak+1 for some k ≥ 1, and let t1, . . . , tk be derivation trees of f such that
λv(ti) = Xi for 1 ≤ i ≤ k. Then the tree t labelled by (X, j) and having t1, . . . , tk as (ordered) children
is also a derivation tree of f , and its yield Y (t) is equal to a1Y (t1) . . . akY (tk)ak+1.

The yield Y (T ) of a countable set T of derivation trees is defined by Y (T ) =
∑

t∈T Y (t). In the following,
we mean derivation tree whenever we say tree.

Figure 3 shows a system of equations (system (1) from the introduction, on the left) and a derivation tree
(in the middle). Consider the node labelled by (Y, 1) (the right child of the root). Since the first monomial
of the equation for Y is cY Z, the node has two children, say c1, c2 with λv(c1) = Y and λv(c2) = Z. As
λm(c2) = 2, the children of c2 are determined by the second monomial of the equation for Z. Since this
monomial is h, which contains no variables, c2 has no children. The right part of the figure shows the result
of labelling each node of the tree with the yield of the subtree rooted at it.



X = aXY + b
Y = cY Z + dY X + e
Z = gXh + i

(X, 1)

(X, 2) (Y, 1)

(Y, 2) (Z, 2)

(Y, 3) (X, 2)

abcdebi

b cdebi

deb i

e b

Fig. 3. A system of equations, a derivation tree, and its yield

4.1 Kleene Sequence and Height

As a warm-up for the Newton case, we characterize the Kleene sequence (κ(i))i∈N in terms of the derivation
trees of a certain height.

Definition 4.2 ((height)). Let t be a derivation tree. The height of t, denoted by h(t), is the length (number
of edges)of a longest path from the root to some leaf. We denote by Hi the set of derivation trees of height
at most i.

Proposition 4.3.
(
κ(i)

)
X

= Y (Hi
X), i.e., the X-component of the i-th Kleene approximant κ(i) is equal to

the yield of Hi
X .

The proof can be found in Appendix A.
Notice that Proposition 4.3 no longer holds if nodes are only labelled with a variable, and not with

a pair. Consider for instance the equation X = a + a, for which κ(0) = a + a. There are two derivation
trees t1, t2 of height 0, both consisting of one single node: t1 is labelled by (X, 1), and t2 by (X, 2). We
get Y (t1) + Y (t2) = a + a = κ(0). If we labelled nodes only with variables, then there would be one single
derivation tree t, and we would get Y (t) = a, which in general is different from a + a.

Example 4.4. Consider again the equation X = 1/2 · X2 + 1/2 over the real semiring. We have κ(2) =
89/128. Figure 4 shows the five derivation trees of height at most 2. It is easy to see that their yields are
1/2, 1/8, 1/32, 1/32, 1/128, which add up to 89/128.

(X, 2)

(X, 1)

(X, 2) (X, 2)

(X, 1)

(X, 2) (X, 1)

(X, 2) (X, 2)

(X, 1)

(X, 1) (X, 2)

(X, 2) (X, 2)

(X, 1)

(X, 1) (X, 1)

(X, 2) (X, 2) (X, 2) (X, 2)

Fig. 4. Trees of height at most 2 for the equation X = 1/2 · X2 + 1/2.



By Kleene’s theorem we obtain that the least solution of the equation system is equal to the yield of the
set of all trees.

Corollary 4.5. Let T be the set of all derivation trees of f . For all X ∈ X : (µf)X = Y (TX).

Proof. By Kleene’s Theorem (Proposition 2.4) we have (µf)X = supi∈N(κ(i))X . The result follows from
Proposition 4.3. ⊓⊔

4.2 Newton Sequence and Dimension

We introduce a second parameter of a tree, namely its dimension. Like the height, it depends only on the tree
structure, and not on the labels of its nodes. Loosely speaking, a tree has dimension 0 if it consists of just
one node; a tree has dimension i if there is a path from its root to some node which has at least 2 children
with dimension i − 1 and all subtrees of the path that are not themselves on the path have dimension at
most i − 1. The path is called the backbone of the tree. Figure 5 illustrates this idea.

t<i

t<i

t<i

ti−1 ti−1

(a) (b) (c)

Fig. 5. (a) shows the general structure of a tree of dimension i, where t<i (resp. ti−1) represents any tree of dimension
< i (resp. = i − 1). (b) and (c) give some idea of the topology of one-, resp. two-dimensional trees.

Formally, we use an inductive definition of dimension that is more convenient for proofs.

Definition 4.6 ((dimension)). The dimension d(t) of a tree t is inductively defined as follows:

1. If t has no children, then d(t) = 0.
2. If t has exactly one child t1, then d(t) = d(t1).
3. If t has at least two children, let t1, t2 be two distinct children of t such that d(t1) ≥ d(t2) and d(t2) ≥ d(t′)

for every child t′ 6= t1. Let d1 = d(t1) and d2 = d(t2). Then

d(t) =

{
d1 + 1 if d1 = d2

d1 if d1 > d2.

We denote by Di the set of derivation trees of dimension at most i.

Remark: It is easy to prove by induction that h(t) ≥ d(t) holds for every derivation tree t.
In the rest of the section we show that the i-th Newton approximant ν(i) is equal to the yield of the

derivation trees of dimension at most i:

Theorem 4.7 (Tree Characterization of the Newton Sequence). Let (ν(i))i∈N be the Newton sequence
of f . For every X ∈ X and every i ≥ 0 we have

(
ν(i)

)
X

= Y (Di
X), i.e., the X-component of the i-th Newton

approximant is equal to the yield of Di
X .



The proof is as follows. We define, in terms of trees, a sequence (τ (i))i∈N satisfying τ
(i)
X = Y (Di

X)
(Lemma 4.9), and we prove that it is a Newton sequence (Lemma 4.10). As the Newton sequence is unique
by Proposition 3.14, we have τ (i) = ν(i) and Theorem 4.7 follows.

We need the following definition.

Definition 4.8. A tree t is proper if d(t) > d(t′) for every child t′ of t. For every i ≥ 0, let P i be the set of
proper trees of dimension i. Define the sequence (τ (i))i∈N as follows:

τ (0) = f(0)

τ (i+1) = τ (i) + Df |∗
τ (i)(δ

(i)) ,

where δ
(i)
X = Y (P i+1

X ) for all X ∈ X .

Lemma 4.9. For every variable X ∈ X and every i ≥ 0: τ
(i)
X = Y (Di

X).

Lemma 4.10. The sequence (τ (i))i∈N is a Newton sequence as defined in Definition 3.5, i.e., the δ(i) of

Definition 4.8 satisfy f(τ (i)) = τ (i) + δ(i).

The proofs of Lemma 4.9 and Lemma 4.10 can be found in Appendix A.

Example 4.11. Let us recall our example from the introduction (cf. Fig. 1) with the equations

X = a · X · Y + b
Y = c · Y · Z + d · Y · X + e
Z = g · X · h + i.

Using our characterizations of κ(i) and ν(i) by means of derivation trees we see that (a) every derivation tree
t represents a terminating run of the procedure λ(t), and, thus, (b) while κ(i) only corresponds to a finite set
of trees (runs), for i > 0 every ν(i) corresponds to an infinite set of runs. Hence, it is not very surprising that
in general the Newton approximants give a better approximation of the (abstract) semantics of a program
than the Kleene approximants. ⊓⊔

5 Idempotent Semirings

In this and the next section we focus on ω-continuous semirings whose summation operator is idempotent.
Such semirings are called idempotent ω-continuous semirings, or just idempotent semirings. In idempotent
semirings, the natural order can be characterized as follows: a ⊑ b holds if and only if a+b = b. This is because
a ⊑ b means by definition that there is a c such that a + c = b. Then we have a + b = a + a + c = a + c = b.
This extends analogously to vectors.

The following proposition shows that the definition of the Newton sequence (ν(i))i∈N can be simplified
in the idempotent case.

Proposition 5.1. Let f be a vector of power series over an idempotent semiring. Let (ν(i))i∈N denote the
Newton sequence of f . It satisfies the following equations for all i ∈ N:

(a) ν(i+1) = Df |∗
ν(i)(f(ν(i)))

(b) ν(i+1) = Df |∗
ν(i)(ν

(i))

(c) ν(i+1) = Df |∗
ν(i)(f(0))

Proof. We first show (a). By Theorem 3.8 we have ν(i) ⊑ f(ν(i)), hence with idempotence ν(i) + f(ν(i)) =

f(ν(i)). So we can choose δ(i) = f(ν(i)) and have ν(i+1) = ν(i) + Df |∗
ν(i)(f(ν(i))) = Df |∗

ν(i)(f(ν(i))),

because ν(i) ⊑ f(ν(i)) ⊑ Df |∗
ν(i)(f(ν(i))). So (a) is shown.

Again by Theorem 3.8 we have f(0) = ν(0) ⊑ ν(i) ⊑ f(ν(i)). So we have Df |∗
ν(i)(f(0)) ⊑

Df |∗
ν(i)(ν

(i)) ⊑ Df |∗
ν(i)(f(ν(i))). Hence, for (b) and (c), it remains to show Df |∗

ν(i)(f(ν(i))) ⊑ Df |∗
ν(i)(ν

(i))

and Df |∗
ν(i)(ν

(i)) ⊑ Df |∗
ν(i)(f(0)), respectively. For (b) we have:

Df |∗ν(i)(f(ν(i)))



⊑ Df |∗ν(i)(f(0) + Df |ν(i)(ν(i))) (Lemma 3.12)

= Df |∗ν(i)(f(0)) + Df |∗ν(i)(Df |ν(i)(ν(i)))

⊑ Df |∗ν(i)(ν
(i)) + Df |∗ν(i)(Df |ν(i)(ν(i))) (f(0) ⊑ ν(i))

⊑ Df |∗ν(i)(ν
(i)) + Df |∗ν(i)(ν

(i)) (Lemma 3.11)

= Df |∗ν(i)(ν
(i)) (idempotence)

So (b) is shown.
For (c) it remains to show Df |∗

ν(i)(ν
(i)) ⊑ Df |∗

ν(i)(f(0)). We proceed by induction on i. The base case

i = 0 is easy because ν(0) = f(0). Let i ≥ 1. We have:

Df |∗ν(i)(ν
(i))

= Df |∗ν(i)(Df |∗ν(i−1)(ν
(i−1))) (by (b))

⊑ Df |∗ν(i)(Df |∗ν(i−1)(f(0))) (by induction)

⊑ Df |∗ν(i)(Df |∗ν(i)(f(0))) (Theorem 3.8: ν(i−1) ⊑ ν(i))

= Df |∗ν(i)(f(0)) (see explanation below)

For the last step we used that in the idempotent case we have g∗(g∗(x)) = g∗(x) for any linear map g :
V → V . Recall that Remark 3.6 states that Df |ν(i) is linear.

g∗(g∗(x)) =
∑

j∈N

gj

(
∑

k∈N

gk(x)

)
(Definition 3.10)

=
∑

j∈N

∑

k∈N

gj(gk(x)) (linearity)

=
∑

l∈N

gl(x) (idempotence)

= g∗(x) (Definition 3.10)

This concludes the proof. ⊓⊔

5.1 Language Semirings

Now we consider language semirings, the typical example of idempotent semirings. Let SΣ be the language
semiring over a finite alphabet Σ. Let f be a vector of polynomials over X whose coefficients are elements
of Σ. Then, for each X0 ∈ X , there is a naturally associated context-free grammar Gf ,X0

= (X , Σ, P,X0),
where the set of productions is P = {(X → mX,j) | mX,j is a monomial of fX}. It is well-known that
L(Gf ,X0

) =
(
µf
)
X0

(see e.g. [Kui97]). Analogously, each grammar is naturally associated with a vector of
polynomials. In the following we use grammars and vectors of polynomials interchangeably.

We show in this section that the Newton approximants ν(i) are strongly linked with the finite-index
approximations of L(G). Finite-index languages have been extensively investigated under different names by
Salomaa, Gruska, Yntema, Ginsburg and Spanier, among others [Sal69,Gru71,Ynt67,GS68] (see [FH97] for
historical background).

Definition 5.2. Let G be a grammar, and let D be a derivation X0 = α0 ⇒ · · · ⇒ αr = w of w ∈ L(G), and
for every i ∈ {0, . . . , r} let βi be the projection of αi onto the variables of G. The index of D is the maximum
of {|β0|, . . . , |βr|}. The index-i approximation of L(G), denoted by Li(G), contains the words derivable by
some derivation of G of index at most i.

We show that for a context-free grammar G in Chomsky normal form (CNF), the Newton approximations
to L(G) coincide with the finite-index approximations.

Theorem 5.3. Let G = (X , Σ, P,X0) be a context-free grammar in CNF and let (ν(i))i∈N be the Newton
sequence associated with G. Then

(
ν(i))X0

= Li+1(G) for every i ≥ 0.



Proof sketch (full proof in Appendix B). The proof builds on the tree-dimension characterization
of the Newton approximants (Theorem 4.7). It can be shown that a tree of dimension i can be “flattened”
to a derivation of index at most i + 1. For the other direction it can be similarly shown that a derivation of
index i + 1 corresponds to a derivation tree of dimension at most i. ⊓⊔

In particular, it follows from Theorem 5.3 that the (X0-component of the) Newton sequence for a context-
free grammar G converges in finitely many steps if and only if L(G) = Li(G) for some i ∈ N.

6 Commutative Idempotent Semirings

In this section we study Newton’s method in the case where the ω-continuous semiring does not only have
an idempotent addition (as in the previous section), but also a commutative multiplication. We will use
the abbreviation ci-semirings for such semirings in the following. Commutative language semirings are a
prominent example of ci-semirings.

An instance of the Newton sequence in a ci-semiring has already been presented in the counting semiring
example on page 11. We show another one here.

Example 6.1. Let 〈2{a}∗

,+, ·, 0, 1〉 denote the ci-semiring 〈2{a}∗

,∪, ·, ∅, {ε}〉. The multiplication · is meant to
be commutative. For simplicity, we write ai instead of {ai}. Consider f(X1,X2) = (X2

2 + a, X2
1 ). We have:

Df |(v1,v2)(X1,X2) =
(
v2X2, v1X1

)

and

Df |∗(v1,v2)
(X1,X2) = (v1v2)

∗
(
X1 + v2X2, v1X1 + X2

)
.

The first three elements of the Newton sequence are:

ν(0) = (a, 0), ν(1) = (a, a2), ν(2) = (a3)∗(a, a2) .

It is easy to check that ν(2) is a fixed point of f . Hence we have ν(2) = µf , as ν(2) ⊑ µf by Theorem 3.8. ⊓⊔

In the previous section we have seen that, even though the Newton sequence accelerates the Kleene
sequence, it does not generally converge in finitely many steps: The language semirings are examples of
idempotent ω-continuous semirings, but the Newton sequence of a context-free grammar G with start sym-
bol X0 does not reach (µf)X0

= L(G) after finitely many steps, unless L(G) coincides with some finite-index
approximation Li(G).

In the case of ci-semirings the behaviours of the Kleene and Newton sequence differ very much: while
the Kleene sequence may still need infinitely many steps, the Newton sequence always reaches µf after
finitely many. This was first shown by Hopkins and Kozen in 6.2. Hopkins and Kozen defined the sequence
(ν(i))i∈N directly through the equations ν(0) = f(0) and ν(i+1) = Df |∗

ν(i)(ν
(i)) from Proposition 5.1 (b),

without noticing the connection to Newton’s method (which is not surprising, since in the idempotent case
the original equations get masked). They proved the following result, which gives a O(3n) upper bound for
the number of Newton iterations required for a system of n equations:

Theorem 6.2 ([HK99]). Let f be a vector of power series over a ci-semiring and a set X of variables with
|X | = n. There is a function P : N → N with P (n) ∈ O(3n) such that ν(P (n)) = µf .

In Section 6.1 we improve Theorem 6.2 by showing that it holds with P (n) = n. This is achieved through
our characterisation of the Newton approximants in terms of derivation trees. In Section 6.2 we generalize
our result to commutative Kleene algebras, thereby improving the result of [HK99] which was not stated
in terms of ci-semirings as in Theorem 6.2, but in terms of commutative Kleene algebras whose axioms are
weaker.



6.1 Analysis of the Convergence Speed

We analyze how many steps the Newton iteration and, equivalently, the Hopkins-Kozen iteration need to
reach µf when we consider ci-semirings.

Recall from Section 4 the concept of derivation trees (short: trees). A tree t has a height h(t), a dimension
d(t), and a yield Y (t). We define yet another tree property.

Definition 6.3. A tree t is compact if d(t) ≤ L(t), where L(t) denotes the number of distinct λv-labels in t.

Now we are ready to prove the key lemma of this section, which states that any tree can be made compact.

Lemma 6.4. For each tree t there is a compact tree t′ with λv(t) = λv(t
′) and Y (t) = Y (t′).

Example 6.5. We first sketch the proof of the lemma by means of an example. Consider the following uni-
variate polynomial equation system:

X = f(X) := X2 + a + b.

Consider now the following tree t ∈ TX .6

(X,X2)

(X,X2) (X,X2)

(X, a) (X, b) (X, a) (X, a)

This tree has dimension 2 and is therefore not compact by definition. In order to make it compact, we
have to transform it into a derivation tree of f which is of dimension 1 without changing its yield nor the
variable-label of the root.

The idea is to reduce the left subtree to a tree of dimension 0 by reallocating “pump trees” (encircled
in the above figure) into the right subtree; after that, we deal recursively with the right subtree.7 We first
remove such a pump tree from the rest of the tree by deleting the connecting edges and connecting the
remaining parts as depicted here:

(X,X2)

(X,X2) (X,X2)

(X, a) (X, b) (X, a) (X, a)

Note that we can introduce the new edge because the roots of the pump tree and the remaining subtree, in
our example the left-most leaf, are labeled by the same variable. Next, we reallocate the detached pump tree
into the right subtree, e.g. as shown here:

6 To improve readability in the following illustrations, we replace the node labels (X, 1), (X, 2), (X, 3) by (X, X2),
(X, a), (X, b), respectively.

7 Here, with “pump tree” we refer to partial derivation trees one adds or removes in the proof of the pumping lemma
for context-free grammars.



(X,X2)

(X,X2) (X,X2)

(X, a) (X, b) (X, a) (X, a)

It is easy to check that this new tree is indeed a derivation tree of f , and has the same yield as the original
one. Further this tree is already compact. In general, we would have to proceed recursively in order to make
the right subtree compact.

Note that, as we assume multiplication to be commutative, it is not important where we insert the pump
tree into the right subtree. In the following proof we show that we can always find such pump trees and
relocate them, i.e. find insertion points, if the tree under consideration is not compact. ⊓⊔

We now give a formal proof of Lemma 6.4:

Proof. We write t = t1 · t2 to denote that t is combined from t1 and t2 in the following way: The tree t1 is a
“partial” derivation tree, i.e., a regular derivation tree except for one leaf l missing its children. The tree t2
is a derivation tree with λv(t2) = λv(l). The tree t is obtained from t1 and t2 by replacing the leaf l of t1 by
the tree t2.

We proceed by induction on the number of nodes. In the base case, t has just one node, so d(t) = 0,
hence t is compact, and we are done. In the following, assume that t has more than one node and d(t) > L(t)
holds. We show how to construct a compact tree from t.

Let w.l.o.g. s1, s2, . . . , sr be the children of t with d(t) ≥ d(s1) ≥ d(s2) ≥ . . . ≥ d(sr). By induction we
can make every child compact, i.e. d(si) ≤ L(si). We then have by definition of dimension

L(t) + 1 ≤ d(t) ≤ d(s1) + 1 ≤ L(s1) + 1 ≤ L(t) + 1.

Hence, we have d(t) = d(s1) + 1 which, by definition of dimension and compactness, implies d(s1) = d(s2) =
L(t) = L(s1) = L(s2). As h(s2) ≥ d(s2) = L(s2) by the remark after Definition 4.6, we find a path in s2

from the root to a leaf which passes through at least two nodes with the same λv-label, say Xj . In other
words, we may factor s2 into tb1 · (t

b
2 · t

b
3) such that λv(tb2) = λv(t

b
3) = Xj . As L(t) = L(s1) = L(s2), we also

find a node of s1 labelled by Xj which allows us to write s1 = ta1 · ta2 with λv(ta2) = Xj .
Now we move the middle part of s2 to s1, i.e., let s′1 = ta1 · (tb2 · ta3) and let s′2 = tb1 · tb3. We then have

L(s′1) = L(s1) = L(s2) ≥ L(s′2). By induction, s′1 and s′2 can be made compact, so d(s′1) ≤ d(s1) = d(s2) ≥
d(s′2). Consider the tree t′ obtained from t by replacing s1 by s′1 and s2 by s′2. By commutativity, t and t′

have the same yield. If d(s′2) < d(s2) then d(t′) ≤ d(t) − 1 = L(t) = L(t′) and we are done. Otherwise we
iterate the described procedure.

This procedure terminates, because the number of nodes of (the current) s2 strictly decreases in every
iteration, and the number of nodes is an upper bound for h(s2) and, therefore, for d(s2). ⊓⊔

Now we can prove the main theorem of this section.

Theorem 6.6. Let f be a vector of power series over a ci-semiring S given in the set X of variables with
|X | = n. Then ν(n) = µf .

Proof. We have for all X ∈ X :

(µf)X =
∑

trees t with λv(t)=X

Y (t) (Corollary 4.5)

=
∑

trees t with λv(t)=X

and d(t)≤n

Y (t) (Lemma 6.4)

= (ν(n))X (Theorem 4.7)



⊓⊔

Remark 6.7. The bound of this theorem is tight, as shown by the following example: If f(X1, . . . ,Xn) =
(X2

2 + a,X2
3 , . . . ,X2

n,X2
1 ), then (ν(k))X1

= a for k < n, but a2n

≤ (ν(n))X1
= (µf)X1

.

In terms of languages, Theorem 6.2 can be understood in the following way, using Theorem 5.3.

Corollary 6.8. Let G = (X , Σ, P,X0) be a context-free grammar in CNF. Let |X | = n. Then the commu-
tative image of the index-(n + 1) approximation Ln+1(G) is equal to the commutative image of L(G).

6.2 Generalization to Commutative Kleene Algebras

In this subsection we generalize Theorem 6.6 to commutative Kleene algebras. A commutative Kleene algebra
〈K,+, ·,∗ , 0, 1〉 is an idempotent commutative semiring 〈K,+, ·, 0, 1〉 where the ∗-operator is only required
to satisfy these two equations for all a, b, c ∈ K:

1 + aa∗ ≤ a∗ and a + bc ≤ c → b∗a ≤ c .

Notice that for a Kleene algebra there may not exist a notion of countable summation, as the ∗-operator
is defined axiomatically. Thus, the axioms of commutative Kleene algebras are weaker than those of ci-
semirings. In particular, the following example from [Koz90] shows there are commutative Kleene algebras
which are not ci-semirings:

Example 6.9. Consider the Kleene algebra with carrier ω2 := N
2 ∪ {⊥,⊤}, i.e. the set of ordered pairs of

natural numbers extended by a bottom and a top element. We assume that ω2 is totally ordered by ≺ with
⊥ the minimum element, ⊤ the maximum element, and the lexicographic order on N

2. Addition is defined
to be the supremum of the elements w.r.t. ≺. Thus the additive neutral element is ⊥. Note that this also
gives us a notion of countable summation on ω2. Multiplication is defined by

x · ⊥ = ⊥ · x = ⊥
x · ⊤ = ⊤ · x = ⊤ (x 6= ⊥)
(a, b) · (c, d) = (a + c, b + d)

with neutral element (0, 0). Finally, the Kleene-star is defined by

a∗ =

{
⊥ if a = ⊥ ∨ a = (0, 0)
⊤ else.

This definition satisfies the axioms stated above. But obviously, we do not have a ci-semiring as

∑

i∈N

(0, 1)n = sup{(0, 1)i|i ∈ N} = (1, 0) ≺ ⊤ = (0, 1)∗.

⊓⊔

Notation 2. Let M be any set. Then RExpM denotes the set of regular expressions generated by the elements
of M . We write RM : RExpM → 2M∗

for their canonical interpretation as languages.

In the rest of the section we prove the following theorem which improves the result of [HK99] from O(3n)
to n.

Theorem 6.10. Let f ∈ RExp
X
K∪X be a vector of regular expressions over a commutative Kleene algebra

〈K,+, ·,∗ , 0, 1〉. Let |X | = n. Then ν(n) = µf .



We have not yet defined ν(i) over a commutative Kleene algebra. We take the equations ν(0) = f(0)
and ν(i+1) = Df |∗

ν(i)(ν
(i)) (cf. Proposition 5.1) as definition. For convenience, we define the Hopkins-Kozen

operator Hf by
Hf (X) = Df |∗X(X) .

Then ν(i) is obtained by i times applying Hf to f(0):

ν(i) = Hi
f (f(0)) .

However, we still need to adapt some definitions for ω-continuous semirings to commutative Kleene
algebras. In Kleene algebras, the Kleene-star operator replaces the infinite summation operator. So we
modify the definition of differentials (see Remark 3.7) by replacing the equation for the

∑
-operator by the

definition of [HK99]:
∂g∗

∂X

∣∣∣∣v = g∗(v) ·
∂g

∂X

∣∣∣∣v . (14)

Further, [HK99] gives, implicitly, a definition of Df |∗u(v) in commutative Kleene algebra, i.e., without ex-
pressing ∗ using

∑
.

With those notations, and using the fact that [HK99] shows ν(n) ⊑ µf , proving Theorem 6.10 amounts
to showing the equation

f(Hn
f (f(0))) = Hn

f (f(0)) . (15)

In order to prove (15) we appeal to Redko’s theorem (see [Con71]) that essentially states that an equation of
terms over any commutative Kleene algebra holds if it holds under the canonical commutative interpretation.
See Appendix C for a technical justification of this fact. Let Σ be the finite set of elements of K appearing

in f . The canonical commutative interpretation cΣ : RExpΣ → 2N
Σ

is defined by

cΣ(α) = {#w | w ∈ RΣ(α)} ,

where #w is the Parikh-vector of w ∈ Σ∗, i.e. a ∈ Σ appears exactly (#w)a-times in w. We omit the subscript

of cΣ in the following. The ci-semiring of sets of Parikh-vectors CΣ is defined by CΣ = 〈2N
Σ

,∪, ·, ∅, {0}〉 with

A · B = {a + b | a ∈ A, b ∈ B} for all A,B ⊆ N
Σ and

∑
S =

⋃
S for all S ⊆ 2N

Σ

. In particular we have
c(α∗) =

⋃
i∈N

c(α)i. By Redko’s theorem, we can prove (15) by showing c(f(Hn
f (f(0)))) = c(Hn

f (f(0))) over
CΣ .

For any function g : RExpΣ → RExpΣ , let gc denote the commutative interpretation of g as a map over
CΣ , i.e., c(g(α)) = gc(c(α)) for all α ∈ RExpΣ .

Assume (Hf )c = Hf c . By Theorem 6.6, Hn
f c(f c(∅)) solves the equation system X = f c(X) over CΣ .

Combining this, we get:

c(f(Hn
f (f(0)))) = f c((Hn

f )c(f c(∅))) = f c(Hn
f c(f c(∅))) = Hn

f c(f c(∅))

= c(Hn
f (f(0))) .

Then (15) follows by Redko’s theorem.
So it remains to show that (Hf )c = Hf c indeed holds, which is equivalent to

c(Df |∗X(X)) = Df c|∗
c(X)(c(X)) . (16)

First we show the following lemma.

Lemma 6.11. The following equation holds for all u,v ∈ RExp
X
Σ :

c(Df |u(v)) = Df c|
c(u)(c(v)) .

Proof. One can prove this vector equation for each component separately, so we can assume f = f ∈
RExpΣ∪X . Moreover, it suffices to show c(DXf |u(v)) = DXf c|

c(u)(c(v)) for all X ∈ X . By Remark 3.7 it is
equivalent to prove

c

(
∂f

∂X

∣∣∣∣u
)

=
∂f c

∂X

∣∣∣∣c(u) .



We proceed by induction on the structure of f . Only the case f = g∗ is interesting. We have:

c

(
∂g∗

∂X

∣∣∣∣u
)

= c

(
g∗(u) ·

∂g

∂X

∣∣∣∣u
)

(Equation (14))

=
⋃

i∈N

c(g(u))i · c

(
∂g

∂X

∣∣∣∣u
)

(definition of c)

=
⋃

i∈N

c(g(u))i ·
∂gc

∂X

∣∣∣∣c(u) (induction)

=
⋃

i≥1

(
gc(c(u))

)i−1
·

∂gc

∂X

∣∣∣∣c(u) (definition of gc)

=
⋃

i∈N

(
∂(gc)i

∂X

∣∣∣∣c(u)

)
(idempotence of ∪,
Remark 3.7: equation for · )

=
∂
⋃

i∈N
(gc)i

∂X

∣∣∣∣c(u) (Remark 3.7: equation for + )

=
∂(g∗)c

∂X

∣∣∣∣c(u) (definition of c) ⊓⊔

As mentioned above, [HK99] implicitly defines Df |∗u(v) in commutative Kleene algebra. In particular,
their definition satisfies

c (Df |∗u(v)) =
⋃

i∈N

c
(
Df |iu(v)

)
. (17)

Now we can prove (16):

c (Df |∗X(X)) =
⋃

i∈N

c
(
Df |iX(X)

)
(Equation (17))

=
⋃

i∈N

Df c

∣∣∣i
c(X)(c(X)) (Lemma 6.11)

= Df c

∣∣∣∗
c(X)(c(X)) (Lemma 3.11)

This concludes the proof of Theorem 6.10.

6.3 Comparison with Previous Proofs of Parikh’s Theorem

Theorem 6.6 and Theorem 6.10 imply Parikh’s theorem: for every context-free language there is a regular
language with the same commutative image. We briefly sketch how our proof relates to those by [Par66],
[HK99], and [AEI01].

Given a context-free grammar G, let L′(G) be the set of words generated by derivation trees in which
every variable (non-terminal) of G appears at least once. Parikh reduces the problem of calculating the
commutative image of L(G) to the same problem for L′(G), and then proceeds to solving the latter by
analysing the structure of the derivation trees associated with L′(G). The proof by [HK99] relies completely
on the axiomatic definitions of commutative Kleene algebras, and combines these with generalisations of
results known from (vector) calculus, in particular the notion of partial derivative as used in this paper.
Finally, [AEI01] identify a set of axioms describing the properties of the Kleene star8, and derive Parikh’s
theorem from them. The axioms are purely equational, while the axioms used in [HK99] involve inequalities
and implications (see the beginning of Subsection 6.2).

8 More precisely, in [AEI01] least fixed-point expressions (µ-terms), like µz.xz + y, are considered, generalizing the
Kleene star.



Our proof combines both transformation of derivation trees and algebraic methods, and so it lies between
Parikh’s proof and those in [HK99,AEI01]. The main contribution of our proof is the study of the relation
between derivatives and derivation trees.

Finding a purely algebraic proof of ν(n) = µf is still an open problem.

7 Non-Distributive Program Analyses

In this paper we have focused on distributive program analyses, which allows us to use semirings as algebraic
structure. Recall that semirings are distributive, i.e., all semiring elements a, b, c satisfy a · (b+c) = a ·b+a ·c
and (a + b) · c = a · c + b · c.

Distributive intraprocedural analyses (i.e., for programs without procedures) were considered first in
[Kil73]. This seminal paper showed that, given a program and the distributive transfer functions of a program
analysis, one can construct a vector f of polynomials such that, for every program point p,the p-component
of the least fixed point µf coincides with the so-called MOP-value9 of p, the sum of the dataflow values of
all program paths leading to p.

The framework of [Kil73] was generalized to non-distributive transfer functions in [KU77]. Non-
distributivity means, in our terms, that only subdistributivity holds: a · (b + c) ⊒ a · b + a · c and
(a + b) · c ⊒ a · c + b · c.10 There are interesting program analyses, such as constant propagation, which
are non-distributive, see e.g. [KU77,NNH99]. In those cases, the least fixed point does not necessarily coin-
cide with the MOP-value, but rather safely approximates (“overapproximates”) it.

[SP81] extended the work of [Kil73] to the interprocedural case. The generalization to non-distributive
analyses was done by [KS92], who proved that, as in the intraprocedural case, the least fixed point is an
overapproximation of the MOP-value.

We define the MOP-value as the vector M with Mp = Y (Tp), where Tp is the set of trees labeled with p.
Notice that a depth-first traversal of a tree labeled with p precisely corresponds to an interprocedural path
from the beginning of the procedure of p to the program point p, i.e., the MOP-value Mp = Y (Tp) is indeed
the sum of the dataflow values of all paths to p. Corollary 4.5 states that M = µf holds in the distributive
case. Proposition 2.4 and Theorem 3.8 show that the Kleene and Newton sequences converge to this value.

For the non-distributive case, the least fixed point overapproximates the MOP-value, i.e., M ⊑ µf , cf.
[KS92].

In the following we show that Newton’s method is still well-defined in “sub-distributive semirings”, and
that the Kleene and Newton sequences both converge to overapproximations of M , more precisely, we show
M ⊑ supi∈N κ(i) ⊑ supi∈N ν(i).

For this we first define subdistributive (ω-complete) semirings11:

Definition 7.1. A subdistributive semiring is a tuple 〈S,+, ·, 0, 1〉 satisfying the following properties:

1. 〈S,+, 0〉 is a commutative monoid.

2. 〈S, ·, 1〉 is a monoid.

3. 0 · a = a · 0 = 0 for all a ∈ S.

4. a · (b + c) ⊒ a · b + a · c and (a + b) · c ⊒ a · c + b · c for all a, b, c ∈ S.

5. The relation ⊑ := {(a, b) ∈ S × S | ∃d ∈ S : a + d = b} is a partial order.

6. For all ω-chains (ai)i∈N (i.e. a0 ⊑ a1 ⊑ a2 ⊑ . . . with ai ∈ S) sup⊑
i∈N

ai exists. For any sequence (bi)i∈N

define
∑

i∈N
bi := sup⊑{a0 + a1 + . . . + ai | i ∈ N}.

Remark 7.2. We obtain the definition of subdistributive semiring from the definition of ω-continuous semiring
by removing (7), and replacing distributivity with subdistributivity (see (4)).

9 We keep the term MOP-value for historical reasons.
10 If addition is idempotent (as for lattice joins) this condition is equivalent to the monotonicity of multiplication, or,

in traditional terms, to the monotonicity of the transfer functions [KU77]. The stricter distributivity condition, on
the other hand, amounts to requiring the transfer functions to be homomorphisms.

11 We drop ω-complete in the following.



In the rest of the section 〈S,+, ·, 0, 1〉 denotes a subdistributive semiring. Polynomials, vectors, differential,
etc. are defined as in the distributive setting.

Note that the following inequalities still hold for all sequences (ai)i∈N, c ∈ S, and partitions (Ij)j∈J of N:

c ·

(
∑

i∈N

ai

)
⊒
∑

i∈N

(c · ai),

(
∑

i∈N

ai

)
· c ⊒

∑

i∈N

(ai · c),
∑

j∈J



∑

i∈Ij

aj


 ⊒

∑

i∈N

ai .

Thus, any polynomial p is still monotone, although not necessarily ω-continuous. For any sequence (vi)i∈N

(of vectors) we still have p(
∑

i∈N
vi) ⊒

∑
i∈N

p(vi). Hence, the Kleene sequence of a polynomial system f

still converges, but not necessarily to the least fixed point of f :

Corollary 7.3. For any system f of polynomials, the Kleene sequence (κ(i))i∈N is an ω-chain. Moreover,
if f has a least solution µf , then supi∈N κ(i) ⊑ µf .

Since the Kleene sequence is still an ω-chain, its limit exists and is a safe approximation of the MOP-value:

Proposition 7.4. For any polynomial system f we have
(
κ(i)

)
X

⊒ Y (Hi
X), and, hence,

(
supi∈N κ(i)

)
X

⊒
Y (TX) where TX is the set of trees labeled with X.

We skip the proof of this proposition as it is almost identical to the one of Proposition 4.3. The only difference
is that when expanding the components of κ(i) into a sum of products of coefficients, subdistributivity only
guarantees that κ(i) is an upper bound, but not equality anymore. Similarly, subdistributivity only allows
us to generalize the lower bound from Lemma 3.12, i.e. we have

f(u) + Df |u(v) ⊑ f(u + v)

for a polynomial system f and vectors u,v.

We now turn to the definition of Newton sequence.

Definition 7.5. For f a polynomial system in the variables X, and a, b vectors we set

Lf ;a;b(X) := b + Df |a(X).

Definition 7.6. Let f be a polynomial system.

– Let i ∈ N. An i-th Newton approximant ν(i) is inductively defined by

ν(0) = f(0) and ν(i+1) = ν(i) + ∆(i) ,

where ∆(i) has to satisfy
∑

k∈N
Df |k

ν(i)(δ
(i)) ⊑ ∆(i) ⊑ Lf ;ν(i);δ(i)

(
∆(i)

)
.

– Any such sequence (ν(i))i∈N of Newton approximants is called Newton sequence.

Remark 7.7. If δ(i) exists, then possible choices for ∆(i) are

∑

k∈N

Df |kν(i)(δ
(i)), sup

k∈N

Lk
f ;ν(i);δ(i)(0) or (if it exists) µLf ;ν(i);δ(i) .

Note that in the distributive setting all three values coincide.

Proposition 7.8. Let f : V → V be a vector of power series.

– For every Newton approximant ν(i) there exists a vector δ(i) such that f(ν(i)) = ν(i) + δ(i). So there is
at least one Newton sequence.

– Every Newton sequence ν(i) satisfies κ(i) ⊑ ν(i) ⊑ f(ν(i)) ⊑ ν(i+1) for all i ∈ N.



Proof. First we prove for all i ∈ N that a suitable δ(i) exists and, at the same time, that the inequality
κ(i) ⊑ ν(i) ⊑ f(ν(i)) holds. We proceed by induction on i. For the base case i = 0 we have:

ν(0) = f(0) = κ(0) ⊑ κ(1) = f(κ(0)) = f(ν(0)).

So, there exists a δ(0) with ν(0) + δ(0) = f(ν(0)), and hence we have:

ν(1) = ν(0) + ∆(0) ⊒ ν(0) +
∑

k∈N

Df |kν(0)(δ
(0)) ⊒ ν(0) + δ(0) = f(ν(0)).

For the induction step, let i ≥ 0.

κ(i+1) = f(κ(i)) ⊑ f(ν(i)) = ν(i) + δ(i) ⊑ ν(i) +
∑

k∈N

Df |kν(i)(δ
(i)).

As we require that
∑

k∈N
Df |k

ν(i)(δ
(i)) ⊑ ∆(i), it now immediately follows that

κ(i+1) ⊑ ν(i) + ∆(i) = ν(i+1).

By definition of ∆(i) we have ∆(i) ⊑ Lf ;ν(i);δ(i)(∆(i))), it therefore follows:

ν(i+1) = ν(i) + ∆(i) ⊑ ν(i) + δ(i) + Df |ν(i)

(
∆(i)

)

= f(ν(i)) + Df |ν(i)

(
∆(i)

)
⊑ f

(
ν(i) + ∆(i)

)
= f(ν(i+1)).

We complete our proof by

f(ν(i+1)) = ν(i+1) + δ(i+1) ⊑ ν(i+1) +
∑

k∈N

Df |kν(i+1)(δ
(i+1))

⊑ ν(i+1) + ∆(i+1) = ν(i+2).

Proposition 7.9. Let M be the MOP-value, i.e., the vector M with MX = Y (TX). Then M ⊑
supi∈N κ(i) ⊑ supi∈N ν(i).

Proof. Follows directly from Propositions 7.4 and 7.8. ⊓⊔

Proposition 7.10. For ∆(i) =
∑

k∈N
Df |k

ν(i)(δ
(i)) we have supi∈N ν(i) ⊑ µf , if µf exists.

Proof. The proof is almost identical to the one of Proposition 3.9. Note that the proof of Lemma 3.13 does
not use distributivity.

Theorem 7.11 (Tree Characterization of the Newton Sequence). Let (ν(i))i∈N be a Newton sequence
of f . For every X ∈ X and every i ≥ 0 we have

(
ν(i)

)
X

⊒ Y (Di
X), i.e., the X-component of the i-th Newton

approximant is a safe approximation of the yield of Di
X .

Proof. In the distributive setting we proved this theorem via induction where we expanded the the terms
we obtained using distributivity. In the subdistributive case the same proof still guarantees that

(
ν(i)

)
X

⊒

Y (Di
X).

8 Conclusions

In this paper we have presented a contribution to the mathematical foundations of program analysis. Since
its inception, the theory of program analysis has been based on two fundamental observations:

– Analysis problems can be reduced (using abstract interpretation [CC77]) to the mathematical problem
of computing the least solution of a system of equations over a semilattice;

– Such systems of equations can be solved using Kleene’s fixed-point theorem as basic algorithm scheme.



We have generalized the algebraic framework from semilattices to arbitrary semirings (a generalization
to idempotent semirings was already present in the work of Reps et al. on pushdown systems for program
analysis [RSJM05]). This otherwise simple step has an interesting consequence: it leads to a common algebraic
setting for “qualitative” analyses, which, loosely speaking, explore the existence of execution paths satisfying
a given property, and “quantitative” analyses, in which paths are assigned a numerical weight, and one is
interested in the sum of the weights of all paths leading to a program point. Classical examples of qualitative
analyses are live variables, reaching definitions, or constant propagation, while examples of quantitative
analysis arise in the study of probabilistic programs: probability of termination, expected execution time or,
in the interprocedural case, expected stack height (for the latter, see [EKM05,BEK05]). The common setting
allows to compare the algorithmic schemes used in the qualitative and quantitative case, and examine if a
transfer of techniques is possible. We have shown that Newton’s method, the classical technique of numerical
mathematics for systems of equations over the reals, can be generalized to the abstract setting. In particular,
it can be applied to qualitative analysis problems.

We have explored Newton’s method for idempotent semirings, i.e., for the semirings corresponding to
qualitative analyses. We have shown that notions and techniques of the theory of context-free languages
(the languages corresponding to the control-flow of interprocedural programs) and of the theory of Kleene
algebras (extensively studied by Kozen et al. as a mathematical formalism for control flow, see for instance
[Koz91,Koz97,Koz00,Koz08]) can be naturally formulated in terms of Newton’s method. More precisely,
the context-free languages of finite index, already studied by Yntema, Salomaa, and Gruska, among others
[Ynt67,Sal69,Gru71] turn out to be the Newton approximants of the context-free languages. Finally, we have
shown that the beautiful algebraic algorithm of [HK99] for solving systems of equations over commutative
Kleene algebras is a particular instance of Newton’s method. Moreover, we have proved that the algorithm
requires at most n iterations for a system of n equations, a tight bound that improves on the O(3n) bound
presented in [HK99].

While this paper imports notions of calculus and numerical mathematics into program analysis, our
work also has some consequences pointing in the opposite direction. Quantitative analyses lead to systems
of equations over the real semiring, a particular case of the systems over the real field. Surprisingly, the
performance of Newton’s method on this special case seems not to have received much attention from
numerical mathematicians. The method turns out to have much better properties than in the general case.
A consequence of our main result (which was already proved, in a slightly more restricted form, by [EY05]), is
that on the real semiring Newton’s method always converges to the least fixed point starting from zero. This
is not so in the real field, where it may not converge or converge only locally, i.e., when started sufficiently
close to the zero (see e.g. [Ort72,OR70]). In related work we have shown that the convergence order of the
method is at least linear, meaning that the number of accurate bits of the Newton approximants grows at
least linearly with the number of iterations [KLE07,EKL08].

APPENDIX

A Proofs of Section 4

To avoid typographical clutter in the following proofs, we use the following notation. Given some class of
objects (e.g. derivation trees t) and a predicate P (t), we write

∑

t

Y (t) : P (t)

instead of ∑

t such that P (t) holds

Y (t) .

Proposition 4.3.
(
κ(i)

)
X

= Y (Hi
X), i.e., the X-component of the i-th Kleene approximant κ(i) is equal

to the yield of Hi
X .



Proof. By induction on i. The base case i = 0 is easy. Induction step (i ≥ 0):

(
κ(i+1)

)
X

= fX(κ(i))

=
∑

j∈J

mX,j(κ
(i))

=
∑

j∈J

y :

{
mX,j = a1X1 · · ·Xkak+1

y = a1κ
(i)
X1

· · ·κ
(i)
Xk

ak+1

by induction:

=
∑

j∈J

y :

{
mX,j = a1X1 · · ·Xkak+1

y = a1Y (Hi
X1

) · · ·Y (Hi
Xk

)ak+1

=
∑

j∈J

t1,...,tk

y :





mX,j = a1X1 · · ·Xkak+1

t1, . . . , tk trees with h(tr) ≤ i, λv(tr) = Xr (1 ≤ r ≤ k)
y = a1Y (t1) · · ·Y (tk)ak+1

=
∑

j∈J,t

Y (t) : t is a tree with h(t) ≤ i + 1, λ(t) = (X, j)

= Y (Hi
X) ⊓⊔

The following definition of fine dimension is analogous to Definition 4.6, but adds a second component,
which measures the length of the path from the root to the lowest node with the same dimension as the root:

Definition A.1 ((fine dimension)). The fine dimension dl(t) = (d(t), l(t)) of a tree t is inductively defined
as follows:

1. If t has no children, then dl(t) = (0, 0).
2. If t has exactly one child t1, then dl(t) = (d(t1), l(t1) + 1).
3. If t has at least two children, let t1, t2 be two distinct children of t such that d(t1) ≥ d(t2) and d(t2) ≥ d(t′)

for every child t′ 6= t1. Let d1 = d(t1) and d2 = d(t2). Then

dl(t) =

{
(d1 + 1, 0) if d1 = d2

(d1, l(t1) + 1) if d1 > d2.

Remark A.2. Notice that, by Definition 4.8, a tree t is proper if and only if l(t) = 0. So we have:

Y (P i
X) =

∑

t

Y (t) : t tree with λv(t) = X, dl(t) = (i, 0)

Now we can prove the remaining lemmata from Section 4.

Lemma 4.9. For every variable X ∈ X and every i ≥ 0: τ
(i)
X = Y (Di

X).

Proof. By induction on i. Induction base (i = 0):

τ
(0)
X = fX(0) =

∑

t

Y (t) : λv(t) = X,h(t) = 0

=
∑

t

Y (t) : λv(t) = X, d(t) = 0

= Y (D0
X)



Induction step (i + 1 > 0):

We need to show that Df |∗
τ (i)(δ

(i)) equals exactly the yield of all trees of dimension i + 1, i.e., that for all
X ∈ X (

Df |∗τ (i)(δ
(i))
)

X
=
∑

t

Y (t) : λv(t) = X, d(t) = i + 1 .

We prove the following stronger claim by induction on p:

(
Df |p

τ (i)(δ
(i))
)

X
=
∑

t

Y (t) : λv(t) = X, dl(t) = (i + 1, p)

The claim holds for p = 0 by Remark A.2. For the induction step, let p ≥ 0. Then we have for all X ∈ X :

(
Df |p+1

τ (i) (δ
(i))
)

X

=
(
Df |τ (i) ◦ Df |p

τ (i)(δ
(i))
)

X

= DfX |τ (i) ◦ Df |p
τ (i)(δ

(i))

Define the vector Ỹ by Ỹ X0
=
∑

t Y (t) : λv(t) = X0, dl(t) = (i + 1, p). Then, by induction hypothesis (on
p), above expression equals

= DfX |τ (i)(Ỹ )

=
∑

j∈J

DmX,j |τ (i)(Ỹ ) : mX,j = a1X1 · · · akXkak+1

=
∑

j∈J,r

y :





mX,j = a1X1 · · · akXkak+1

1 ≤ r ≤ k

y = a1τ
(i)
X1

· · · arỸ Xr
ar+1τ

(i)
Xr+1

· · · akτ
(i)
Xk

ak+1

by induction on i:

=
∑

j∈J,r,

t1,...,tk

y :





mX,j = a1X1 · · · akXkak+1

1 ≤ r ≤ k
t1, . . . , tk trees with λv(ts) = Xs (1 ≤ s ≤ k)

dl(tr) = (i + 1, p),
d(ts) ≤ i (1 ≤ s ≤ k, s 6= r)

y = a1Y (t1) · · · arY (tr) · · · akY (tk)ak+1

=
∑

j∈J,t

Y (t) : t tree with λ(t) = (X, j), dl(t) = (i + 1, p + 1)

=
∑

t

Y (t) : t tree with λv(t) = X, dl(t) = (i + 1, p + 1) ⊓⊔

Lemma 4.10. The sequence (τ (i))i∈N is a Newton sequence as defined in Definition 3.5, i.e., the δ(i) of

Definition 4.8 satisfy f(τ (i)) = τ (i) + δ(i).

Proof.

fX(τ (i)) =
∑

j∈J

mX,j(τ
(i))

=
∑

j∈J

y :

{
mX,j = a1X1 · · · akXkak+1

y = a1τ
(i)
X1

· · · akτ
(i)
Xk

ak+1



by Lemma 4.9:

=
∑

j∈J

t1,...,tk

y :





mX,j = a1X1 · · · akXkak+1

t1, . . . , tk trees with λv(tr) = Xr, d(tr) ≤ i, (1 ≤ r ≤ k)
y = a1Y (t1) · · · akY (tk)ak+1

=
∑

j∈J

t1,...,tk

y :





mX,j = a1X1 · · · akXkak+1

t1, . . . , tk trees with λv(tr) = Xr, d(tr) ≤ i, (1 ≤ r ≤ k)
such that at most one of the tr with d(tr) = i

y = a1Y (t1) · · · akY (tk)ak+1

+
∑

j∈J

t1,...,tk

y :





mX,j = a1X1 · · · akXkak+1

t1, . . . , tk trees with λv(tr) = Xr, d(tr) ≤ i, (1 ≤ r ≤ k)
such that at least two of the tr with d(tr) = i

y = a1Y (t1) · · · akY (tk)ak+1

=
∑

t

Y (t) : t tree with λv(t) = X, d(t) ≤ i

+
∑

t

Y (t) : t tree with λv(t) = X, dl(t) = (i + 1, 0)

by Lemma 4.9 resp. Remark A.2:

= τ
(i)
X + Y (P i+1

X )

= τ
(i)
X + δ

(i)
X ⊓⊔

B Proofs of Section 5.1

Theorem 5.3. Let G = (X , Σ, P,X0) be a context-free grammar in CNF and let (ν(i))i∈N be the Newton
sequence associated with G. Then

(
ν(i))X0

= Li+1(G) for every i ≥ 0.

The proof of Theorem 5.3 follows from Theorem 4.7 and the following two lemmata.

Lemma B.1. Let G = (X , Σ, P,X0) be a context-free grammar in CNF. Let w ∈ Σ∗ be derivable from X
by an index-i derivation. Then there is a derivation tree t with λv(t) = X,Y (t) = w and d(t) < i.

Proof. Let D be a derivation of w. One can associate a derivation tree t to D in the obvious way. We show
by induction on i and on the height of t that d(t) ≥ i implies ind(D) > i, where ind(D) denotes the index
of D. The base case i = 0 is trivial, because any derivation has index at least 1. The other base case i = 1
implies that t has two children, hence ind(D) ≥ 2. Let i > 1 and d(t) ≥ i. Then t has two children t1, t2. By
definition of dimension, either d(t1) ≥ i − 1 and d(t2) ≥ i − 1 or d(t1) ≥ i.

– In the first case, the very first step of D already produces two variables λv(t1) and λv(t2). Since d(t1) ≥ 1
and d(t2) ≥ 1, neither of those two variables can be derived to a terminal word immediately. So the most
“economical” way to continue the derivation is to finish the derivation of λv(t1) or λv(t2) before touching
the other variable. But, by induction on i, any subderivations of D that “flatten” t1 and t2 have indices
at least i. Hence ind(D) > i.

– In the second case, any subderivation of D that “flattens” t1 has, by induction on the height, index
greater than i. So, D itself cannot have a smaller index. ⊓⊔

Lemma B.2. Let G = (X , Σ, P,X0) be a context-free grammar. Let m be the largest number of nonterminals
in the right-hand sides of P . Let t be a derivation tree with λv(t) = X, Y (t) = w and d(t) = i. Then there
is a derivation of w from X with index at most i · (m − 1) + 1.



Proof. The sought derivation D can be constructed by “flattening” the derivation tree t according to a
certain strategy. The first step of D is λv(t) ⇒ λm(t). After that, the strategy is to completely flatten each
subtree of t in the order of increasing dimension. We prove by induction on i and on the height of t that
this yields ind(D) ≤ i · (m − 1) + 1. The base case i = 0 is clear. Let i > 0 and t1, . . . , tk (k ≤ m) be
the subtrees of t ordered by increasing dimension. During the flattening of tj , at most m − 1 nonterminals,
namely λv(tj+1), . . . , λv(tk), stick around. The trees t1, . . . , tk−1 have dimension at most i− 1. By induction
on i, they can be flattened to derivations with index at most (i − 1) · (m − 1) + 1. So, during the flattening
of t1, . . . , tk−1 the index of D grows to at most (i − 1) · (m − 1) + 1 + (m − 1) = i · (m − 1) + 1. The tree tk
has dimension at most i. By induction on the height, tk can be flattened to a derivation with index at most
i · (m − 1) + 1. During the flattening of tk, no other nonterminals stick around. So, the index of D does not
grow over i · (m − 1) + 1. ⊓⊔

C Redko’s Theorem and Commutative Kleene Algebras

There is a number of inequivalent definitions of Kleene algebras. This includes C-algebras and Kleene algebras
in the sense of Kozen the latter of which we simply refer to as Kleene algebras.

Both definitions require an algebraic structure (K,+, ·, ∗, 0, 1) that is an idempotent semiring under
+, ·, 0, 1. In addition, different sets of axioms are required.

A C-algebra [Con71] must satisfy the following axioms:

C11 (a + b)∗ = (a∗b)∗a∗

C12 (ab)∗ = 1 + a(ba)∗b
C13 (a∗)∗ = a∗

C14.n a∗ = an∗a<n (n > 0).

A Kleene algebra [Koz91] on the other hand must satisfy the following axioms:

K1 1 + aa∗ ≤ a∗

K2 1 + a∗a ≤ a∗

K3 a + bc ≤ c → b∗a ≤ c
K4 a + cb ≤ c → ab∗ ≤ c,

where ≤ refers to the natural partial order on K.
It was shown in [Koz91] that the axioms of Kleene algebra are complete for the algebra of regular

languages. That means, if an equation α = β between regular expressions holds under the canonical inter-
pretation over the regular languages, then it holds in any Kleene algebra. It is easy to see that equations
C11 – C14 hold under the canonical interpretation. Therefore any Kleene algebra is a C-algebra.

The axioms of C-algebra are not complete, i.e., they are too weak to derive some equation valid under
the canonical interpretation [Con71]. However, if two more axioms (C+1 and C+2, see below) describing
commutativity are added, the resulting system of axioms (defining commutative C-algebras) becomes com-
plete for the algebra of commutative regular languages. In other words, if the Parikh images of languages
L(α) and L(β) are equal, then α = β can be proved using only the axioms of commutative C-algebras. The
additional axioms are:

C+1 ab = ba
C+2 a∗b∗ = (ab)∗(a∗ + b∗).

The completeness of commutative C-algebras is called Redko’s theorem. Conway’s monograph [Con71] con-
tains a proof of this theorem.

We want to show that the system of axioms of Kleene algebra plus the commutativity axiom ab = ba
(defining commutative Kleene algebras) is complete for commutative regular languages as well. Appealing to
Redko’s theorem, we only have to show that equation C+2 is a theorem of commutative Kleene algebra.

We use the identity a∗b∗ = (a + b)∗ which is a theorem of commutative Kleene algebra [HK99]. Since
(a + b)∗ ≥ (ab)∗(a∗ + b∗) holds in any Kleene algebra, we only need to show (a + b)∗ ≤ (ab)∗(a∗ + b∗). With
K3 it suffices to show

1 + (a + b)(ab)∗(a∗ + b∗) ≤ (ab)∗(a∗ + b∗).



We show this inequality for each term of the sum at the left hand side. For 1 it obviously holds. We
also have a(ab)∗a∗ = (ab)∗aa∗ ≤ (ab)∗a∗ using commutativity and K1. Similarly, a(ab)∗b∗ = (ab)∗ab∗ =
(ab)∗a+(ab)∗abb∗ ≤ (ab)∗a+(ab)∗b∗ ≤ (ab)∗(a∗ + b∗). Here we used that b∗ = 1+ bb∗ is a theorem of Kleene
algebra. The other inequalities follow symmetrically.
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